## Relations

Fundamental Idea The basic idea of a relation is some rule for associating objects of one set with objects of another

**Example 1** If we associate the people in a room with the numbers from 0 to 25 by asking "how old are you?", we have set up a relation. This produces a set of pairs:

{(Samina,19),(Richard,19),(Maureen,20), ...}. Clearly not everyone in the room will necessarily be associated with a number (especially if I'm in the room — you would need much larger numbers). Conversely, not every number will necessarily be used in the association.

**Example 2** A real number x is related to a real number y by the equation  $y = x^2$  Again this produces a set of pairs, or if you plot a graph, a set of points, each defined by a pair of numbers (x, y) such that  $y = x^2$ 

**Example 3** Given the set  $A = \{0, 1, 2, 3, 4, 5, 6\}$  we form the partition

$$A_0 = \{0,1\}$$
  $A_1 = \{2,3,4\}$   $A_2 = \{5\}$   $A_3 = \{6\}$ 

We define a relation on A by saying that one number is related to the other if they are both in the same partition set. ie x is related to y if x and y are in  $A_i$  for some i. Again we form pairs, namely  $\{(0,0),(0,1),(1,1),(2,2),(2,3),\ldots\}$ 

**Definition** A **relation** from a set A to a set B is any subset of  $A \times B$ , where  $A \times B$  is the set of all pairs (a, b) with  $a \in A$  and  $b \in B$ .

Denoting this subset by  $\rho$ , if  $(a,b) \in \rho$  then we say that a is related to b and write  $a\rho b$ . An alternative notation for  $\rho$  is  $\sim$ 

**Definition** If A = B then we say the relation is **on** the set A

In example 3 the relation is **on** A and is a subset of  $A \times A$  containing only 15 of the possible 49 pairs. These are given by:

$$\rho = \{(0,0), (0,1), (1,1), (1,0), (2,2), (3,3), (4,4), (2,3), (3,2), (2,4)(4,2), (3,2), (4,3), (5,5), (6,6)\}$$

In example 2 the relation is on **R** and is defined by  $\rho = \{(x, y) \in \mathbf{R} \times \mathbf{R} : y = x^2\}$ 

**Relations and Functions** A relation is a more general idea than a function. ie a function is an example of a relation but not all relations are functions. Recall that a function relates **each** of the elements x of one set to a unique element y of another set. In example 2, for each element  $x \in \mathbf{R}$  there exists a unique element y, also in  $\mathbf{R}$ , given by  $y = x^2$ .

Example 1 and Example 3 are not functions - why?

Example 4 Consider the following relation on R

$$\rho = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x = y^2\}$$

This example fails to be a function on two counts:

- i) clearly it is not possible to use all values of x, indeed x must be greater or equal to zero.
- ii) for each x there is not a unique y. If x = 4 then y could equal +2 or -2.

## Relations on a Set

We now focus our attention to relations defined **on** a set. Such relations are closely linked with sorting and ordering. Consider the following graph consisting of four points labelled a,b,c and d.



In this example the set  $A = \{a, b, c, d\}$  and we say that two elements, x and y, are related if there is a directed path from x to y. Thus the relation  $\rho$  is defined by the following subset of  $A \times A$   $\rho = \{(a, a), (a, b), (b, c), (d, b), (d, d)\}.$ 

In this example we make the following observations:

- although  $a\rho a$  and  $d\rho d$  it is not true that  $c\rho c$  and  $b\rho b$  since the pairs (c,c) and (b,b) are not in the list. ie not all elements are related to themselves.
- Since the routes are only oneway even though  $a\rho b$  it does not follow that  $b\rho a$  ie (a,b) is in the list but (b,a) is not.
- we also note that  $d\rho b$  and  $b\rho c$ , however it is not true that  $d\rho c$

In Example 3 we note that, in contrast to the above, the following properties do hold:

- Reflexive:  $x\rho x$  for all x in A. This is a simple consequence of each element being in the same subset as itself. The list contains (0,0), (1,1), (2,2), (3,3), (4,4), (5,5) and (6,6)
- Symmetric: If  $x\rho y$  then  $y\rho x$  ie if x is related to y then y is related to x This is a simple consequence of if x is in the same subset as y then clearly y is in the same subset as x.
- Transitive: If  $x\rho y$  and  $y\rho z$  then  $x\rho z$ This is not so easy to see and is often the most difficult to prove. In this example it is simply saying that it x and y are in the same subset and y and z are in the same subset then x and z must be in the same subset.

**Definition** A relation on a set A that is reflexive, symmetric and transitive is said to be an **Equivalence** relation on A.

**Example 5** The relation in Example 3 was an equivalence relation generated by partitioning the set. We now consider the reverse of this problem and see how an equivalence relation generates a partition of the set.

Let  $A = \{0, 1, 2, 3, 4, ...\}$  and define the relation  $\sim$  on A by:

$$x \sim y$$
 if  $x - y$  is divisible by 3

ie there exists an integer k such that x - y = 3k

In terms of subsets:

$$\sim = \{(x, y) \in A \times A : x - y \text{ divisible by } 3\}$$

We now prove that  $\sim$  is reflexive, symmetric and transitive.

- **R.**  $x \sim x$  for all x since x x = 3k with k = 0
- S. if  $x \sim y$  then there exists integer k such that x y = 3kThis implies that y - x = 3(-k)As -k is also an integer we have that  $y \sim x$
- **T.** if  $x \sim y$  and  $y \sim z$  then there exists integers  $k_1$  and  $k_2$  such that

$$x - y = 3k_1$$
 and  $y - z = 3k_2$ 

Adding gives  $x - z = 3(k_1 + k_2)$ As  $k_1 + k_2$  is an integer, k (say) we have x - z = 3k hence  $x \sim z$ .

Consider now the sets of elements of A related to 0, 1 and 2, denote these as [|0|], [|1|] and [|2|] respectively Thus

$$[|0|] = \{0, 3, 6, 9 \dots\}$$
$$[|1|] = \{1, 4, 7, 10, \dots\}$$
$$[|2|] = \{2, 5, 8, 11, \dots\}$$

These sets form a partition of the set A. Thus the equivalence relation has split the set A into partitions.

**Theorem** A partition  $\{A_i\}$  of a set A defines a From the definition of  $\sim$  we can see that if  $z_1 \sim z_2$ natural equivalence relation  $\sim$  defined by:  $x \sim y$  if and only if there exists i such that  $x \in A_i$ and  $y \in A_i$ .

Conversely, given an equivalence relation  $\sim$  on A the set A is naturally partitioned. The sets forming the partition are called the equivalence classes of  $\sim$ 

In Example 5 the equivalence classes are the three sets [0], [1] and [2].

**Example 6** We now consider an example where the equivalence classes turn out to be concentric circles centre the origin in the Argand plane.

Define the relation  $\sim$  on the set of complex number

 $z_1 \sim z_2$  if there exists a real  $\theta$  such that

$$z_1 = (\cos \theta + i \sin \theta) z_2$$

Show that  $\sim$  is an equivalence relation on  $\mathbb{C}$ .

- **R.** with  $\theta = 0$  we see that  $z \sim z$  for all z
- **S.** if  $z_1 \sim z_2$  then  $z_1 = (\cos \theta + i \sin \theta) z_2$ Multiplying by  $\cos \theta - i \sin \theta$  gives

$$z_1(\cos \theta - i \sin \theta) = z_2$$
  
$$z_2 = (\cos(-\theta) + i \sin(-\theta))z_1$$

Thus  $z_2 \sim z_1$ 

**T.** If  $z_1 \sim z_2$  and  $z_2 \sim z_3$  then there exists real  $\theta_1$ and  $\theta_2$  such that

$$z_1 = (\cos \theta_1 + i \sin \theta_1) z_2$$
  

$$z_2 = (\cos \theta_2 + i \sin \theta_2) z_3$$

Combining these we can obtain:

$$z_1 = (\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))z_3$$

Thus  $z_1 \sim z_3$ .

then  $|z_1| = |z_2|$ . Thus  $z_1$  and  $z_2$  lie on the same circle centre the origin. Indeed all the elements of C that are related to  $z_1$  lie on the same circle as  $z_1$ , thus the equivalence classes are these circles.