Relations Fundamental Idea The basic idea of a relation is some rule for associating objects of one set with objects of another **Example 1** If we associate the people in a room with the numbers from 0 to 25 by asking "how old are you?", we have set up a relation. This produces a set of pairs: {(Samina,19),(Richard,19),(Maureen,20), ...}. Clearly not everyone in the room will necessarily be associated with a number (especially if I'm in the room — you would need much larger numbers). Conversely, not every number will necessarily be used in the association. **Example 2** A real number x is related to a real number y by the equation $y = x^2$ Again this produces a set of pairs, or if you plot a graph, a set of points, each defined by a pair of numbers (x, y) such that $y = x^2$ **Example 3** Given the set $A = \{0, 1, 2, 3, 4, 5, 6\}$ we form the partition $$A_0 = \{0,1\}$$ $A_1 = \{2,3,4\}$ $A_2 = \{5\}$ $A_3 = \{6\}$ We define a relation on A by saying that one number is related to the other if they are both in the same partition set. ie x is related to y if x and y are in A_i for some i. Again we form pairs, namely $\{(0,0),(0,1),(1,1),(2,2),(2,3),\ldots\}$ **Definition** A **relation** from a set A to a set B is any subset of $A \times B$, where $A \times B$ is the set of all pairs (a, b) with $a \in A$ and $b \in B$. Denoting this subset by ρ , if $(a,b) \in \rho$ then we say that a is related to b and write $a\rho b$. An alternative notation for ρ is \sim **Definition** If A = B then we say the relation is **on** the set A In example 3 the relation is **on** A and is a subset of $A \times A$ containing only 15 of the possible 49 pairs. These are given by: $$\rho = \{(0,0), (0,1), (1,1), (1,0), (2,2), (3,3), (4,4), (2,3), (3,2), (2,4)(4,2), (3,2), (4,3), (5,5), (6,6)\}$$ In example 2 the relation is on **R** and is defined by $\rho = \{(x, y) \in \mathbf{R} \times \mathbf{R} : y = x^2\}$ **Relations and Functions** A relation is a more general idea than a function. ie a function is an example of a relation but not all relations are functions. Recall that a function relates **each** of the elements x of one set to a unique element y of another set. In example 2, for each element $x \in \mathbf{R}$ there exists a unique element y, also in \mathbf{R} , given by $y = x^2$. Example 1 and Example 3 are not functions - why? Example 4 Consider the following relation on R $$\rho = \{(x, y) \in \mathbf{R} \times \mathbf{R} : x = y^2\}$$ This example fails to be a function on two counts: - i) clearly it is not possible to use all values of x, indeed x must be greater or equal to zero. - ii) for each x there is not a unique y. If x = 4 then y could equal +2 or -2. ## Relations on a Set We now focus our attention to relations defined **on** a set. Such relations are closely linked with sorting and ordering. Consider the following graph consisting of four points labelled a,b,c and d. In this example the set $A = \{a, b, c, d\}$ and we say that two elements, x and y, are related if there is a directed path from x to y. Thus the relation ρ is defined by the following subset of $A \times A$ $\rho = \{(a, a), (a, b), (b, c), (d, b), (d, d)\}.$ In this example we make the following observations: - although $a\rho a$ and $d\rho d$ it is not true that $c\rho c$ and $b\rho b$ since the pairs (c,c) and (b,b) are not in the list. ie not all elements are related to themselves. - Since the routes are only oneway even though $a\rho b$ it does not follow that $b\rho a$ ie (a,b) is in the list but (b,a) is not. - we also note that $d\rho b$ and $b\rho c$, however it is not true that $d\rho c$ In Example 3 we note that, in contrast to the above, the following properties do hold: - Reflexive: $x\rho x$ for all x in A. This is a simple consequence of each element being in the same subset as itself. The list contains (0,0), (1,1), (2,2), (3,3), (4,4), (5,5) and (6,6) - Symmetric: If $x\rho y$ then $y\rho x$ ie if x is related to y then y is related to x This is a simple consequence of if x is in the same subset as y then clearly y is in the same subset as x. - Transitive: If $x\rho y$ and $y\rho z$ then $x\rho z$ This is not so easy to see and is often the most difficult to prove. In this example it is simply saying that it x and y are in the same subset and y and z are in the same subset then x and z must be in the same subset. **Definition** A relation on a set A that is reflexive, symmetric and transitive is said to be an **Equivalence** relation on A. **Example 5** The relation in Example 3 was an equivalence relation generated by partitioning the set. We now consider the reverse of this problem and see how an equivalence relation generates a partition of the set. Let $A = \{0, 1, 2, 3, 4, ...\}$ and define the relation \sim on A by: $$x \sim y$$ if $x - y$ is divisible by 3 ie there exists an integer k such that x - y = 3k In terms of subsets: $$\sim = \{(x, y) \in A \times A : x - y \text{ divisible by } 3\}$$ We now prove that \sim is reflexive, symmetric and transitive. - **R.** $x \sim x$ for all x since x x = 3k with k = 0 - S. if $x \sim y$ then there exists integer k such that x y = 3kThis implies that y - x = 3(-k)As -k is also an integer we have that $y \sim x$ - **T.** if $x \sim y$ and $y \sim z$ then there exists integers k_1 and k_2 such that $$x - y = 3k_1$$ and $y - z = 3k_2$ Adding gives $x - z = 3(k_1 + k_2)$ As $k_1 + k_2$ is an integer, k (say) we have x - z = 3k hence $x \sim z$. Consider now the sets of elements of A related to 0, 1 and 2, denote these as [|0|], [|1|] and [|2|] respectively Thus $$[|0|] = \{0, 3, 6, 9 \dots\}$$ $$[|1|] = \{1, 4, 7, 10, \dots\}$$ $$[|2|] = \{2, 5, 8, 11, \dots\}$$ These sets form a partition of the set A. Thus the equivalence relation has split the set A into partitions. **Theorem** A partition $\{A_i\}$ of a set A defines a From the definition of \sim we can see that if $z_1 \sim z_2$ natural equivalence relation \sim defined by: $x \sim y$ if and only if there exists i such that $x \in A_i$ and $y \in A_i$. Conversely, given an equivalence relation \sim on A the set A is naturally partitioned. The sets forming the partition are called the equivalence classes of \sim In Example 5 the equivalence classes are the three sets [0], [1] and [2]. **Example 6** We now consider an example where the equivalence classes turn out to be concentric circles centre the origin in the Argand plane. Define the relation \sim on the set of complex number $z_1 \sim z_2$ if there exists a real θ such that $$z_1 = (\cos \theta + i \sin \theta) z_2$$ Show that \sim is an equivalence relation on \mathbb{C} . - **R.** with $\theta = 0$ we see that $z \sim z$ for all z - **S.** if $z_1 \sim z_2$ then $z_1 = (\cos \theta + i \sin \theta) z_2$ Multiplying by $\cos \theta - i \sin \theta$ gives $$z_1(\cos \theta - i \sin \theta) = z_2$$ $$z_2 = (\cos(-\theta) + i \sin(-\theta))z_1$$ Thus $z_2 \sim z_1$ **T.** If $z_1 \sim z_2$ and $z_2 \sim z_3$ then there exists real θ_1 and θ_2 such that $$z_1 = (\cos \theta_1 + i \sin \theta_1) z_2$$ $$z_2 = (\cos \theta_2 + i \sin \theta_2) z_3$$ Combining these we can obtain: $$z_1 = (\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))z_3$$ Thus $z_1 \sim z_3$. then $|z_1| = |z_2|$. Thus z_1 and z_2 lie on the same circle centre the origin. Indeed all the elements of C that are related to z_1 lie on the same circle as z_1 , thus the equivalence classes are these circles.