Algebra Notes - Relations

Relations

Fundamental Idea The basic idea of a relation
is some rule for associating objects of one set with
objects of another

Example 1 If we associate the people in a room
with the numbers from 0 to 25 by asking “how old
are you?”, we have set up a relation. This produces
a set of pairs:
{(Samina,19),(Richard,19),(Maureen,20), ...} .
Clearly not everyone in the room will necessarily
be associated with a number (especially if I'm in
the room — you would need much larger numbers).
Conversely, not every number will necessarily be
used in the association.

Example 2 A real number z is related to a real
number y by the equation y = z? Again this
produces a set of pairs, or if you plot a graph, a set
of points, each defined by a pair of numbers (z,y)
such that y = z2

Example 3 Given the set A ={0,1,2,3,4,5,6} we
form the partition

Ag=1{0,1} A;={2,3,4} A, ={5} A;={6}

We define a relation on A by saying that one
number is related to the other if they are both in
the same partition set. ie z is related to y if  and
y are in A; for some 7. Again we form pairs, namely

{(0,0),(0,1),(1,1),(2,2),(2,3),...}

Definition A relation from a set A to a set B is
any subset of A x B, where A x B is the set of all
pairs (a,b) with a € A and b € B.

Denoting this subset by p, if (a,b) € p then we say
that a is related to b and write apb.
An alternative notation for p is ~

Definition If A = B then we say the relation is on
the set A

In example 3 the relation is on A and is a subset of
A x A containing only 15 of the possible 49 pairs.
These are given by:

p ={(0,0),(0,1),(1,1),(1,0),(2,2),(3,3), (4,4),
(2,3),(3,2),(2,4)(4,2), (3,2),(4,3), (5,5), (6,6)}

In example 2 the relation is on R and is defined by
p={(z,y) eRxR:y=2z?}

Relations and Functions A relation is a more
general idea than a function. ie a function is an
example of a relation but not all relations are
functions. Recall that a function relates each of
the elements z of one set to a unique element y of
another set. In example 2, for each element x € R

there exists a unique element g, also in R, given by

y = 2.

Example 1 and Example 3 are not functions - why?

Example 4 Consider the following relation on R

p={(z,y) e RxR:z=y?}
This example fails to be a function on two counts:

i) clearly it is not possible to use all values of z,
indeed x must be greater or equal to zero.

ii) for each z there is not a unique y. If z = 4 then
y could equal +2 or —2.

Relations on a Set

We now focus our attention to relations defined on
a set. Such relations are closely linked with sorting
and ordering. Consider the following graph consist-
ing of four points labelled a,b,c and d.
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In this example the set A = {a,b,c,d} and we say
that two elements,z and y, are related if there is a
directed path from z to y. Thus the relation p is
defined by the following subset of A x A

p= {(aaa')’ (aa b)a (ba C)a (da b)7 (da d)}

In this example we make the following observations:

e although apa and dpd it is not true that cpc
and bpb since the pairs (c¢,c) and (b,b) are not
in the list. ie not all elements are related to
themselves.

e Since the routes are only oneway even though
apb it does not follow that bpa ie (a,b) is in the
list but (b, a) is not.

e we also note that dpb and bpc, however it is not
true that dpc

In Example 3 we note that, in contrast to the above,
the following properties do hold:

e Reflexive: zpz for all z in A.
This is a simple consequence of each element
being in the same subset as itself.
The list contains
(0,0),(1,1),(2,2),(3,3),(4,4), (5,5) and (6,6)

e Symmetric: If zpy then ypz
ie if z is related to y then y is related to x This
is a simple consequence of if z is in the same
subset as y then clearly y is in the same subset
as z.

e Transitive: If zpy and ypz then zpz
This is not so easy to see and is often the
most difficult to prove. In this example
it is simply saying that it = and y are in
the same subset and y and z are in the same
subset then  and z must be in the same subset.

Definition A relation on a set A that is reflexive,
symmetric and transitive is said to be an Equiva-
lence relation on A.

Example 5 The relation in Example 3 was an
equivalence relation generated by partitioning the
set. We now consider the reverse of this problem
and see how an equivalence relation generates a
partition of the set.

Let A ={0,1,2,3,4,...} and define the relation ~
on A by:

x ~y if £ — y is divisible by 3

ie there exists an integer k such that z — y = 3k

In terms of subsets:
~={(z,y) € A x A:z — y divisible by 3}

We now prove that ~ is reflexive, symmetric and
transitive.

R. z~zxforall zsincexz—x=3k withk=0

S. if £ ~ y then there exists integer k such that
z—y=3k
This implies that y — z = 3(—k)
As —k is also an integer we have that y ~ z

T. if  ~ y and y ~ z then there exists integers k;
and k9 such that

z—1y =3k and y — z = 3ko

Adding gives z — z = 3(k1 + ko)
As k1 + ko is an integer, k (say) we have
x — z = 3k hence z ~ z.

Consider now the sets of elements of A related to 0, 1
and 2, denote these as [|0|], [|1|] and [|2|] respectively
Thus

o] = {0,3,6,9...}
(1] = {1,4,7,10,...}
[2]] = {2,5,8,11,...}

These sets form a partition of the set A. Thus
the equivalence relation has split the set A into
partitions.
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Theorem A partition {A4;} of a set A defines a
natural equivalence relation ~ defined by:

xz ~ gy if and only if there exists 7 such that z € A;
and y € A;.

Conversely, given an equivalence relation ~ on A
the set A is naturally partitioned. The sets forming
the partition are called the equivalence classes of

In Example 5 the equivalence classes are the three
sets [|0]], [[1]] and [|2]].

Example 6 We now consider an example where the
equivalence classes turn out to be concentric circles
centre the origin in the Argand plane.

Define the relation ~ on the set of complex number
C by
z1 ~ zy if there exists a real 6 such that

z1 = (cos @ + isinB)zo

Show that ~ is an equivalence relation on C.

R. with 8 = 0 we see that z ~ z for all z

S. if z1 ~ z9 then z1 = (cos 6 + isinf)zs
Multiplying by cos 8 — isinf gives

z1(cos @ — isinf) = z
zg = (cos(—6) + isin(—0))z;

Thus 29 ~ 21

T. If 21 ~ 29 and 29 ~ z3 then there exists real 6;
and 6, such that

z1 = (cos by + isinfy)zy
29 = (cos by + i8infy)z3

Combining these we can obtain:
z1 = (cos(01 + 02) + isin(0; + 02))z3

Thus z; ~ z3.

From the definition of ~ we can see that if 21 ~ 29
then |z1| = |22|. Thus z; and 22 lie on the same
circle centre the origin. Indeed all the elements of
C that are related to z; lie on the same circle as z1,
thus the equivalence classes are these circles.
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