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Chapter 1

Preamble: A brief intro to sets

and numbers

We assume here that you are reasonably happy with the idea of a collection

of “objects”. This is a bit vague and potentially troublesome. But it is very

useful, and we have to start somewhere. We will use the term ‘set’ for a

collection of objects.

Suppose that we (you and I) both have in mind a set. Let’s call it S.

To say that we both have it is to say that we agree on what the “elements”

are — the objects that are collected in S. Thus if we both have in mind an

object x (say), we can agree if the statement ‘x is in S’ (written x ∈ S) is

true or false (if false then we write x 6∈ S).

What might constitute a good “object”? In practice this is anything that

we can agree is a good object. Just to get things started with a minimum of

trouble, we can say that a set itself can be an object. Let us also say that

there is one formal set, call it ∅, that does not contain any objects — thus

postponing the general issue of what an object is by avoiding it. Thus the

statement ‘x ∈ ∅’ is false for every object x.

Putting these two ideas together, we have another set: the set containing

only the set ∅.
If we have given a name to an object, like ∅, or X perhaps, then we can

5



6CHAPTER 1. PREAMBLE: A BRIEF INTRO TO SETS ANDNUMBERS

write the set containing only that object as {X}. The only concrete example

of this that we have so far is {∅}. For this at least we can say ∅ ∈ {∅} and

x 6∈ {∅} for all other objects x.

We say that two sets are equal if they contain the same elements; and

otherwise they are unequal. Thus ∅ 6= {∅}.
Suppose that x and y and z represent objects, somehow agreed between

us. One way of writing that x and y and z are in S (that x, y, z ∈ S)

is S = {x, y, z, ...}. Another way is S = {y, x, z, ...}. If x, y, z are the only

elements in S then we can write S = {x, y, z}. The extension of this notation

to more (or fewer) elements can be guessed. (For the moment the question

of precisely what the objects x, y, z here are remains mysterious.)

And then, using this notation, another set with un-mysterious objects is

{∅, {∅}}. Notice that this is not equal as a set either to ∅ or to {∅}. And

notice that we can ‘iterate’ this construction: the set containing all the sets

we have so far as elements is a new set; and now we can make another new

set by adding this new set as a new element.

With such unappealing constructions of new sets, and hence new objects,

we can at least delay the discussion of more interesting (but maybe not clearly

defined) objects. We do now have many objects available — just by iterating

the construction of adding a new set to a set of sets.

One more device before we really get started. Suppose that a and b

represent objects (not even necessarily distinct). An ordered pair, denoted

(a, b), is a set {{a}, {a, b}}.
(Caveat: this notation (a, b) can be used in other contexts as well, to represent

other things. So, to be safe, if we do mean it to denote an ordered pair then

we will say so explicitly.)

Because of the way we write (and talk; and think) it sometimes looks

like there is order in expressions like {a, b} already. But note from above

that {a, b} = {b, a} so there is not. However note that (a, b) 6= (b, a) (unless

a = b) — this is a good exercise to prove.
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Chapter 2

Sets

• A SET is a collection of objects.

• A specific set is ‘defined’ by any means which unambiguously tells us

how to determine whether an arbitrary object is in the set or not.

• The objects in a set are called the ELEMENTS of the set. We write

x ∈ S in case x is an element of set S. We write x 6∈ S otherwise.

Example 1 Suppose we write S = {1, 2, 3, 4}. Then S is a set, 1 ∈ S, and

2 ∈ S, but 5 6∈ S, and of course [My pet ElephanT ] 6∈ S (see figure).

Example 2 Suppose T = {x an integer | x2 < 27}. This is another set

(here | means ‘such that’; and we are assuming just for now that you know

what ‘integer’ and < mean). We have −1 ∈ T , 6 6∈ T , −6 6∈ T , 0 ∈ T , and

so on.

Example 3 Suppose V = {0, 1, 2, 3, 4, 5,−1,−2,−3,−4,−5}. This is also

a set. The order in which we write the elements in a set is not important.

In general, the language of SET THEORY aims to be very precise.

Recall how computers refuse to try to understand even the slightest devi-

ation from their computer languages. Although the language of set theory is

intended to be read by humans, we are trying to achieve (almost) the same

9



10 CHAPTER 2. SETS

3
4

2
1

level of discipline and precision as the computers, so we require almost the

same level of discipline in our language.

This has the advantage that we less often confuse or mislead our audi-

ence, but the disadvantage that communication can seem slow, and hence

sometimes boring.

If one does not value telling the truth, then set theory language will seem

like a waste of time; but if one does value telling the truth, and hearing the

truth, then it is a good idea to be patient with it! Ultimately it is rewarding.

2.1 Sets built from other sets

2.1.1 Subsets

Definition 2.1.[SUBSET] A set S is a subset of a set T if and only if every

element of S is an element of T .
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A mathematical notation representation of this definition is:

S ⊆ T ⇐⇒ (x ∈ S ⇒ x ∈ T ).

Make sure you understand what each symbol means, and how to read this

line as a sentence in ordinary language! For example, ⊆ is the symbol for

subset; ⇐⇒ , also written iff, means ‘if and only if’; and ⇒ is the symbol for

‘implies’. The brackets here are a guide to the eye, containing a statement

within the sentence which is a composite of other statements.

Example 4 Comparing S from example 1 and T from example 2 we see that

S ⊆ T .

Example 5 Let S be the set of playing cards in a 52 card deck of playing

cards. Then the set of all ‘club’ cards is a subset S♣ of S. Suppose that a

card dealer deals out the pack into 4 equal hands (i.e. 13 cards each). Each

of these hands is a subset of S. What is the probability that one of these

hands is S♣?

A set S ⊆ T is called a PROPER subset of T (in our notation this is

written S ⊂ T ) provided at least one element of T is not in S.

We write S = T if S ⊆ T and T ⊆ S.

Example 6 Comparing T from example 2 and V from example 3 we see that

T = V .

Exercise 1 Write down five sets — call them S1, S2, S3, S4, S5, say — with

the property that Si ⊂ Si+1 for i = 1, 2, 3, 4 (i.e. S1 ⊂ S2, and so on).

Exercise 2 Show that for A,B,C sets, if A ⊂ B and B ⊂ C then A ⊂ C.

The general procedure for solving this kind of problem is as follows:

State what is to be done in mathematical notation; if the solution is very

long (not the case here, as we will see!) give a one sentence overview of your

plan of attack; convert the known information into mathematical notation

(expanding up all terms to their full definitions) and rearrange to achieve the

required result....
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Solution 2.1 We need to show that x ∈ A implies x ∈ C, and that there is

some y ∈ C such that y 6∈ A. Suppose that A ⊂ B and B ⊂ C. Since A ⊂ B

then x ∈ A implies x ∈ B. Further since B ⊂ C then x ∈ B implies x ∈ C.

Altogether then x ∈ A implies x ∈ C, which shows that A ⊆ C. But A ⊂ B

also implies that there exists y ∈ B such that y 6∈ A, and since y ∈ B implies

y ∈ C then A ⊂ C. QED.

2.1.2 Intersection and union

In what follows, S, T are two sets:

Definition 2.2.[INTERSECTION] We define a new set, the ‘intersection of

S and T ’, written S ∩ T , by

S ∩ T = {x|x ∈ S and x ∈ T}.

For example, if S = {1, 2, 4}, T = {1, 3, 4, 5, 6}, then S ∩ T = {1, 4}.
The EMPTY set, denoted ∅, is the set containing no objects. For example,

{1, 3, 5} ∩ {2, 4, 6} = ∅.

Definition 2.3.[DISJOINT] We say that two sets A,B are disjoint in case

A ∩B = ∅.

Example 7 Let W be the set of all those ancient Egyptian pyramids under

whose northernmost foundation stone is hidden evidence that aliens once

visited the Earth. It is true to say that there is a set E such that W ⊇ E,

since W ⊇ ∅ and W ⊇ W . But is it true that there is a set E such that

W ⊃ E?

Definition 2.4.[UNION] We define a new set

S ∪ T = {x|x ∈ S or x ∈ T}.

N.B. The ‘or’ here is the inclusive or.

For example, if S = {1, 2, 4}, T = {1, 3, 4, 5, 6}, then S ∪T = {1, 2, 3, 4, 5, 6}.
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Exercise 3 Verify that S ∪ (T ∪ V ) = (S ∪ T ) ∪ V for all sets S, T, V .

From this exercise we see that we may speak unambiguously of the union of

several sets (i.e. not just two sets).

2.2 More Sets built from other sets

Definition 2.5.[POWER SET] The power set of a set S, denoted P(S), is

the set of all subsets of S.

Example 8 P({∅}) = {∅, {∅}}. Notice how careful one must be with the

brackets for this to make any sense.

Every year, one of the things which people find confusing about algebra

is the DEFINITIONS. It is completely normal to have trouble understanding

a definition. But the definitions are crucial, so we must work to understand

them. Let us try to use the definition above to illustrate how to read a

definition in general — we might call this examining THE ANATOMY OF

A DEFINITION.

The definition above is the definition of the term Power set. In other

words it is a precise statement of what this term means, i.e. what it takes

to qualify to be a power set. All definitions of terms are written using other

terms. These other terms have either already been defined, or else their

meaning has otherwise already been agreed. In theory this means we only

use terms which we have already understood.

Thus the first thing to do in trying to understand a new definition is to

check if we understand all the ‘old’ terms used in it. If there are any of

these which we do not understand then we should transfer our attention to

trying to understand them first. Since (I claim) no sequence of definitions is

circular, this process will eventually stop!

The terms we need to check we understand here are SET and SUBSET

(these are the already agreed terms used in the definition). If you didn’t
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understand one of these then you wouldn’t have got this far yet (at least

that’s the idea), so let’s assume we are happy with the meaning of these two.

Thus given a set S we know what is a subset of S. A subset of S is a set,

of course, and sets are perfectly good (possibly abstract) objects. Consider

a collection of such objects, i.e. objects each of which is a subset of S. This

is itself a perfectly good set — a set of subsets of S. Now the power set of

S is just the set of all subsets. To put it another way, it is the set with the

property that if T is a subset of S, then T is an element of the power set of

S. (The expression P(S) is just a notation for the power set.)

In SET THEORY it is useful to have a notion of ‘all possible objects’

which might be collected together to form sets. Unfortunately this notion is

really too vague as it stands. In practice we define a UNIVERSAL set U to be

a set containing all possible objects under discussion (with the kind of object

under discussion being determined, perhaps implicitly, by the context). We

usually specify a universal set for a given problem as some set which, at least,

contains as subsets all the sets in which we are currently interested.

The COMPLEMENT of a set S (with respect to some such universal set

U) is written S ′, and means the set of all objects in U NOT in S.

2.2.1 Cartesian product

Definition 2.6.[CARTESIAN PRODUCT] The Cartesian product of two

nonempty sets S and T , written S × T , is the set S × T given by

S × T = {(a, b)|a ∈ S and b ∈ T}

where (a, b) ∈ S × T is a constructed object made from the ordered pairing

of a and b.

For example,

{1, 2, 3} × {x, y} = {(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)}.

Note that the order in which we write the pair (1, x) (say) is important. This

pair is a single element of the Cartesian product. The pair (x, 1) is NOT an
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element of the Cartesian product in our example (but it would be an element

of {x, y} × {1, 2, 3}, so obviously S × T 6= T × S in general!).

Example 9 Let H = {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q,K} — the set of values

on the cards in a 52 card deck of playing cards. Then the set S from example 5

may be written

S = H × {♣,♥,♠,♦}
where (2,♣) represents the two of clubs, and so on. In this notation we might

write S♣ = H×{♣} (it might be safer to write ∼= instead of =, see later). We

may similarly introduce S♥ = H × {♥}, and so on. Note that S♥ ∩ S♣ = ∅;
and S♥ ∪ S♣ ∪ S♠ ∪ S♦ = S.

2.2.2 Aside on the subsets of the set of real numbers

We will discuss the topic of real numbers later, but in order to introduce

some notation we here note that the set of real numbers, denoted R, has a

sequence of subsets:

∅ ⊂ N ⊂ Z ⊂ Q ⊂ R.

Exercise 4 Explain informally the meaning of each of these symbols.

We will also discuss N again later. But for now here is a ‘recipe’:
The set of NATURAL NUMBERS, denoted N, satisfies Peano’s axioms:

(a) 1 ∈ N;

(b) for each n ∈ N there exists a unique n′ ∈ N called ‘the successor of n’, written

(n+ 1);

(c) 1 is not the successor of any n ∈ N;

(d) if n′ = m′ then n = m;

(e) if S ⊆ N and 1 ∈ S and if n ∈ S implies (n+ 1) ∈ S, then S = N.

Let us see what we get using these axioms:

N = {1, (1 + 1), ((1 + 1) + 1), (((1 + 1) + 1) + 1), ((((1 + 1) + 1) + 1) + 1), .....}.

Of course we have a shorthand for this:

N = {1, 2, 3, 4, 5, .....}.



16 CHAPTER 2. SETS

Exercise 5 Give an example of a set N which satisfies all of Peano’s axioms except

axiom (c): 1 is not the successor of any n ∈ N.

Solution 5.1 Without this axiom we could allow, for example,

(((((1 + 1) + 1) + 1) + 1) + 1) = 1.

Then

N = {1, 2, 3, 4, 5}

(and + doesn’t have its usual meaning!).

We have lots more to say about sets and numbers. We will come back to

them later.

2.3 Relations and Functions

Definition 2.7. Let S and T be nonempty sets. A RELATION from S to

T is any subset of S × T .

For example, if S is the set of Mathematicians, and T is the set of Statis-

ticians, then we might define a relation ρ by writing

ρ = {(a, b) ∈ S × T |a is older than b}.

It is often convenient to write aρb (and say ‘a has the relation ρ with b’, or

‘a stands in relation ρ to b’, or in this case simply ‘a is older than b’) in case

(a, b) ∈ ρ.

Note in particular than in this example (and in general) aρb does not

imply bρa!

Suppose we have a relation ρ ⊆ S × T . Then

Definition 2.8.[DOMAIN] The domain of ρ, written dom ρ, is the set of

elements of S which appear as the left hand sides of pairs which are elements

of ρ.
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For example, if ρ = {(1, x), (2, x)} then dom ρ = {1, 2}.

Definition 2.9.[RANGE] The range of ρ, written ran ρ, is the set of elements

of T which appear as the right hand sides of pairs which are elements of ρ.

In our example, ran ρ = {x}.

Definition 2.10.[INVERSE] The inverse of ρ, written ρ−1, is the set ob-

tained by reversing the order of each pair in ρ.

In our example ρ−1 = {(x, 1), (x, 2)}.
Let ρ be a relation from S to T . Then it also gives a relation from dom ρ

to T .

Exercise 6 Show that ρ above also gives a relation from S to ran ρ.

Solution 6.1 This is an example of a simple kind of ‘proof’ of a claim,

where we simply have to insert the definitions of the terms and rearrange a

little:

We have to show that (a, b) ∈ ρ implies b ∈ ran ρ. But the definition of

ran ρ says that it is the set of all right hand sides of such pairs, so certainly

it includes this one!

Exercise 7 (compulsory) By similar means:

1) Show that a relation ρ is also a relation from dom ρ to any Q such

that Q ⊃ ran ρ.

2) Show that a relation ρ is NOT a relation from dom ρ to any P such

that P ⊂ ran ρ.

2.3.1 Functions

Definition 2.11.[ FUNCTION] A function is a relation in which each ele-

ment of the domain appears exactly once as the left hand side of a pair.

In particular a relation ρ ⊆ A×B that is a function is said to be a function

from A to B.

For a relation ρ ⊆ A × B that is a function, the domain A and ‘codomain’
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B may be indicated by writing ρ : A → B.

(The modification of notation will be enlarged upon as soon as we have some

examples.)

Thus the relation {(1, x), (2, x)} is a function, but {(x, 1), (x, 2)} is not.

To generate some more examples let us consider A = {a, b, c, d}, B =

{r, s, t, u, v}. Then:
(i) {(a, t), (c, r), (d, s), (c, v)} is not a function from A to B because c appears

twice as a left-hand side of a pair; it is also not a function from A to B because

b does not appear as a left-hand side;

(ii) {(a, u), (b, r), (c, s), (d, u)} is a function;

(iii) {(a, c), (a, u), (b, s), (c, r), (d, t)} is not a function;

(iv) {(a, u), (b, u), (c, u), (d, u)} is a function;

(v) {(a, r), (b, s), (c, t), (d, u)} is a function.

Recall that we can think of the set of real numbers R as the set of points on

the x-axis of a Cartesian x, y frame. Then the set R×R = R2 may be repre-

sented by the points on the whole plane (i.e. with ”coordinates” (x, y) ∈ R2).

It follows that any subset of the points of the plane is a relation! In partic-

ular any line drawn on the plane gives a relation. We are familiar with the

representation of functions from R to R by this means. On the other hand,

we know that only certain lines drawn on the plane correspond to a function

(an arbitrary scribble, while giving a perfectly good relation, would not nor-

mally be a function). You should compare your intuitive understanding of

this with the definition above!

Since each element of the domain appears exactly once in a function, we

have the opportunity for a new and neater notation. The right hand side

of each pair in the function is uniquely given by the left hand side. We can

recognise this by writing the pair (x, f(x)) ∈ f , say. Of course we then often

go on to specify the right hand side ”as a function of” the left hand side

explicitly, arriving at the more familiar notation for functions, for example,

if the domain is a set upon which some arithmetic operations make sense
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(like R) then we can use them:

f(x) = 1 + x2.

Altogether we give the concrete definition of a specific function as follows.

First we specify the name of the function, and the domain, and the CODOMAIN

(which, note, could actually be any set containing the range). For example

if f is the function, A is the domain and B ⊇ ran f we may write

f : A → B

and say “the function f maps the set A into the set B”. Then we write

f : x 7→ f(x)

which means that the action of f on a specific element x ∈ A is to take it to

f(x) ∈ B. In practice at this point we may be able to give f(x) explicitly.

For example we might write, altogether,

f : R → R

f : x 7→ x3 + 3x− 2.

There will be examples shortly. First, here are some refinements.

2.3.2 Injection and surjection

Note that if a relation is a function f : A → B then the domain is A. The

range might not be B though. Recall we have a separate name for the ‘target’

set B in general: codomain.

Definition 2.12.[ONTO] A function f : A → B is called onto (or SURJEC-

TIVE) if ran f = B.

Note that examples (ii),(iv) and (v) above are NOT onto (recall (i) and

(iii) were not even functions). We can make (ii) into an onto function by

changing the codomain to {r, s, u}.
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Definition 2.13.[ONE-TO-ONE] A function is one-to-one (or INJECTIVE)

if

( (a, b) ∈ f and (a′, b) ∈ f ) implies a = a′.

That is, distinct elements in A have distinct ”images” in B (f(a) ∈ B is

called the ”image of a under f”). Note that examples (ii) and (iv) above are

not one-to-one, but that example (v) is one-to-one.

A function which is not one-to-one is called MANY-TO-ONE.

Definition 2.14.[BIJECTION] A function which is both one-to-one and

onto is called a bijection.

Exercise 8 Give three examples of bijections.

There are various useful pictorial representations of functions. These will

be discussed in class.

Definition 2.15.[IDENTITY FUNCTION] For each set A there is a function

from A to A, called the identity function, denoted 1A, and given by

1A : A → A

1A : a 7→ a.

Two functions h and g are said to be EQUAL as functions (written h = g)

if they have the same domain and codomain, and h(x) = g(x) for all x in

the domain. For example, if h, g are two functions from R to R given by

h(x) = x+ x and g(x) = 2x, then h = g.

The restriction of a function f to a subset of the domain is the function

on that subset obtained by applying f to it.

2.3.3 Composition of functions

Let f : A → B and C ⊇ ran f and g : C → D. Then

Definition 2.16.[COMPOSITE FUNCTION] The composite function g ◦ f
is defined by

g ◦ f : A → D
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g ◦ f : a 7→ g(f(a)).

We write (g ◦ f)(a) = g(f(a)).

For a relation ρ we understand ρ(a) to be the set of objects b such that

aρb. For S a subset of the domain of ρ we understand ρ(S) to be the union

of sets ρ(s) over every s ∈ S. Relations are then composable in much the

same way as functions.

Although every relation has an inverse (and hence every function has

an inverse as a relation), not every function has an inverse which is itself a

function.

Exercise 9 Show that the inverse of a function is a function if and only if

the function is a bijection.

Exercise 10 For f : A → B a bijection, show that

f ◦ f−1 = 1B

and

f−1 ◦ f = 1A.

2.4 Orderings

Let P be a non-empty set.

Definition 2.17.[Partial Order Relation] A partial order relation on P , usu-

ally written ≤, is a relation on P to P with the following properties:

(i) x ≤ x for all x ∈ P (reflexivity);

(ii) x ≤ y and y ≤ x implies x = y (‘anti-symmetry’);

(iii) x ≤ y and y ≤ z implies x ≤ z (transitivity).

Then the pair (P,≤) is called a partially ordered set, or just a poset for

short.

Example: For X any set then (P(X),⊆) is a poset.

Let us check this:
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Reflexivity: A ⊆ A for any set A, so OK.

Anti-symmetry: A ⊆ B,B ⊆ A implies A = B, again for any two sets.

Transitivity: A ⊆ B,B ⊆ C implies A ⊆ C, so OK.

Examples (looking ahead for a moment — using some properties of number

systems):

(1) (N,≤) where ≤ means ‘less than or equal to’ is a poset.

(2) (N, <) is NOT a poset (it fails reflexivity test).

(3) (Z, a divides b) is NOT a poset (1 divides -1, and -1 divides 1).

(4) (N, a divides b) is a poset.

(5) For X a nonempty set, the set of all real valued functions f : X → R,

with relation f ≤ g iff f(x) ≤ g(x) for all x ∈ X , is a poset.

2.4.1 Diagrammatic representation of posets: Hasse

diagrams

In a Hasse diagram we take informal advantage of the similarity of the defi-

nition to the ‘height ordering’ of the vertical line to represent certain posets

as follows. We draw a ‘node’ or spot for each element of the set, and a bond

between distinct nodes x and y (say) if either x ≤ y or y ≤ x (if there is some

z such that x ≤ z ≤ y we only draw bonds between x and z and between z

and y, since this automatically creates a connection path for us between x

and y). We draw y ABOVE x on the page if x ≤ y.

For example: (1) Consider the set S = {x, y} with partial order given by

x ≤ y (here note that x ≤ x and y ≤ y may be understood implicitly). Then

the diagram is

x

y

If you like, you can even put an arrow on the edge from y to x (thus a

‘down’ arrow). To be clear, in general t (say) just being above x on the page

is not enough to indicate a relation x ≤ t, but first there must also be an

edge drawn.
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(2) S = {x, y, z, t} with x ≤ y, y ≤ t, x ≤ z (and x ≤ x, y ≤ y, z ≤ z, t ≤ t

and x ≤ t implicitly) is

z

t

x

y

We will give some more examples in the lecture.

2.4.2 Structure of ordered sets

Definition 2.18.[Comparability] In a poset (P,≤) two elements x, y ∈ P

are said to be comparable iff x ≤ y or y ≤ x (i.e. if joined by a descending

line in the Hasse diagram, if there is one).

For example, in (P({1, 2, 3}),⊆) the elements {1} and {2} are NOT com-

parable, but {1} and {1, 2} are comparable.

Then again in (N, m divides n) we have that 4 and 6 are not comparable but

3 and 6 are comparable.

Definition 2.19.[Total Ordering] A poset in which every pair of elements is

comparable is called a total ordering, or a linear ordering, or a CHAIN.

For example (N,≤) is a chain; (P(X),⊆) is not a chain; and (N, a divides

b) is not a chain.

Definition 2.20. A linear ordering ≤ on a set P in which every non-empty

subset has a LEAST ELEMENT (i.e. an element l such that l ≤ x for all x

in the subset) makes (P,≤) a WELL ORDERED SET.

We are not quite ready to give good examples for well-ordered sets. But

if we appeal to a little bit of ‘knowledge’ from elsewhere for a moment, then

we can think about some meta-examples...

Proposition 2.21.[Exercise: think about these claims.]

1. With its ‘usual’ meaning, we have that (N,≤) is well ordered.

2. Every finite chain is well ordered.
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3. ({x ∈ Q : x ≥ 0},≤) is NOT well ordered.

2.4.3 Ordinals

If (P,≤) is a totally ordered set (and we write p < q to mean p ≤ q and

p 6= q), then we may use the following definition:

P<a := {x ∈ P | x < a}

An ordinal is a well-ordered set (P,≤) such that P<a = a for all a ∈ P .

This definition looks a bit strange, but the best way to address that is to

work with it.

Firstly observe that there is at least one ordinal, since ∅ satisfies the

conditions trivially — or rather vacuously. Next suppose (P,≤) is a non-

empty ordinal. Then (by the well-ordered property) it has a least element, ω

say. Since ω is least we have P<ω = ∅. By the definition of ordinal we have

P<ω = ω so ω = ∅. That is, the least element of any non-empty ordinal is ∅.
A single element set is a well-ordered set (by taking the reflexive relation),

and P = {∅} has the property P<∅ = ∅ so this P is ordinal.

Now supppose P is not simply {∅}, i.e. it contains at least one more

element. Call the least element in P \ {∅} by p. Then p = P<p = {∅}. Thus
every ordinal that is not ∅ or {∅} contains both. Indeed we see that {∅, {∅}}
is ordinal, with ∅ < {∅}.

If an ordinal P is not any of the three so far then it contains ∅ and {∅} and
at least one more element. Again call the least element in the complement

by p. Then p = P<p = {∅, {∅}}. Indeed we see that {∅, {∅}, {∅, {∅}}} is

ordinal, with ∅ < {∅} < {∅, {∅}}.
Observe now that we can iterate this process, at each stage adding one

more (ugly but well-defined and distinct) new element:

If P is an ordinal then P ∪ {P} is an ordinal, with p < P for all p ∈ P .

The construction does not terminate.

The ordinals we have constructed look a bit ugly Everyone’s favourite
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notation for them is to use the symbols 0 for ∅; 1 for {∅}; 2 for {∅, {∅}}; 3
for {0, 1, 2}; and so on. In other words, every natural number is associated

to an ordinal, and the order on the ordinals gives everyone’s favourite order

on the natural numbers.

The ordinals go beyond the natural numbers. We can consider a smallest

ordinal (call it w, say) that is not a natural number — then w is the set of

all natural numbers, and the next ordinal after w is w∪{w}. And so we can

go on! We will come back to this journey later.

2.4.4 More on posets

Definition 2.22.[BOUNDEDNESS] A poset (P,≤) in which there exists an

element, ⊥ (say), such that ⊥ ≤ x for all x ∈ P , and an element, ⊤ (say),

such that x ≤ ⊤ for all x ∈ P is said to be BOUNDED.

For example:

1. (P(S),⊆) is bounded (even when S is infinite). Exercise: What are ⊥
and ⊤ here?

2. ({1, 2, 3, 4, 6, 9}, a divides b) has no ⊤, so is not bounded (exercise:

draw the diagram).

Definition 2.23.[MAXIMAL/MINIMAL ELEMENTS] In a poset (P,≤) an

element x ∈ P is MAXIMAL iff y ≥ x implies y = x (i.e. x is not ≤ any

other element).

Similarly for MINIMAL elements.

e.g.1. in ({1, 2, 3, 4, 6, 9}, a divides b) the elements 4,6,9 are maximal.

e.g.2. in a bounded poset ⊤ (also called ‘the top element’) is the unique max-

imal element, and ⊥ (also called ‘the bottom element’) is uniquely minimal.

Definition 2.24.[LOWER BOUND] In (P,≤) let A be a nonempty subset

of P . Then x ∈ P is a LOWER BOUND of A if x ≤ a for all a ∈ A.

Definition 2.25.[GREATEST LOWER BOUND / INFIMUM] With A as

above, x is a GLB (or ‘inf’) of A if x ≥ every lower bound of A.
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Exercise 11 If inf A exists it is unique. Prove it!

Similarly, y is an UPPER BOUND of A if y ≥ a for all a ∈ A, and y is a

LEAST UPPER BOUND (or SUPREMUM, or ‘sup’) if it is ≤ every upper

bound of A.

Example: (N, is a factor of) - let A = {4, 6}, then 12,24,36,... are all

upper bounds for A; 1,2 are lower bounds.

Sup A = 12 (Lowest Common Multiple (LCM) of 4 and 6)

Inf A = 2 (Highest Common Factor (HCF) of 4 and 6).

Proposition 2.26.[Zorn’s Lemma (see later)] A poset P in which every

chain has an upper bound has a maximal element.

There are some more advanced notes on posets (specifically on LAT-

TICES) to be found in the version of these notes published on the maths

web pages. Of course, looking at these additional notes is optional.

2.5 Equivalence Relations

Let ρ be a relation from set A to A (i.e. ρ ⊆ A× A). Then

Definition 2.27.[REFLEXIVE/SYMMETRIC/TRANSITIVE] .

1. ρ is reflexive if and only if aρa for all a ∈ A.

2. ρ is symmetric if and only if whenever aρb then bρa.

3. ρ is transitive if and only if whenever (aρb and bρc) then aρc.

Examples:

ρ = ”belongs to the same family as” is reflexive, symmetric and transitive;

ρ = ”is an ancestor of” is transitive;

ρ = ”is the mother of” is none of these!

Definition 2.28.[EQUIVALENCE RELATION] A reflexive, symmetric, tran-

sitive relation is an equivalence relation.

Such a relation is often written ∼ (as in a ∼ b) unless it already has a

name.
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For specific relations, we usually define a pair, consising of the set A

together with its equivalence relation: (A,∼). Thus we have:

(1) (N,=) given by aρb if and only if a = b;

(2) (Z,∼) given by a ∼ b if and only if 5|(a− b) (here we have introduced

the following

Definition 2.29.[DIVIDES] For n,m ∈ Z we say p divides m, and write

p|m (not to be confused with p/m), in case the equation m = pn is solved

by some n ∈ Z.

for example here 11 ∼ 1 (i.e. 5|(11− 1)) since 11− 1 = 5.2 - see later).

Let’s check these:

In (1) we have a = a for any number a, so the relation is reflexive; if a = b

then certainly b = a, so it is symmetric; and if a = b and b = c then a = c,

so transitive;

(2) is more of a challenge, we have (a − a) = 0 and 5|0, so reflexive; we

have (a−b) = −(b−a), so if 5|(a−b) then 5|(b−a), so symmetric; and finally

if (a− b) = 5k (say) and (b− c) = 5l (with k, l ∈ Z) then (a− c) = 5(k − l),

so transitive!

The relation (2) is sometimes written a ≡ b (mod.5).

2.5.1 Equivalence classes

Definition 2.30.[EQUIVALENCE CLASS] Given a pair (A,∼) we define

the equivalence class containing a ∈ A to be the set

[a] = {x ∈ A : x ∼ a}.

Note that [a] ⊆ A; a ∈ [a]; and if b, c ∈ [a] then a ∼ b, c ∼ a and indeed

b ∼ c (i.e. any two elements of the same class are equivalent).

Theorem 1 (On equivalence classes) Let ∼ be an equivalence relation

on a set A and let [a] be the equivalence class of a ∈ A. Then for any

a, b ∈ A



28 CHAPTER 2. SETS

(i) [a] = [b] if and only if a ∼ b;

(ii) if [a] 6= [b] then [a] ∩ [b] = ∅.

Proof: The theorem may be broken into three parts. Firstly, the ‘if’ part of

(i):

We can write this part [a] = [b] ⇐ a ∼ b, so this is what we need to show.

In other words we must show that if we assume a ∼ b, then [a] = [b] follows,

so.... Let a ∼ b. Then by definition a ∈ [b]. Then again, [a] ⊆ [b], since if

x ∈ [a] then x ∼ a, but a ∼ b and so by transitivity x ∼ b, that is x ∈ [b].

Similarly [b] ⊆ [a], so finally [a] = [b].

Now the ‘only if’ part of (i) (i.e. to show [a] = [b] ⇒ a ∼ b):

If [a] = [b] then since b ∼ b we have b ∈ [a] and so b ∼ a;

Lastly, part (ii):

We will prove this by CONTRADICTION. This means we assume the

opposite to what is required, and prove this must be false (if the opposite is

false, then logically the statement itself must be true). The trick here is to

figure out what the opposite of the statement is! This is not always obvious,

but in our case the opposite would be:

a and b can be found such that [a] 6= [b] but [a] ∩ [b] 6= ∅.
Let’s assume this statement true, and see what happens. Consider such an

a and b, and consider any x ∈ [a] ∩ [b]. If it exists (the last ingredient of the

statement says it does!) then this means x ∼ a and x ∼ b. This then implies

a ∼ b by symmetry and transitivity. But part (i), which is already proved,

says that this can only happen when [a] = [b] — a contradiction between the

consequences of the first and second ingredients of the statement. The only

resolution is that there can be no such x — that is, [a] ∩ [b] = ∅. QED.

There will be more examples of this kind of proof shortly.

Definition 2.31.[PARTITION] Given a set A, if there exists a set I and a

collection of nonempty subsets {Xi | i ∈ I} of A such that

(i) x ∈ A implies x ∈ Xi for some i ∈ I;

(ii) Xi ∩Xj = ∅ unless i = j,

then the collection {Xi | i ∈ I} is said to form a partition of A.
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So BY THEOREM 1 an equivalence relation ∼ on a set A defines a

partition of A into its equivalence classes.

Example: (Z,∼) where a ∼ b iff (a− b) divisible by 5.

We have

[0] = {....,−10,−5, 0, 5, 10, 15, ...}

[1] = {....,−9,−4, 1, 6, 11, 16, ....}

[2] = {....,−8,−3, 2, 7, 12, 17, ....}

and [3], [4] similarly (exercise). Altogether there are five classes partitioning

the integers Z. Sometimes we write these classes simply as 0, 1, 2, 3, 4 ‘modulo

5’ (or mod 5). Note that [0] = [5] = [10] = ..., and [3] = [8] = [13] = ... and

so on.

The SET OF EQUIVALENCE CLASSES here has five elements and is

written Z5 - sometimes called the set of ‘residues’ mod 5. We can do ‘mod

5’ arithmetic, as in

4 + 3 = 2 mod 5.

This can be done for residue classes modulo any integer. For example we

have a complete arithmetic ‘mod 3’:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

× 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

.

Conversely, given a partition of A we can define an equivalence relation on

A by a ∼ b iff a, b belong to the same setXi of the partition. For example: Let

A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0} with partition {1, 2, 0}, {3}, {4, 5, 7}, {6, 8}, {9};
then the corresponding equivalence relation is

{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (0, 0), (1, 2), (2, 1), (1, 0),

(0, 1), (2, 0), (0, 2), (6, 8), (8, 6), (4, 5), (5, 4), (4, 7), (7, 4), (5, 7), (7, 5)}.
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2.6 Countability

Consider the collection A of all sets (this is a potentially dangerous notion

— see [Cohn] on Russell’s Paradox — but the dangers need not concern us

here). We can define a relation ∼ on this collection as follows. For X, Y ∈ A

let X ∼ Y iff there exists a bijection f : X → Y . Note

(i) 1X : X → X , so ∼ is reflexive;

(ii) If f : X → Y is a bijection, then f−1 : Y → X is a bijection, so ∼ is

symmetric;

(iii) f : X → Y and g : Y → Z bijections implies (g ◦ f) : X → Z is a

bijection, so ∼ is transitive.

Altogether then, we have an equivalence relation.

In some sense (and precisely for the finite sets) each equivalence class

contains all the sets with the same ‘number of elements’.

For a set A the equivalence class [A] under the relation ∼ is written

Card A (‘Cardinal A’). We have that Card A = Card B iff A,B are

‘numerically equivalent’.

For finite sets the equivalence class of all sets containing n elements is

sometimes written simply as n. This n is called a ‘cardinal number’ (in

general such numbers are the numbers associated with set sizes - but the

finite cardinal numbers are the natural numbers n ∈ N).

A set in Card N is called COUNTABLY INFINITE. A countable set is

either finite or infinite. A set is countable, it ‘can be counted’, if when one

sets out to count the elements (i.e. assign a distinct number to each of them

from 1,2,3,...) there is a way of doing this such that any given element of

the set eventually gets counted. N.B. This is not the same as saying that all

the elements will be counted in finite time. Card N is sometimes denoted ℵ0

(‘aleph zero’).

Example:

E = {2, 4, 6, 8, 10, 12, ...} ⊂ N
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what is the cardinality of E? Well,

f : N → E

f : x 7→ 2x

is a bijection (check it!), so Card E = ℵ0.

Obviously ℵ0 is not any finite cardinal number. In a sense it is bigger. In

a similar sense, as we will see shortly, there are still bigger infinite numbers

(i.e. there are infinite sets too big to have a bijection with N)! We call ℵ0 a

TRANSFINITE NUMBER. We have the following transfinite arithmetic:

2 ℵ0 = ℵ0

(since naively we threw away half the elements of N to get E, and yet it

didn’t change the cardinality)

ℵ0 + ℵ0 = ℵ0

ℵ0 + 1 = ℵ0

....so, is every infinite set countable? Well, what sets do we know which are

bigger than N? Obviously we have the rational numbers - even the set Q+

of positive rational numbers obeys Q+ ⊃ N, but in fact:

Proposition 2.32. Card Q+ = ℵ0

Proof: We will list the elements of Q+ in such a way that a bijection

with N (i.e. a way of ‘counting’ the elements such that any given element is

eventually counted) can be explicitly given.

We organise the elements of Q+ as follows:

1/1 1/2 1/3 1/4 1/5 ...

2/1 2/2 2/3 2/4 2/5 ...

3/1 3/2 3/3 3/4 3/5 ...

...
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(here many elements are counted more than once, but at least we can be sure

that eventually any given element does appear on the grid). Now suppose

we consider an arbitrary element, which is of the form x = p/q by definition.

Each South-East diagonal of the grid gives all the numbers with fixed p+ q.

We will count through the grid starting from the top left and then counting

up each such diagonal in turn (i.e. running through the diagonals in order

p+ q = 2, 3, 4, 5, ...). That is, our bijection will be:

f(1/1) = 1

f(2/1) = 2

f(1/2) = 3

f(3/1) = 4

(2/2 has already been counted as 1/1)

f(1/3) = 5

f(4/1) = 6

and so on. QED.

You should check that you understand how the one-to-one and onto condi-

tions are satisfied here.

Corollary 1 (Exercise) Card Q = ℵ0.

So we still havn’t found any bigger ‘numbers’ than ℵ0, even thoughQ contains

N and much much more. What about the even bigger set R?

Proposition 2.33. Card R 6= ℵ0.

Proof: We will prove the proposition by contradiction! In other words we

will assume that R is countable, and prove that this must be wrong.

If we assume that R is countable then any subset must also be countable

(if every element can be counted, then every element of a subset can be

counted). Let us consider the set (0, 1) ⊂ R, which is the set of real numbers
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between 0 and 1. Our assumption implies that (0, 1) is countable, so that

each x ∈ (0, 1) may be numbered distinctly by some function f , a bijection

onto the natural numbers. Since it is a bijection it has an inverse f−1, i.e. for

each natural number n there is a unique real number f−1(n) in the interval

(0, 1).

Now consider an x ∈ (0, 1) written in decimal form. This form may

be familiar to you. For example x = .7 = .70000... (recurring 0s) or x =

.76582342222.... (recurring 2s), or x = π − 3 = .1415926... (no recuring

pattern!). Note that to avoid duplicating values x we can avoid recurring 9s.

To see why recurring nines are redundant consider, say, .79999... (recurring

9s) and .80000... (recurring 0s). The calculation 9 × .79999... = (10 ×
.79999...)− .79999... = 7.9999...− .79999... = 7.2 shows that .79999... = .8 .

Now consider a particular decimal

y = .a1a2a3a4....

(e.g. y = .2343479...., so each ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}). Suppose that

for all i, the ith decimal place - ai - is chosen to be different from the ith

decimal place of the real number f−1(i). For example a1 is different from the

first decimal place of f−1(1); a2 is different from the first decimal place of

f−1(2); and so on.

By this construction y differs from each and every element of the list of

images of f−1 in at least one decimal place. But of course if two numbers are

the same then (excluding the situation with recurring 9) they must be the

same in every decimal place, so y is actually a different number from each

and every element of the list. But it is of the form y = .a1a2...., so certainly

y ∈ (0, 1). But then f−1 is not onto, so it is not a bijection, so neither is f ,

which is then a CONTRADICTION of the original assumption.

We conclude that the assumption must be wrong, that is (0, 1) is ‘un-

countable’. Then R is uncountable. QED.

Now we can introduce a new ‘number’: Card R, which is often written

C for ‘continuum’.
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This raises some intriguing questions. For example: Are there any cardi-

nal numbers ‘between’ ℵ0 and C? Are there numbers bigger than C? The

mathematician CANTOR has thought a lot about these problems, with lim-

ited success. For the first question we have ‘Cantor’s continuum hypothesis’,

in which he claims that there are no cardinal numbers between ℵ0 and C.

What do you think?......

For the second question - let us recall the notion of power set P(S) - the

set of all subsets of S.

Exercise 12 Verify that for finite sets

|P(S)| = 2|S|.

In general considering Card P(S) (which we may abuse notation to write

as 2Card S) is a reasonable way of trying to generate new cardinals. Cantor

proved that Card P(S) > Card S continues to hold for transfinite numbers,

so there exist infinitely many transfinite cardinals:

ℵ0, 2
ℵ0, 22

ℵ0
, ....

Exercise 13 (Difficult) Prove that Card P(N) = 2ℵ0 = C.

Definition 2.34.[ℵ1] We define ℵ1 to be the next bigger cardinal after ℵ0.

This raises the question: Is ℵ1 = C? What do you think?...

2.7 Permutations

If the number of elements in a set is a natural number (i.e. if it is finite, since

then it is certainly a non-negative whole number!) then the set is called a

finite set. For example, A = {a, b, c, d, e, f, g} is a finite set, as it has 7

elements; meanwhile R is not a finite set. We will return to this point later.

Definition 2.35.[ORDER] The order (or degree) of a finite set A, denoted

|A|, is the number of elements in the set.
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Denoting the set of all finite sets by F , then the ‘order’ operation is a

function

Order : F → N

i.e.

Order : A 7→ |A|.

For example, if B = {a, b, c, d} then Order(B) = |B| = 4.

Definition 2.36.[PERMUTATION] A bijection f : A → A on a finite set A

is called a permutation of A.

For example, if S = {1, 2, 3, 4} then f given by f(1) = 2, f(2) = 3,

f(3) = 4, f(4) = 1 is a permutation. Permutations may be written in the

form
(

a b c ... x

f(a) f(b) f(c) ... f(x)

)

.

This one then becomes
(

1 2 3 4

2 3 4 1

)

.

Exercise 14 Verify that any f : A → A is 1–to–1 if and only if it is onto.

Let A be a finite set of degree n, and f be a permutation of A. If repeated

composition of f with itself produces the identity function after |A| com-

positions and not before (or, equivalently, if for any x ∈ A we have that

{x, f(x), (f ◦ f)(x), (f ◦ (f ◦ f))(x), ...} = A) then the permutation is called

a CYCLE of A, or n–CYCLE. More generally, if f restricts to a cycle of B

for some B ⊂ A, and acts as f(x) = x for all x 6∈ B, then f is a |B|–cycle.
(Note that there are no permutations of A which are p-cycles with p > n.)

Exercise 15 Show that the f defined in the example above is a cycle. Give

an example of a bijection g : S → S which is not a cycle.

Exercise 16 Let A be the set of letters in the alphabet, together with the

hyphen symbol – (so |A| = 27). Let A′ be the subset of these symbols occuring

at least once in the word gerbil–brain. Write down A′.
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Let f : A′ → N be the alphabetical ordering of these symbols (so f(a) = 1,

f(b) = 2, f(e) = 3, and so on) with f(–) = 9. Note that |ran f | = 9.

Determine the word obtained by applying the inverse of f to the sequence of

elements of ran f given by 1653791643281.
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Complex Numbers

The set N of natural numbers is closed under the operation of addition, but

not under the operation of subtraction.

The set Z of integers is closed under the operation of addition, and under

the operation of subtraction, and under the operation of multiplication, but

not under the operation of division.

The set Q of rational numbers is closed under +,−,× and divide. Thus we

can solve any equation of the form

ax+ b = 0

where a, b are rational (a 6= 0) with rational x.

However, we cannot solve

x2 − 2 = 0

with rational x. We need
√
2, and this is not rational. Suppose we add

√
2

to the set of numbers Q. More generally, suppose we consider the extension

of the set Q to the set Q[
√
2] of all numbers of the form

a+
√
2b

where a, b ∈ Q. This set is closed under +,-, x and divide.

37
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Exercise 17 Show that Q[
√
2] is closed under all the arithmetic operations.

With Q[
√
2] we can solve the quadratic equation above — but not all

quadratics. Adding all the numbers needed to solve such equations into our

set, we get more and more of the set R of real numbers. (In fact we do not

get all real numbers in this way, but let us leave the story of π and e and the

transcendental numbers for later!). However, even if we do consider all the

real numbers we cannot find a solution to

x2 + 1 = 0

So consider adding
√
−1 to R. In this way we get the set of complex numbers

C. This is the set of all numbers of the form

z = a+ ib

where a, b are real numbers and i = +
√
−1.

Every polynomial equation has a solution in C. In this sense (and in a

number of other ways which we will discuss shortly) complex numbers are

very useful. The presence of i may seem alarming, but in fact we can do

arithmetic with complex numbers rather like we can with Z[
√
2] or Q[

√
2].

Example: (7 + 2i) + (1− iπ) = 8 + i(2− π).

Exercise 18 Try some complex arithmetic. What is (3 + 4i) + (1− 2i)?

What is (3 + 4i)(1− 2i)?

What is (3 + 4i)/(1− 2i)?

Notation:

Re(x+ iy) = x

is the real part of x+ iy;

Im(x+ iy) = y

is the coefficient of the imaginary part of x+ iy.

(Two complex numbers are equal only if their real parts are the same and

their imaginary parts are the same.)

Define magnitude:

|x+ iy| = +
√

x2 + y2
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For example |4 + 3i| = +
√
16 + 9 = 5.

With z = x+ iy define

z∗ = x− iy

so that

|z|2 = zz∗

3.1 Polar representation and Argand diagram

Since a complex number has two real coefficients it is a little like an element

of R2. Indeed there is a bijection between the set R2 and the set C given by

(x, y) 7→ x+ iy

In this sense we can represent z ∈ C on the Cartesian plane, i.e.

z = x+ iy

When we do this, we call the representation an Argand diagram. With this

geometrical picture of complex numbers we can describe them another way:

by giving the distance r from (0, 0) to (x, y), together with the angle θ made

by the x-axis and the line from (0, 0) to (x, y).

Exercise 19 Draw a picture of z = 3+ 4i on the Cartesian plane and work

out r and θ.

The polar coordinate version may be written

z = r(cos(θ) + i sin(θ)) = reiθ (3.1)

(here the first equality is just trigonometry, while the second is more interest-

ing — a very useful representation, as we will see). Note that z is unchanged

by adding 2π to θ. Thus while x, y can take any real value, r ≥ 0 (it is a

distance!) and 0 ≤ θ ≤ 2π (it is an angle).
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Exercise 20 Draw pictures of z = 1, 0,−1, i,−i, and work out their reiθ

representations. 1

We have

(reiθ)(r′eiθ
′

) = rr′ei(θ+θ′)

Exercise 21 Prove the double angle formulas from trigonometry using this

idea.

Prove the triple angle formulas from trigonometry using this idea!! 2

Note also that

|reiθ| = r

(reiθ)−1 = r−1e−iθ

and √
reiθ = +

√
reiθ/2

For example
√
i =

1√
2
(1 + i)

1Some Answers:

1 = 1ei0 = 1ei2π = . . .

0 = 0eiθ

where θ can be anything 0 ≤ θ ≤ 2π;

−1 = 1eiπ = 1e−iπ = . . .

i = 1eiπ/2

2The idea:

(cos θ + i sin θ)n = (eiθ)n = einθ = cosnθ + i sinnθ

so equating the real parts of the left and right hand side when n = 2 (say) gives

(cos θ)2+(i)2(sin θ)2 = (cos θ)2−(sin θ)2 = (cos θ)2−(1−(cos θ)2) = 2(cos θ)2−1 = cos 2θ.

(In other words, if you remember equation (3.1) you need never forget a trig formula

again!)
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Exercise 22 Check this, and draw the argand diagram.

Indeed

(reiθ)1/3 = r1/3ei(θ+2πn)/3

where n ∈ Z. Notice that there are three distinct solutions to this — the

three cube roots of z = reiθ.

Exercise 23 Plot the three cube roots of −1 on an Argand diagram, solutions

to z3 = −1.

Now do exercise sheet 4.
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Chapter 4

Sequences and Series

4.1 Summation of series

Let a1, a2, a3, . . . be a sequence of numbers. Define

Sn =
n
∑

i=1

an.

The problem is, given the sequence, to work out the sum Sn. In this chapter

we will look at ways to compute this sum for a variety of types of sequence.

Almost trivial example:
n
∑

i=1

1 = n.

4.1.1 Generalities

First, note that
∑n

i=1− is a linear operation. What does this mean?

For example, suppose a sequence is described by some function, i.e. ai =

g(i). Let us write

Sn(g) :=

n
∑

i=1

g(i).

43
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Linearity means that given two functions g(i) and h(i) and two constants

a, b we have
n
∑

i=1

(ag(i) + bh(i)) = aSn(g) + bSn(h)

(just like with integration).

From our almost trivial example we have

n
∑

i=1

2 = 2
n
∑

i=1

1 = 2n.

4.1.2 Method of differences

Suppose there is some function f(i) such that

ai = f(i+ 1)− f(i)

for all i. Then

Sn = a1 + a2 + a3 + . . .+ an−1 + an

= f(2)−f(1)+f(3)−f(2)+f(4)−f(3)+. . .+f(n)−f(n−1)+f(n+1)−f(n)

= f(n+ 1)− f(1).

In other words the sum reduces to computing one single difference! This is

wonderful. The real problem is finding a suitable function f(n). There is

no good general method to do this. The idea does have utility though —

through adapting a set of examples which do work. If you like, we turn the

problem on its head: Given a function f(n), what sequence do we get?!

Examples: Let f(i) = i2. Then ai = (i+ 1)2 − i2 = 2i+ 1. Thus

n
∑

i=1

(2i+ 1) = (n+ 1)2 − 1 = n2 + 2n = n(n+ 2)

but
n
∑

i=1

(2i+ 1) = 2

(

n
∑

i=1

i

)

+

(

n
∑

i=1

1

)

= 2

(

n
∑

i=1

i

)

+ n
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so altogether
(

n
∑

i=1

i

)

=
n(n+ 1)

2
.

This is a result you will already be familiar with (or easily verify by elemen-

tary means), but it serves to make the point.

Now consider f(i) = i3. Then ai = (i+ 1)3 − i3 = 3i2 + 3i+ 1. Thus

n
∑

i=1

(3i2 + 3i+ 1) = (n+ 1)3 − 1 = n3 + 3n2 + 3n = n(n2 + 3n+ 3)

but
n
∑

i=1

(3i2 + 3i+ 1) = 3

(

n
∑

i=1

i2

)

+ 3

(

n
∑

i=1

i

)

+

(

n
∑

i=1

1

)

= 3

(

n
∑

i=1

i2

)

+ 3
n(n + 1)

2
+ n

so
(

n
∑

i=1

i2

)

=
(n3 + 3n2 + 3n)− (3n(n+1)

2
+ n)

3

=
2(n3 + 3n2 + 3n)− (3n(n+ 1) + 2n)

6
=

2n3 + 6n2 + 6n− 3n2 − 3n− 2n

6

=
2n3 + 3n2 + n

6
=

(2n+ 1)(n+ 1)n

6

which is less obvious!

It will be clear that we can compute
∑n

i=1 i
r for any positive integer r in

the same way. Note that this means that we can compute

n
∑

i=1

P (i)

where P (i) is any polynomial!

Another example: we can sum
∑n

i=1
1

i(i+1)
by noting that

ai =
1

i
− 1

i+ 1
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so
n
∑

i=1

1

i(i+ 1)
=

(

− 1

n + 1

)

− (−1). (4.1)

(Again this idea can be adapted to solve a number of such problems — see

the exercises.)

Another example: consider
∑n

i=1 k
i, where k is any number (called a

geometric series). Note that

(1− k)(1 + k + k2 + k3 + . . .+ kn)

= (1 + k + k2 + k3 + . . .+ kn)− k(1 + k + k2 + k3 + . . .+ kn) = 1− kn+1

so
n
∑

i=1

ki =
1− kn+1

1− k
(4.2)

4.2 Infinite Series

It is possible (depending on the sequence) that

S = lim
n→∞

Sn

is well defined (i.e. there is a finite limit value). 1 In this case the infinite

series is said to be convergent. (Otherwise it is divergent.)

Example:
∑∞

i=1
1
2i
= 1 + 1

2
+ 1

22
+ 1

23
+ . . . = 2, but

∑∞
i=1 1 is divergent.

The series from equation(4.1) is convergent, since

S = lim
n→∞

(

1− 1

n+ 1

)

= 1

1Recall that if we can make f(x) take values arbitrarily close to some number l by

choosing x close enough to some number p then we say l is the limit of f(x) at p.

For example limn→∞

1

n = 0, since we can make 1

n arbitrarily small by making n large

enough. Similarly limn→∞

1

nr
= 0 for any positive number r.

Another more subtle example: limθ→0
sin θ
θ = 1.
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The series from equation(4.2) is convergent provided |k| < 1, since

S = lim
n→∞

1− kn+1

1− k
=

1

1− k

but divergent otherwise.

One final interesting example: the ‘harmonic’ series

1 +
1

2
+

1

3
+

1

4
+ . . .

is divergent! To see this, group the terms as follows

1 +
1

2
+ (

1

3
+

1

4
) + (

1

5
+

1

6
+

1

7
+

1

8
) + . . .

It will be evident that the partial sums in brackets are greater than 1/2. Thus

the sum is ‘greater’ than the sum of infinitely many 1/2s, which is greater

than half the sum of infinitely many 1s, and hence infinite.

4.3 Introduction to difference equations

Suppose a1, a2, . . . , an is a sequence. Define the difference operator ∆ by

∆ai = ai+1 − ai.

(So ∆a2 = a3 − a2 and so on.)

We can use ∆ repeatedly:

∆2ai = ∆(∆ai) = ∆(ai+1 − ai) = ai+2 − 2ai+1 + ai.

Just as an equation built using differential operators is called a differential

equation, so equations built using ∆ are called difference equations. For

example

∆2ai − 3∆ai + 4ai = 7

is a difference equation. Since we can expand this kind of equation to an

equation involving ai and ai+1 and so on, such equations are also difference

equations. For example

ai+1 − 6ai = 4.
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Just as for differential equations, the problem is to solve for the sequence

{ai} which obeys the equation for all i (possibly in terms of some initial

values). Again as for differential equations, there is no universal method,

but a number of powerful techniques. We will consider just a few of them

here. Restricting (in this course) to linear equations. These are equations

which can be written in the form

P (∆)ai = k

where P is a polynomial and k any given number. For example, if P (∆) =

∆2 + 3∆− 2 and k = 7 we have

(∆2 + 3∆− 2)ai = ∆2ai + 3∆ai − 2ai = 7

Each such equation has a homogeneous version:

P (∆)ai = 0.

Unlike for differential equations, one method which is open to us here

is simply to insert values for the first few elements of the sequence as ap-

propriate, and then do arithmetic to work out, using the equation, as many

subsequent terms in the sequence as we might want. This can be very useful.

On the other hand, a ‘closed form’ solution is one where we write the general

element of the sequence as a function of the position i. This is usually what

is required.

Consider the simple case

ai+1 − 2ai = 0

Obviously a2 = 2a1, a3 = 2a2 and so on, so ai = 2i−1a1. Any sequence of

this form will satisfy the equation, so we can choose a1 freely. (Sometimes

this initial value is given in the problem.) Another way to look at this is to

guess that the solution may take the form

ai = kti.
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Here k and t are constants which may be tuned so as to try to make the

guess work. Here we find that k may take any value, while t = 2 is forced.

Note that if ai = f(i) is some solution to P (∆)ai = 0 (i.e. P (∆)f(i)

is identically zero for all i ∈ N), and ai = g(i) is some other solution, then

ai = cf(i)+dg(i) is again a solution for any constants c, d. (This is why such

equations are called linear.)

Similarly if ai = f(i) is some solution to P (∆)ai = 0 and ai = g(i) is

some solution to P (∆)ai = k, then ai = f(i) + g(i) is again a solution to

P (∆)ai = k.

Now for

ai+1 − 2ai = 2

one way to guess a particular solution is to try the guess ai = m, where m is

some constant (i.e. a solution in which the sequence is not varying!). If we

plug this guess in we get m − 2m = −m = 2 i.e. m = −2. Thus ai = −2 is

a solution. (Note that this is easy to check.) Now if we ADD a solution to

the associated homogeneous problem to this one (as it happens the previous

problem is the homogeneous version of this one) we get another solution to

this problem. Using this idea then, the general solution is ai = −2 + 2i−1a1.

On the other hand we can also guess another particular solution, writing

the equation as ai+1 = 2 + 2ai: if we start with a1 = 0 the sequence is

determined as

0, 2, 6, 14, 30, . . .

i.e. ai = 2i − 2. Altogether the general solution is then ai = 2i − 2 + 2i−1a1,

where a1 can be chosen freely. At first glance this looks different to the

answer we got above. However this is the same as the general solution we

had before — up to a different choice of a1.

Now consider

ai+2 − 5ai+1 + 6ai = 0.

Again we can make a guess like that above: ai = kci. Substituting we get

kci+2 − 5kci+1 + 6kci = kci(c2 − 5c+ 6) = kci(c− 3)(c− 2) = 0
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Putting aside the solution kc = 0 we have that either c = 3 of c = 2. (The

factor (c− 3)(c− 2) here is called the associated polynomial.) Both choices

for c provide a solution for any k, thus we have that anything of the form

ai = A2i +B3i

is a solution (any constants A,B).

NOTE, that it is easy to check this!

Exercise 24 Solve ai+2 − 4ai+1 + 5ai = 0.

(Answer: The associated polynomial is c2 − 4c + 5, with roots c = 2 ± i. It

is helpful to write 2 ± i = D exp(±iθ) giving D =
√
5 and sin θ = 1√

5
and

cos θ = 2√
5
. Thus the general solution is aj = 5

j

2 (A cos rθ + B sin rθ) where

A,B are arbitrary constants.)


