GAP NOTES

KB, PM

1. DRAFT MANUAL FOR GRAZ GAP PACKAGE

Here an *n*-gon has its vertices labelled 1, 2, ..., n. An angulation A is encoded as the subset of 'diagonal' vertex pairs $\{i, j\}$ that are edges of A (i.e. ignoring pairs $\{i, i+1\}$, which are always in, as edges of the *n*-gon itself).

1.1. Functions defined in GRaZ.

Baur(n,m) returns the list of angulations of the *n*-gon with *m* diagonals. Thus

gap> Baur(5,1);
[[[1, 3]], [[1, 4]], [[2, 4]], [[2, 5]], [[3, 5]]]

Baurtab(n,m) returns for each angulation A from Baur(n,m):

1. a sequence $tab = [r_1, r_2, ...]$ where r_1 is (the size of) an ear tile of A; r_2 is an ear tile of A/r_1 and so on. Thus tab gives the sizes of all the tiles of A (but in no particular order).

2. a list giving the multiplicities of the various tile sizes — the partition associated to A.

3. a running count of the number of times various specific partitions occur. (Ignore this! See below.)

4. a running total count of the angulations. Thus

gap> Baurtab(5,1);

[3, 4][0, 0, 1, 1, 0, 0, 0, 0, 0, 0][0, 0, 0]1 [4, 3][0, 0, 1, 1, 0, 0, 0, 0, 0, 0][0, 0, 0]2 [3, 4][0, 0, 1, 1, 0, 0, 0, 0, 0, 0][0, 0, 0]3 [4, 3][0, 0, 1, 1, 0, 0, 0, 0, 0, 0][0, 0, 0]4 [3, 4][0, 0, 1, 1, 0, 0, 0, 0, 0, 0][0, 0, 0]5

Baurtabb(n,m,reftab) is as above but in 3. counts occurences of the partition reftab, given in the 'exponent' format $[t_1, t_2, ..., t_{10}]$. (I.e. t_r is the number of r-gonal tiles. Thus this argument should always start $[0, 0, t_3, ...]$. Note that the array size 10 is coded in, but is arbitrary and needs to be fixed for larger n!)

Date: 25 August, 2015.

KB, PM

1.2. **Jobs.** Main: Write the code to compute the Scott permutation of each angulation.

References

- K. Baur, A. King, R.J. Marsh, Dimer models and cluster categories for Grassmannians, preprint, 1309.6524v1.pdf
- [2] T.K. Petersen, P. Pylyavskyy, B. Rhoades, Promotion and cyclic sieving via webs. J. Algebraic Combin. 30 (2009), no. 1, 19–41
- [3] J.H. Przytycki, A.S. Sikora, Polygon dissections and Euler, Fuss, Kirkman and Cayley numbers, preprint, arXiv:math/9811086v1