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Chapter 1

Introduction

We assume that you have attended a first year calculus course. This would

have covered topics such as Limits, Continuity and Differentiability for func-

tions of one variable. Just in case you are feeling rusty, here is a brief review.

1.1 Review of Differentiation

We will need to recall the notions of Function, Limit, and Differentiation.

1.1.1 Functions

There are many kinds of function, and a formal mathematical definition can

be given which encompasses them all. You may know it. For our purposes it

will be sufficient to start by thinking about real functions of real variables.

A real function is something which takes as input a real

number, and gives as output another real number.

There are all sorts of special cases. None of the special cases we will need

are any cause for alarm!

Example 1.1.

f(x) = x2

5
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Example 1.2.

f(x) = sin(x)

1.1.2 Limits

Some functions f(x) break down at certain values of x.

Example 1.3. Consider

f(x) = x−1

at x = 0!

Other functions have similar looking problems at certain values of x, but

can usefully be studied by using the notion of limit.

A function f(x) has a limit l at x = c (c some given

constant),

if we can make the value of f(x) − l arbitrarily small,

by choosing x suitably close to c.

We write

lim
x→c

f(x) = l

if such a limit exists.

The function f(x) = x−1 has no limit at x = 0. The closer we get to

x = 0, the bigger it gets, without bound! We say f(x) is divergent at x = 0.

However,

Example 1.4. Consider

f(x) = x−1 sin(x)

at x = 0. Again there is a problem, caused by the x−1 part. We can see that

the sin(x) part, which gets small close to x = 0, might restrain this divergence,

but we can’t tell just by staring at it! In fact, by carefully calculating the

value of this function for values of x close to (but not at) 0 we can see that

lim
x→0

f(x) = 1
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1.1.3 Differentiation

Not every function can be differentiated. If a function can be differentiated

(at x), the differential is given by

df(x)

dx
= lim

h→0

f(x + h) − f(x)

h

Note that this is exactly what we mean by the tangent to the curve of the

graph of f(x) at x.

Example 1.5. For

f(x) = x2

we get

df(x)

dx
= lim

h→0

(x + h)2 − x2

h
= lim

h→0

2xh + h2

h

= lim
h→0

2xh

h
+ lim

h→0

h2

h
= 2x

(I hope this is what you were expecting!)

1.2 Other things we expect you to know!

de Moivre’s theorem etc.:

eiθ = cos θ + i sin θ

so

(cos θ + i sin θ)n = cos nθ + i sin nθ

so, for example,

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 (1.1)
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1.3 Other support material

Check out the course homepage.

Check out the vast amount of related material on the web.

Check out past exam papers and solutions.

Check out books called ‘CALCULUS’ (or similar); such as the SCHAUM

OUTLINE SERIES book on this topic, and other books mentioned on the

course homepage.

Check out ‘Mathematical Methods for Science Students’ by G Stephenson

(Longman). 1

Check out the DERIVE mathematical software package.

1Some of the examples in the present draft of this work are taken from my own un-

dergraduate Calculus notes (from a course given by the legendary Dr Ian Ketley). This

means that they are inspired by, or directly taken from, examples and exercises to be found

in Stephenson’s excellent book. As a result, the present version of this work is possibly

suitable only for its present educational purpose, and not for publication or any other form

of redistribution. Buy Stephenson’s book.



Chapter 2

Functions of more than one

variable

2.1 Introduction

If we collate the data from enough actuarial tables (say), we can construct

a function which, when we input the age of a person in years, returns the

probability that they will have a serious illness within the next twelve months.

This is, potentially, a very useful function to help assess risk in health

insurance.

Of course it is a very crude model of the health profile of any given

candidate for insurance. There are a number of other factors which directly

affect the probability of illness, besides age. For example, the number of

cigarettes smoked each day.

Based on this and countless other examples it will be obvious that func-

tions which model aspects of real life are likely to need to be models with

more than one input parameter. That is, functions of more than one variable.

Example 2.1.

f(x, y) = x2 − 2xy

9
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2.2 Partial Differentation

The graph of a function f(x, y) has two base axes (x, y) and a value axis f .

This makes it difficult to draw on the page, but the concept is just the same

as for graphing f(x). Such functions can have maxima, and minima, and it

is very useful to be able to locate these features.

Finding the maxima and minima of ordinary funtions is one of the jobs

which differentiation helps us enormously with, as we know. Is there some

version of differentiation we can use for f(x, y)?

There are two partial derivatives:

fx =
∂f

∂x
= lim

h→0

f(x + h, y) − f(x, y)

h

fy =
∂f

∂y
= lim

h→0

f(x, y + h) − f(x, y)

h

Note that in each case we pick a variable to differentiate with respect to,

and then differentiate treating the other variable as if it were a constant.

Example 2.2. We can’t differentiate f(x, y) = x2−2xy in the ordinary way,

but if we fix y = 3 (say), then f(x, 3) = x2 − 6x, which we can differentiate.

We can do it again for any other ‘fixed’ value of y. All these differentiations

can be summarized by the partial differentiation with respect to x:

fx = 2x − 2y.

Similarly

fy = −2x.

Note that the differentiated function can still be a function of one or more

variables!

Example 2.3. Yes, that’s right

∂x2

∂y
= 0.

Here we are holding x constant, so we are differentiating a constant!
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Exercise 2.4.

f(x, y) = sin2(x) cos(x) +
x

y2

Determine fx and fy.

2.2.1 Higher derivatives

Any function may, in principle, be differentiated. The output of the opera-

tion of differentiating a function is another function, so we may differentiate

multiple times. The same idea works for partial differentiation.

The notion is straightfoward! What we have to grasp is really just nota-

tion.

fxx =
∂2f

∂x2
=

∂

∂x
fx =

∂

∂x

(
∂f

∂x

)

fyy =
∂2f

∂y2
=

∂

∂y
fy =

∂

∂y

(
∂f

∂y

)

fxy = fyx ==
∂2f

∂xy
=

∂

∂x
fy =

∂

∂x

(
∂f

∂y

)

(In this last one we have been a bit glib. Think about it!)

These are the second derivatives. Higher derivatives work similarly.

Example 2.5. For

f(x, y) = x2 − 2xy

then

fxx = 2

fyy = 0

fxy = −2

fxxxx = 0
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2.3 Chain Rule

Suppose

z = f(x, y)

given, but

x = x(r, s)

y = y(r, s)

How do we compute ∂z
∂r

? (Compare this with the similar problem for the

one–variable case.)

Answer:
∂z

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r

(and similarly for s).

Exercise 2.6. Verify that this reduces to the usual one–variable case.

Example 2.7.

z = x3 + y3

where

x = 2r + s

y = 3r − 2s

Find ∂z
∂r

, ∂z
∂s

1

2.4 Maxima and Minima

We can find the maxima of f(x) by differentiation, but the underlying def-

inition is more straightforward. The point x = c is a (local) maximum of

1Partial answer:
∂z

∂r
= 6(2r + s)2 + 9(3r − 2s)2
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f(x) if the value of f(x) is lower than f(c) for every point in the immediate

neighbourhood of x = c.

This definition generalises in a simple way to f(x, y).

A point (x, y) = (c, d) is a maximum of f(x, y) if the

value of f(x, y) is lower than f(c, d) for every point in

the immediate neighbourhood of (c, d).

Here is a picture of a simple mountain. The maximum is the highest

point.

y

(x,y)

x

f

0

The coordinate system in this picture is not intrinsic to the mountain. It

is something we put on so that we can give the location of the maximum, and

other features, in a convenient format. Once we have a coordinate system we

can, in principle, give the height of the mountain at each point of the (x, y)

base plane.

This height function will thus be a function of two variables.

Given this function, f(x, y) say, how do we find the maximum (mini-

mum)?

Once again consider f(x, y) as a function of one variable by holding y

constant. If f(x, y) is a maximum at, say, (x, y) = (xc, yc) (xc, yc given

constants), it is also a maximum of the function f(x, yc).
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Thus a necessary condition for an extremum is

fx = fy = 0

However, NB, this is not a sufficient condition. It includes saddle points...

SADDLE POINT

...so, define

D(x, y) = fxxfyy − (fxy)
2

Suppose (x, y) = (a, b) satisfies the first order conditions.

If D(a, b) > 0 then

fxx(a, b) < 0

implies a MAXIMUM.

fxx(a, b) > 0

implies a MINIMUM.

If D(a, b) < 0 then SADDLE POINT.

Example 2.8.

f(x, y) = −x2 − y3 + 12y2

2

Example 2.9.

f(x, y) = x4 + 4x2y2 − 2(x2 − y2)

2Answer: (0, 0) SADDLE; (0, 8) MAX.
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3

2.4.1 Several variables

Suppose z = f(x1, x2, .., xn). (Note the variable names.)

This f maps each point a ∈ R
n to a real number. (We also write x =

(x1, x2, .., xn).)

Necessary condition for extremum (n variable case)

fx1
= fx2

= · · · = fxn = 0 (2.1)

Sufficient condition:

Form HESSIAN MATRIX






fx1x1
fx1x2

· · ·
fx2x1

fx2x2
· · ·
. . .






(Also let Hm denote the top left m × m submatrix.)

Now suppose a = (a1, a2, .., an) satisfies (2.1). Then if evaluated at a we

have

|H1| < 0 |H2| > 0 |H3| < 0 etc.

implies MAXIMUM; while

|H1| > 0 |H2| > 0 |H3| > 0 etc.

implies MINIMUM.

We will provide some examples shortly.

3Answer: (0, 0) SADDLE; (1, 0) MIN.; (−1, 0) MIN. (Now try to sketch the function,

or get a computer to do it for you!

Note that the DERIVE computer package is excellent for this kind of thing.)
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2.5 Lagrange Multipliers

Problem:

Maximize f(x1, x2) subject to a constraint on the allowable values of

x1, x2, let us say of the form g(x1, x2) = k, where g is a given function and k

a constant.

(Typically an analyst might be asked to determine the production pa-

rameters for a company so as to maximize profit.

Suppose the company makes TVs and RADIOs, and the profit function

depends on the number of each made.

Naively we maximize profit by making infinitely many of each, but of

course there will be practical limitations on the total number of devices which

can be produced in the real world factory.

We want to maximize subject to these realistic constraints.)

Solution:

Form

L(x1, x2, λ) = f(x1, x2) − λ[g(x1, x2) − k]

(λ is called the LAGRANGE MULTIPLIER.)

Now find unconstrained maximum of L:

Necessary:

Lx1
= Lx2

= Lλ = 0

(Note that the last condition enforces the original constraint!)

Example 2.10.

f(x1, x2) = 25 − x2
1 − x2

2

subject to

2x1 + x2 = 4

so

L = 25 − x2
1 − x2

2 − λ[2x1 + x2 − 4]

Lx1
= −2x1 − 2λ
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Lx2
= −2x2 − λ

Lλ = −2x1 − x2 + 4 = 0

The first order conditions are thus three linear (homogeneous) equations in

three unknowns. Linear algebra (!) gives

x1 = 1.6 x2 = 0.8 λ = −1.6

Now, is this a MAX/MIN/??

Form BORDERED HESSIAN

HB =






0 gx1
gx2

gx1
Lx1x1

Lx1x2

gx2
Lx2x1

Lx2x2






then for (a1, a2, l) satisfying the necessary conditions,

|HB| > 0 implies MAX;

|HB| < 0 implies MIN.

For our example above we have

|HB| =

∣
∣
∣
∣
∣
∣
∣






0 2 1

2 −2 0

1 0 −2






∣
∣
∣
∣
∣
∣
∣

= 10 > 0

so MAX.

Example 2.11.

f(x, y) = x2 + y2

subject to

x3 + y3 − 6xy = 0

Get

L = x2 + y2 − λ[x3 + y3 − 6xy]
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Necessary conditions:

Lx = 2x − 3x2λ + 6yλ = 0 (2.2)

Ly = 2y − 3y2λ + 6xλ = 0 (2.3)

Lλ = −(x3 + y3 − 6xy) = 0

Together (2.2) and (2.3) imply

λ =
2x

3x2 − 6y
=

2y

3y2 − 6x

so

x2y − xy2 + 2x2 − 2y2 = 0

so

(x − y)(2x + 2y + xy) = 0

Evidently x = y is a solution to this. Substitute back into the constraint:

2x3 − 6x2 = 0

with solutions x = 0, 3.

So, we have (0, 0) (a MINIMUM) and (3, 3) (a local MAXIMUM).

(Sketch the curve implied by the constraint to confirm this.)

Example 2.12. In a suitable coordinate system, the Chicago Beltway lies

on the curve

3(x2 + y2) + 4xy = 2

You are tendering for the job of building a connecting road from the Beltway

to Soldier Field sports stadium (at coordinates (0,0)).

It costs your company $5× 107 per kilometre to build road. What is the

minimum tender you could bid without making a loss?
4

4Answer: (±1√
5
, ±1√

5
) min.; (±1,∓1) max., so $

√
2

5
.5.107.
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Figure 2.1: Plot of x3 + y3 − 6xy = 0 in the interval −4 < x, y < 4.

Figure 2.2: Plot of 3x2 + 3y2 + 4xy = 2 in the interval −4 < x, y < 4.
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The first question here is WHAT IS THE FUNCTION TO OPTIMIZE?

It is the distance l (say) from the point (x, y) to the stadium, i.e.

l2 = f(x, y) = x2 + y2

(Note that we have taken the square. This makes for simpler calculations,

and of course the square has its minimum at the same moment as l itself.)

WHAT IS THE CONSTRAINT?

g(x, y) = 3(x2 + y2) + 4xy = 2

Thus

2x + λ(6x + 4y) = 0

2y + λ(6y + 4x) = 0

Together these give

4λ(y2 − x2) = 0

so y = ±x.

In case y = x we have 10x2 − 2 = 0, so x = ±1√
5
.

In case y = −x we have 2x2 − 2 = 0, so x = ±1.

It will be evident that the first of these is the MINIMUM! As an exercise,

check this using the Hessian method.

2.6 Taylor series

Exercise 2.13. Recall that the Taylor series for a function of one variable

x about the point x = a (a a constant) may be written in the form

f(x) = f(a) + (x − a)f ′(a) +
(x − a)2

2!
f ′′(a) + . . . +

(x − a)n

n!
f (n)(a) + . . .

where f ′(a) denotes the derivative of f evaluated at a, and f (n) the nth

derivative.
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Suppose that x = a is in fact an extremal point of f . Indeed, for the sake

of definiteness let us say that it is a maximum. Then of course f(x) < f(a)

for values of x in the neighbourhood of x = a. That is to say,

f(x) − f(a) < 0 (2.4)

for such values of x.

Now say we know that x = a is an extremal point (i.e. we know that

f ′(a) = 0), but we do not know the nature of the extremum. Considering

the Taylor series we have

f(x) − f(a) =
(x − a)2

2!
f ′′(a) +

(x − a)3

3!
f ′′′(a) + . . . (2.5)

For points close to x = a then (x − a) is small, so (x − a)2 is bigger than

(x−a)3 and so on. Now note that the sign of f(x)− f(a) is thus determined

by the sign of f ′′(a) for points close to x = a. Comparing equation (2.4) with

equation (2.5), and noting that (x − a)2 cannot be negative, this is one way

to understand why the second order condition f ′′(a) < 0 means MAXIMUM.

An exactly analogous argument shows that f ′′(a) > 0 means MINIMUM.

Now, suppose that f ′′(a) = f ′(a) = 0.

(a) Give the new necessary condition for f to be an extremal point, care-

fully explaining the reasons for your answer.

(b) Give the new sufficient condition for f to be MAXIMUM, carefully

explaining the reasons for your answer.

(Marks will be given for the explanation, as well as the answer.)

Exercise 2.14. Let a, b be constants, and let h = x − a and k = y − b. Let

D denote the operator h ∂
∂x

+ k ∂
∂y

. That is to say

Df(x, y) = hfx + kfy.

Then the Taylor series for f(x, y) about (x, y) = (a, b) may be written

f(x, y) = f(a, b) + Df(a, b) +
1

2!
D2f(a, b) + . . .

where we take Df(a, b) to mean Df evaluated at (a, b), and so on.
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(a) Show that the usual necessary condition for an extremal point of f(x, y)

at (a, b) implies Df(a, b) = 0.

(b) Write out explicitly what is meant by the shorthand D2f(a, b).

(c) Hence derive the usual full second order condition for a maximum at

(a, b).

Exercise 2.15. OPTIONAL: By considering the above two exercises to-

gether, think about how to proceed to investigate the nature of extremal

points f(a, b), when the quatities evaluated in the second order test (as de-

fined in section 2.4 of the notes) turn out to vanish.

Another exercise relevant for this section is Exercise 6.1 below.

2.7 Further Notes and Exercises

Exercise 2.16. The trajectory through space of a 150 x 106 kg chunk of

cosmic debris lies in a plane through the Earth. Suitably coordinatizing this

plane, with the centre of the Earth at the point (0, 0), the trajectory is given

by the curve

x2 + 8xy + 7y2 − 225 = 0

(units are thousands of kilometres). What is the closest distance which the

object comes to the Earth?

(HINT: Use the method of Lagrange multipliers. What is the function to be

minimized? What is the constraint equation? Give a sketch of the trajectory

if it helps you to envisage the problem and/or check the reasonableness of

your answer.)

OPTIONAL: Is it safe for your company to insure against damage result-

ing from the passage of this object?

Exercise 2.17. Using the method of Lagrange’s multipliers, find the shortest

distance from the point P (0, 0, 1) on the z-axis, to the curve y3+x3+y2+x2 =

0 which lies in the (x, y)-plane.
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Exercise 2.18.

1. Find all the stationary points (maxima, minima and saddle points) of

the function

g(x, y) = x2y2.

2. Show that the function

f(x, y) = −xy e−
x2

+y2

2

has a stationary point at x = 0, y = 0.

Find all the other stationary points of f(x, y).

Determine the nature of the stationary point at (0, 0).

The next few exercises really are just that, i.e. relatively routine opti-

misation problems designed to build up your mathematical ‘muscles’. They

can all be solved simply by other means, but the point here is to practice

Lagrange multipliers!

Exercise 2.19. Find all the stationary points of the function

g(x, y) = x2 + y2

subject to

x2 + 2y2 = 1

using the method of Lagrange Multipliers. (Check your answer by sketching

the curve defined by the constraint; and separately by elementary substitu-

tion!)

Exercise 2.20. Find all the stationary points of the function

g(x, y) = xy

subject to

x + y − 6 = 0
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using the method of Lagrange Multipliers. (Check your answer by sketching

the curve defined by the constraint; and separately by elementary substitu-

tion!)

Exercise 2.21. Find all the stationary points of the function

g(x, y) = x2 + y2

subject to

x + y − 1 = 0

using the method of Lagrange Multipliers. (Check your answer by sketching

the curve defined by the constraint; and separately by elementary substitu-

tion!)
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Multiple integration

We will start by reviewing ordinary integration. Then we will look at the

meaning and uses of integration, when functions of more than one variable

are involved.

3.1 Ordinary integration revisited

Recall:

x1 x2

f

x
∆ x

I =

∫ x2

x1

f(x)dx = Area under curve.

25
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∼=
∑

i

f(xi)∆x

3.2 Multiple integration

Now:

f

x

y

∆ x∆ y

Volume under
surface

Here the generalisation of the usual limits of integration (which define an

interval of the real line — a region of the real line) is an ‘interval’ of the base

plane — a region of the base plane.

Such a thing is more complicated to specify precisely, but the concept is

not so complex.

Let us call the region of the base plane which we are integrating over R.

The volume under the surphace is

I =

∫

R

f(x, y)dR =

∫ ∫

f(x, y)dxdy

∼=
∑

i

f(xi, yi) ∆x∆y
︸ ︷︷ ︸

∆R
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Example 3.1. Integrate to find the volume under the surface

f(x, y) = 2x2 + y

with base given by the region

R

y=x

y=x2

x

y

A sketch of the surface, the base region and the resultant volume looks

like this:
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(Here at the bottom we have extracted a little sketch of the volume on

its own, as a guide to the eye.)

The integral is

I =

∫∫

R

(2x2 + y)dxdy

Basic idea:

I =

∫ x=1

x=0

[∫ y=x

y=x2

(2x2 + y)dy

]

dx

In the part in square brackets we regard x as constant (!) — then we can do

the integral (but the answer will depend on x):

I =

∫ x=1

x=0

F (x)dx

where

F =

∫ y=x

y=x2

(2x2 + y)dy = [2x2y +
y2

2
]y=x
y=x2

= 2x3 +
x2

2
− 2x4 − x4

2
so

I =

∫ 1

0

(2x3 +
x2

2
− 5x4

2
)dx

=

[
2x4

4
+

x3

6
− 5

2

x5

5

]1

0

=
1

2
+

1

6
− 1

2
=

1

6

Exercise 3.2. Compute the same integral, but performing the
∫

dx first.

(Hint: the main problem is to correctly give the limits.)

Example 3.3. Consider the cylinder (tube) in 3d given by

x2 + y2 = 2ax (a a constant)

Consider further that we cut through this tube in 2 planes: z = mx and

z = nx (m, n constants).

Find the volume of the resultant wedge.

Idea: Volume = Volume1 - Volume2 where

Vol1 =

∫ ∫

R

mx dxdy
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(volume under f = mx)

= 2m

∫ x=2a

x=0

[
∫ y=

√
2ax−x2

y=0

x dy

]

dx

= 2m

∫ 2a

0

x
√

2ax − x2dx = 2m

∫ 2a

0

x
√

a2 − (a − x)2dx

(set u = a − x)

= 2m

∫ a

−a

(a − u)
√

a2 − (u)2du

(set u = a sin(θ))

= 2m

∫ π/2

−π/2

a(1 − sin θ)(a cos θ)2dθ

= 2ma3

∫ π/2

−π/2

cos 2θ + 1

2
dθ = πma3

(Here we use a2 − u2 = a2(1 − sin2 θ) = a2 cos2 θ and du
dθ

= a cos θ; and the

double angle formula (1.1).)

Similarly,

Vol2 =

∫ ∫

R

nx dxdy = nπa3

so the volume of the wedge is π(m − n)a3.

(NB, this is very easy to check!)

3.3 Further Notes and Exercises

Exercise 3.4. Verify
∫ 1

0

∫ x

x2

2dydx =
1

3

(yes! the argument of the integral is 2). Explain exactly what geometrical

quantity this integral is computing.
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Exercise 3.5. Verify

∫ 2

1

∫ 3y

y

(x + y)

9
dxdy =

14

9

Explain exactly what geometrical quantity this integral is computing.

Exercise 3.6. Verify

∫ 2

−1

∫ x(x+1)

2(x+1)(x−1)

x

2
dydx =

9

8

Explain exactly what geometrical quantity this integral is computing.

Exercise 3.7. A cylindrical well is bored vertically down into the New

Mexico desert, with interior sectional radius 3m. The well wall is made of a

relatively thin layer of concrete.

A cylindrical tunnel is bored horizontally under the desert, again with

interior sectional radius 3m, by a separate Engineering company, but follow-

ing a similar construction method. Unfortunately the central axes of the two

tubes coincide at one point under the desert! What is the volume of the

region common to these two tubes.

(HINT: Set up a coordinate system with the y and z axes being the axes of

the two tubes. Then they can meet at (0, 0, 0) say. You could draw a picture

of this situation. Now construct a suitable double integral by considering the

equations describing the shapes of the two tubes.)
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2003 COURSEWORK 1: Do exercises 2.13, 2.14, 2.16,

2.17, and 3.7.

You must read the separate sheet of advice and rules for coursework submis-

sion. The rules are binding on any submission.

3.4 Polar coordinates

In ordinary integration, we are familiar with the method of change of vari-

ables (we just used it several times above!). There is a multiple integral

generalisation which can be just as useful.

We begin with an example. Recall:

(x,y)

r

x

y

θ

That is, x = r cos θ, y = r sin θ.

The approximate area of the shaded region in

x

y

θ

∆ r

∆θ
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is r∆r∆θ.

Thus we can make a change of variables in a double integral (correspond-

ing to moving from the Cartesian to the polar coordinate system) as follows:

I =

∫∫

R

f(x, y)dxdy =

∫∫

R

f(r cos θ, r sin θ)rdrdθ

(Note the ‘extra’ r!)

To see the point of this we need an example.

Example 3.8.

I =

∫∫

R

{1 −
√

x2 + y2}dxdy

where the region R is the disk bounded by the unit circle.

I =

∫ 2π

0

∫ 1

0

(1 − r)rdrdθ

=

∫ 2π

0

[
r2

2
− r3

3

]1

0

dθ = 2π
1

6
=

π

3
.

Example 3.9. The integral

I =

∫ ∞

0

exp(−x2)dx

is a very important (Gaussian) and difficult single integral. (Sketch the curve

of the argument, and recall the role of this function in, for example Statistics,

to see why it is so important.)

I2 = I.I =

(∫ ∞

0

exp(−x2)dx

)(∫ ∞

0

exp(−y2)dy

)

=

∫ ∞

0

∫ ∞

0

exp(−x2 − y2)dxdy =

∫ ∫

R

exp(−x2 − y2)dxdy

=

∫ ∫

R

exp(−r2)rdrdθ =

∫ π/2

0

[∫ ∞

0

exp(−r2)rdr

]

dθ

(We are doing an improper integral here. The answer we will get is correct,

but to be more careful we could have considered

I = lim
a→∞

∫ a

0

e−x2

dx
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for which the change of variables is slightly harder to implement.) So

I2 =

∫ π/2

0

[

−1

2
exp(−r2)

]∞

0

dθ =
π

4
.

So I =
√

π
2

.

3.5 General change of variables

Just as

x = r cos θ = x(r, θ)

y = y(r, θ) = r sin θ

we could have x = x(u, v), y = y(u, v). Then

∫ ∫

R

f(x, y)dxdy =

∫ ∫

R

f(x(u, v), y(u, v)) |D| dudv

where D is the JACOBIAN:

D =

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

.

This generalises the single change of variables
∫

f(x)dx =

∫

f(x(u))
dx

du
du.

Example 3.10. x = r cos θ, y = r sin θ

|D| = r cos2 θ + r sin2 θ = r

as we argued explicitly earlier!

Exercise 3.11. Compute

I =

∫ ∫

R

√

1 − (x2 + y2)dxdy

where R is the interior of the unit disk. Interpret your answer geometrically.
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I =

∫ 2π

0

∫ 1

0

√
1 − r2 rdrdθ

Substituting r = sin φ we get

I =

∫ 2π

0

∫ π
2

0

cos φ sin φ cos φ dφdθ.

Now

cos φ sin φ cos φ = sin φ − sin3 φ =
1

4
(sin 3φ + sin φ)

(hint: compute sin3 φ = ( eiφ−e−iφ

2i
)3). So

I =

∫ 2π

0

[
1

4
(
− cos 3φ

3
− cos φ)

]π
2

0

dθ =
2π

3
.

3.6 Spherical polar coordinates

Spherical polar coordinates are the generalisation of polar coordinates to

three dimensions. We have (x, y, z) → (r, θ, φ) as follows.

x

y

z

(x,y,z)

r

φ

θ
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That is

x = r cos φ sin θ

y = r sin φ sin θ

z = r cos θ

so the Jacobian is

D =

∣
∣
∣
∣
∣
∣
∣






∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ






∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣






cos φ sin θ r cos φ cos θ . . .

sin φ sin θ ∂y
∂θ

∂y
∂φ

cos θ −r sin θ 0






∣
∣
∣
∣
∣
∣
∣

= r2 sin θ.

Example 3.12. A solid object S has density δ(x, y, z). Then it has mass

m(S) =

∫ ∫ ∫

S

δ(x, y, z) dxdydz. (3.1)

Consider a hemispherical object with density

δ = 17
√

(x − xc)2 + (y − yc)2 + (z − zc)2 Kg m−3,

where (xc, yc, zc) is the centre of the corresponding full sphere. What is its

mass?

m(S) =

∫ 2π

0

∫ π
2

0

∫ a

0

17r(r2 sin θ)drdθdφ

= 17

∫ 2π

0

∫ π
2

0

a4

4
sin θ dθdφ =

17a4

4

∫ 2π

0

[− cos θ]
π
2

0 dφ =
17πa4

2
.

The CENTRE OF MASS of S is (x, y, z) where

x =

∫ ∫ ∫

S
x δ(x, y, z) dxdydz

m(S)

y =

∫ ∫ ∫

S
y δ(x, y, z) dxdydz

m(S)
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z =

∫ ∫ ∫

S
z δ(x, y, z) dxdydz

m(S)

Exercise 3.13. Compute the CoM of our hemisphere. I.e.

x =

∫ ∫ ∫

S
r cos φ sin θ (17r)r2 sin θ drdθdφ

m(S)
= 0 = y

z =

∫ ∫ ∫

S
r cos θ (17r)r2 sin θ drdθdφ

m(S)

=

∫ 2π

0

∫ π
2

0

∫ a

0
r cos θ (17r)r2 sin θ drdθdφ

m(S)

=
2

πa4

a5

5
2π

∫ π
2

0

cos θ sin θ dθ =
4

5
a

[
sin2 θ

2

]π
2

0

=
2a

5

Thus the CoM is (0, 0, 2a
5
).

Is this realistic??!!

3.7 Examples and Exercises

3.7.1 Actuarial Science, Quantity and Physics

This section is not examinable. It is here to provide an intuitive and appli-

cable context for problems in integration.

Recall the following facts from elementary Newtonian mechanics. 1 If

you push an object along a line through its centre of mass you will accelerate

it. For a given force applied F , the acceleration a is inversely proportional

to the mass m of the object:

F = ma = m
dv

dt
= m

d2x

dt2
=

dM

dt

1See any standard Physics or Engineering text, for example. (One such is W. Wilson’s

Theoretical Physics (Methuen).)
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where t is time, v is velocity, x is distance and M = mv is momentum, all in

appropriate units.

If you accelerate the object over some distance, raising its velocity, you

have put energy into it. This movement energy is called kinetic energy. The

total kinetic energy an object has (relative to some coordinate system in

which velocity is measured) is given by

E =
1

2
mv2 =

1

2
Mv

in appropriate units.

Now suppose that our object and forces applied to it ‘live’ in two dimen-

sions rather than one. There is an equation of motion for each direction.

Suppose for definiteness that the force F acts along the line between the ob-

ject and the centre of coordinates (i.e. this is how we choose our coordinate

frame — which we are free to do); and let (x1, x2) be the coordinates of our

object. We can resolve the force into x1 and x2 components by elementary

trigonometry:

m
d2xi

dt2
= F

xi
√

x2
1 + x2

2

(i = 1, 2)

Considering the combination of these equations x2(i = 1) − x1(i = 2) we

have
d(Ω = m(x1x

′
2 − x2x

′
1))

dt
= 0

that is, Ω is constant in this situation. This Ω is called the angular momentum

of the object. It is the angular equivalent of the ordinary momentum mv. As

we have seen, it is not changed by a radial force. It is changed by a tangential

force.

If our object is moving with velocity v at an angle θ to the radial line

from the centre to the object, then its velocity component in the tangential

direction is v sin(θ) (elementary trigonometry) and its angular velocity is the

analogue of ordinary velocity defined by

ω =
v sin(θ)

r
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where r is the distance from the origin. The angular momentum is propor-

tional to the mass times the angular velocity:

Ω = mr2ω

This is the same as for ordinary momentum (except for the factor r2 which

allows for the fact that, for a given angular velocity, the further away from

the origin we are the greater the ‘linear’ velocity).

Now consider an object in the xy plane rotating about a fixed axis (for

simplicity let us make it the z-axis). If φ measures the angle made by the

line from the object to the origin and the x-axis, then

v = r
dφ

dt

so the kinetic energy is

1

2
mv2 =

1

2
mr2

(
dφ

dt

)2

Now suppose we have a rigid object made up of many particles (m1,

m2, ..., say), again rotating about the fixed axis. Since it is rigid, all the

particles have the same angular velocity. The total kinetic energy, the sum

of individual energies computed above, is thus

T =
1

2

(
∑

i

mir
2
i

)(
dφ

dt

)2

The quantity (
∑

i mir
2
i ) is the moment of inertia of the composite object

with respect to the given axis. It plays the same role in rotating motion

as the mass does in the expression (1/2)mv2 for the kinetic energy in linear

motion.

By considering a solid object as the limit of a collection of tiny individual

chunks we can reduce the computation of its moment of inertia to an integral.

Suppose that ρ(x, y, z) gives the density per unit volume, and that the object
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occupies a volume of shape V . Since the distance from the z-axis is r2 =

x2 + y2 we have

Iz =

∫ ∫ ∫

V

ρ(x, y, z)(x2 + y2) dx dy dz

where Iz denotes that this is the moment with respect to the z-axis. (This

generalises in a natural way to rotation about an arbitrary axis, but this need

not concern us here.)

3.7.2 Integration related examples

A straight line in the xy plane partitions the plane into two parts (y = 0

partitions the plane into a region above the line and a region below the

line, for example). A curved line without an endpoint (i.e. either closed or

infinite) partitions the plane similarly.

Sets of curves will further partition the plane into subregions. For exam-

ple, three straight lines, none of which are parallel, will partition the plane

into a number of regions. Most of these regions are infinite in extent (‘un-

bounded’), but one is finite — a triangle (unless all three lines intersect at

the same point!). In such a case we say the finite region is bounded by the set

of lines. Generalising from this: even if the set of lines is curved, provided

that precisely one part of the partition of the plane they describe is finite,

we call this the region bounded by the curves.

Exercise 3.14. Sketch the region of the xy plane bounded by each of the

following sets of curves:

x2 + y2 = 16;

x = y, x = 2, y = 3;

x = 1, x = 2, y = 3, y = 6;

y = sin(x) (0 ≤ x ≤ π/3), x = π/3, y = 0.

Express the area of the region as a double integral (or multiple thereof) in

each case. Evaluate this double integral.

Exercise 3.15. Sketch the volume bounded by x = 0, y = 0, z = 6,

z = x + y. Compute this volume by means of a double integral. (Ans=36)
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Exercise 3.16. Sketch and Evaluate:
∫ a

0

∫ a−x

0
1 dy dx;

∫ 1

0

∫ x1/2

x
xy2 dy dx;

∫ a

0

∫ x

0
(x2 + y2)dy dx;

∫ π/2

−π/2

∫ 2a cos(θ)

0
r2 cos(θ) dr dθ.

(Ans=a2/2; 1/35; a4/3; πa3)

Exercise 3.17. A new design of motorised food slicer blade (or helocopter

rotor, take your pick!) has shape given by the region R of the x1x2-plane

bounded by the curves x2
1 = x2, x2 = 1, x1 = 2. It has uniform thickness and

density in this region (and has unit mass per unit area). Sketch the shape of

the slicer blade. Work out the moment of inertia with respect to the x3-axis:
∫ ∫

R

(x2
1 + x2

2) dx1 dx2

(Ans=1006/105)

Exercise 3.18. Formulate and compute a double integral which determines

the volume of a sphere.

Formulate and compute a triple integral which determines the volume of a

sphere.

Exercise 3.19. Recall that the region of integration of the double integral

I1 =

∫ 1

0

(∫ 1

0

3 dy

)

dx

is the square in the (x, y) plane with corners (0,0),(1,0),(1,1),(0,1). Sketch

this region. What is the value of I1? (Hint: you do not need to do an

integral!)

Exercise 3.20. Sketch the region of integration in the double integral

I =

∫ 1

0

(∫ 1

√
x

sin

(
y3 + 1

2

)

dy

)

dx.

Re–express I with the x–integral as the inner (first) integral. By thus chang-

ing the order of integration, evaluate I. (Hint: you will need to make at least

one change of variables.)
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Exercise 3.21. Show that in polar coordinates the equation of the circle

(x − 1)2 + y2 = 1 takes the form

r = 2 cos θ,

where −π
2
≤ θ ≤ π

2
.

Hence, by using the cylindrical coordinate system (r, θ, z) or otherwise,

find the volume of the solid enclosed in the vertical cylinder (x−1)2 +y2 = 1

bounded below by the plane z = 0 and bounded above by the cone z =

2 −
√

x2 + y2.
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Differential Equations

Examples:

df(x)

dx
= 3 (4.1)

d2f(x)

dx2
= 6x (4.2)

d2f(x)

dx2
+ 7

df(x)

dx
= (f(x))2 + 7 loge(x) (4.3)

Solution: Find a function f(x) such that the Differential Equation (DE) is a

true identity. E.g.

(4.1) f(x) = 3x + 7

(4.2) f(x) = x3 + πx − 4

(4.3) ?!

A DE is linear if it can be expressed in the form

P (D) f(x) = q(x)

where D is the “differential operator” d
dx

(which is only meaningful when

acting on a f(x) on its right!) and P (D) is a polynomial; and q(x) is a given

function.

Example 4.1.
d2f

dx2
+ 7x

df

dx
− 2f = sin x

43
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= (D2 + 7xD − 2)f = sin x

If the coefficients in P are constants it is a CONSTANT COEFFICIENT

LINEAR DE. The order of P is the ORDER of the DE. For example,

(D3 − 7D + 3)f(x) = tanx

is a third order linear constant coefficient DE.

Exercise 4.2. Find a 2nd order linear DE for which f(x) = e3x is a solution.

In general, solving DEs is HARD. So, in general, we use guesswork and

standard recipes to find solutions. Here we will look at many such recipes.

4.1 Solutions I

1. If
df

dx
= q(x)

f =

∫
df

dx
dx =

∫

q(x)dx + c

(note the constant of integration c).

2. If
df

dx
= 7f

∫
df

f
=

∫

7dx

“separation of variables”, giving

loge f = 7x + c

so f = ece7x = Ce7x where C is a constant.

DEs may have multiple possible solutions in general (or none!). For each
d
dx

we can (think of) undoing it with an
∫
−dx. Each such integration has

an integration constant, so a DE of order n has n undetermined constants in

its general solution. That is, n constants which can be determined freely to

obtain a specific solution.
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DEs often appear like this:

Solve
d2f

dx2
+ 3

df

dx
= 2x

subject to f(0) = 0, f ′(0) = 7. These x = 0 conditions are called INITIAL

CONDITIONS. Using them (if there are enough) we can fix the constants of

integration.

4.1.1 Homogeneous Linear DEs

A linear DE of form

P (D)f(x) = 0 (4.4)

is called HOMOGENEOUS.

Proposition 4.3. Suppose f1(x), f2(x) are specific given solutions to (4.4).

(This means that P (D)f1(x) = 0 and P (D)f2(x) = 0 are true identities.)

Then A1f1(x) + A2f2(x) is also a solution for any constants A1, A2.

This is the miracle of LINEARITY.

Proof:

P (D)(A1f1(x) + A2f2(x)) = A1P (D)f1(x) + A2P (D)f2(x) = 0 + 0 = 0.

Done.

Example 4.4. (D − 3)(D − 4)f(x) = 0

Trial form of solution:

f(x) = eλx

Now,

Deλx =
deλx

dx
= λeλx

so substitution gives

(λ − 3)(λ − 4)eλx = 0.

This is true for all x only when λ = 3 or 4, so f1(x) = e3x and f2(x) = e4x

are both solutions.

Exercise 4.5. So is 7e3x + 21πe4x. Confirm.
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More generally, suppose

n∏

i=1

(D − λi)f(x) = 0

where the product is the factored form of P (D). Then

f(x) =
∑

i

Aie
λix

is the general solution.

(Note

Proposition 4.6. Every complex polynomial may be factorised with linear

factors over the complex numbers.

so we can ALWAYS solve constant coefficient P (D)f = 0 in this way.)

Example 4.7.
d2f

dx2
= −9f

(D2 + 9)f = 0 = (D + 3i)(D − 3i)

so

f = A1e
3ix + A2e

−3ix.

Note as usual that
e3ix + e−3ix

2
= cos 3x

e3ix − e−3ix

2i
= sin 3x

so

f = C cos 3x + D sin 3x

is an equally good way of writing the answer.

Note here that 2nd order DE, implies 2 undetermined constants in the

general solution.

Overall, solving an nth order linear homogeneous constant coefficient DE

requires only to find the roots of the associated P (D).
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The polynomial equation P (m) = 0 is sometimes called the auxilliary

equation (the dummy variable name m here has just been chosen to avoid

confusion with commonly used variable names, already possibly occuring in

the problem).

4.1.2 Inhomogeneous DEs

P (D)f(x) = q(x) 6= 0 (4.5)

where q(x) is given.

We break the problem of finding the general solution into 2 parts:

1. find any single solution by guesswork (!) (called the particular solution

fP );

2. find the general solution to P (D)f(x) = 0 (called the associated homoge-

neous DE) as above. (NB, we again refer to the corresponding polynomial

equation as the auxilliary equation.)

The general solution to the associated homogeneous DE is called the

Complementary Function fCF .

Proposition 4.8. The general solution to (4.5) is the sum of these.

Proof: Exercise.

Example 4.9.
df

dx
− 3f = 7x2 + 3x

Looking at the form of the RHS, we guess that f(x) a polynomial might

be a solution. Try it! . . .

More Clues:

If the RHS looks like aebx then try

fP = Axkebx

where k is such that the auxilliary equation has m = b as a root of multiplicity

k.

If the RHS looks like a sin(bx) then try

fP = xk(A sin(bx) + B cos(bx))
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where k is such that the auxilliary equation has m2 + b2 as a real quadratic

factor of multiplicity k.

Example 4.10.
d2y

dx2
− 3

dy

dx
+ 2y = e2x

The auxilliary equation is m2 −3m+2 = 0, so m = 1, 2, so try a solution

of form

Y (x) = Axe2x

Substituting in gives

A(x4e2x + 2.2e2x − 3x2e2x − 3e2x + 2xe2x) = e2x

so that A = 1. Thus the general solution is

y = Cex + De2x + xe2x

where C, D are arbitrary constants.

Example 4.11.
d2y

dx2
+ 4y = 3 sin 2x

m2 + 4 = 0

so try

Y (x) = x(A sin 2x + B cos 2x).

Substitute into the DE to get

Y = −3

4
x cos 2x

then

y = Ce2ix + De−2ix − 3

4
x cos 2x = E cos 2x + F sin 2x − 3

4
x cos 2x.

Exercise 4.12.

d3y

dx3
− 2

d2y

dx2
− dy

dx
+ 2y = 6x + sin x
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1

4.2 Wronskians, Variation etc.

Consider

a0
d2y

dx2
+ a1

dy

dx
+ a2y = f(x) (4.6)

(f(x) given), with Complementary Function (CF)

y = A1y1 + A2y2

(A1, A2 constants). Now try to find

Y = v1(x)y1 + v2(x)y2

a solution of (4.6), given that

v′
1y1 + v′

2y2 = 0 (4.7)

(so that
dY

dx
= v1y

′
1 + v2y

′
2

d2Y

dx2
= v1y

′′
1 + v2y

′′
2 + v′

1y
′
1 + v′

2y
′
2

etc.). Substituting into (4.6):

v′
1y

′
1 + v′

2y
′
2 =

f(x)

a0

so from (4.7) we have

v′
1 =

−y2f

a0(y1y
′
2 − y′

1y2)

1Answer for Particular solution:

Y (x) = 3(x +
1

2
) +

1

10
(2 sinx + cosx).
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(y1y
′
2 − y′

1y2 is called the WRONSKIAN)

v′
2 =

y1f

a0(y1y
′
2 − y′

1y2)

so

v1 = − 1

a0

∫
y2f

y1y
′
2 − y′

1y2

dx

and v2 similarly. Thus the general solution to (4.6) is

y = (A1 + v1)y1 + (A2 + v2)y2.

Example 4.13.
d2y

dx2
− y = ex

CF: y1 = ex, y2 = e−x

Y (x) = v1e
x + v2e

−x

where

v1 = −
∫

e−xex

−exe−x − exe−x
dx = x/2

v2 = . . . = −−e2x

4
.

Thus the general solution is

y = (A1 +
x

2
)ex + (A2 −

e2x

4
)e−x

4.3 General linear second order equations

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = f(x)

with p, q, f given, CANNOT always be solved!

Sometimes it can be . . . E.g. by substitution, or by knowing one solution

already (somehow!).
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Example 4.14. Suppose y = v(x) IS a solution of

x
d2y

dx2
+

dy

dx
+ xy = 0.

A second solution can be found by putting

y = u(x)v(x)

and solving for u(x). This gives

1

w

dw

dx
+

2

v

dv

dx
+

1

x
= 0

(w = du
dx

), so
du

dx
=

A

xv2

(by integration, with A the integration constant) and

u(x) = A

∫
dx

xv2
+ B

so

y = Av

∫
dx

xv2
+ Bv.

In particular, consider

Example 4.15.

x2 d2y

dx2
− x(x + 2)

dy

dx
+ (x + 2)y = 0

One solution, note, is y1 = x. So, try y2 = xu(x). Substituting:

d2u

dx2
− du

dx
= 0

so u = Aex + B and

y = x(Aex + B)

is the general solution.
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4.4 Series solution methods

Example 4.16. To solve

(1 − x2)
d2y

dx2
− 5x

dy

dx
− 3y = 0 (4.8)

guess a solution of the form

y = y(0) + xy(1)(0) +
x2

2!
y(2)(0) + . . . +

xr

r!
y(r)(0) + . . .

where y(r)(0) = dry
dyr

∣
∣
∣
x=0

a constant (as before).

This is the MacLaurin Expansion (ME) of an arbitrary differentiable func-

tion y(x). Repeatedly differentiating (4.8) gives

(1 − x2)y(n+2) − x(2n + 5)y(n+1) − (n + 1)(n + 3)y(n) = 0

(exercise!). Substituting our ME in:

y(n+2)(0) = (n + 1)(n + 3)y(n)(0)

(using x = 0).

Hence

y(2)(0) = 1 × 3 × y(0)

y(3)(0) = 2 × 4 × y(1)(0)

y(4)(0) = 3 × 5 × y(2)(0) = 1 × 32 × 5 × y(0)

etc., giving

y = y(0)

(

1 +
1.3

2!
x2 +

1.32.5

4!
x4 + ...

)

+y(1)(0)

(

x +
2.4

3!
x3 +

2.42.6

5!
x5 + ...

)

Note as usual 2 constants undetermined. Fixing these with 2 initial con-

ditions we would have a good (!) approximation to y close to x = 0.

To obtain an approximate solution which is good close to x = a use the

TAYLOR EXPANSION.
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Example 4.17. Solve

x
d2y

dx2
+ (1 + x)

dy

dx
+ 2y = 0 (4.9)

near x = 0.

Differentiate n times:

xy(n+2) + (1 + n + x)y(n+1) + (n + 2)y(n) = 0

taking x = 0:

y(n+1)(0) = −n + 2

n + 1
y(n)(0).

Thus the coefficients y(r)(0) in the ME are:

y(1)(0) = −2y(0)

y(2)(0) = −3

2
y(1)(0) = 3y(0)

y(3)(0) = −4

3
y(2)(0) = −4y(0)

y(4)(0) = −5

4
y(3)(0) = 5y(0)

so

y = y(0)

(

1 − 2x +
3

2!
x2 − 4

3!
x3 +

5

4!
x4 + . . . + (−1)r r + 1

r!
xr + . . .

)

(y(0) arbitrary).

NB, only one arbitrary constant, so this is not the general solution. Fol-

lowing our previous notes we may call this solution y1 and try y2 = u(x)y1

in (4.9).

Exercise 4.18. Solve for u(x).

Answer:

u = c

∫
e−x

xy2
1

dx.
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Chapter 5

Laplace Transforms

Lp[f(x)] =

∫ ∞

0

e−pxf(x) dx

is the Laplace transform of f(x) (x > 0).

IT IS A LINEAR OPERATOR:

Lp[kf(x)] = kLp[f(x)]

Lp[f(x) + g(x)] = Lp[f(x)] + Lp[g(x)]

Simple ones:

Lp[e
ax] =

∫ ∞

0

e−pxeax dx =
1

p − a

(provided p > a).

Lp[x
n] =

∫ ∞

0

e−pxxn dx =?

Recall the mnemonic for integration by parts:

duv = udv + vdu

or ∫

udv = uv −
∫

vdu.

55
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In our case we have u = xn and dv = e−px so we get

Lp[x
n] =

[
xne−px

−p

]∞

0

−
∫ ∞

0

e−px

−p
nxn−1dx =

n!

pn+1
.

Exercise 5.1. Use deMoivre’s theorem etc. to compute Lp[sin ax], Lp[cos ax],

Lp[sinh ax].

“Shift theorem”:

Lp[e
−axf(x)] =

∫ ∞

0

e−pxe−axf(x) dx

=

∫ ∞

0

e−(p+a)xf(x) dx = Lp+a[f(x)]

Thus

Lp[e
−ax sin(bx)] =

b

(p + a)2 + b2

(p > −a).

5.1 Inverse operator

L−1
x [Lp[f(x)]] = f(x)

Again L−1
x is linear.

E.g. Since Lp[1] = 1
p

L−1
x [

1

p
] = 1

and L−1
x [k

p
] = k.

Example 5.2. L−1
x

[
1

(p+a)(p+b)

]

— use PARTIAL FRACTIONS.

1

(p + a)(p + b)
=

A

(p + a)
+

B

p + b

implies B = −A = 1
a−b

(a 6= b), so

L−1
x

[
1

(p + a)(p + b)

]

=
1

b − a

(
e−ax − e−bx

)
.
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Exercise 5.3. Use partial fractions to determine

L−1
x

[
p

(p2 + a2)(p2 + b2)

]

and

L−1
x

[
1

p2(p2 + a2)

]

1

Now, what is the point of all this?!

5.2 Transforms of differentials

Lp[
dy

dx
] =

∫ ∞

0

e−px dy

dx
dx =

[
ye−px

]∞
0

+ p

∫ ∞

0

e−pxydx

= −y(0) + pLp[y]

(assume e−pxy → 0 as x → ∞).

Similarly,

Lp[
d2y

dx2
] = (exercise)

Lp[
dny

dxn
] = pnLp[y] − pn−1y(0) − pn−2y(1)(0) − . . . − py(n−2)(0) − y(n−1)(0).

5.3 Solution of Ordinary Differential Equa-

tions

Solve

(D + 2)y = cos x

1Answers:
1

b2 − a2
(cos ax − cos bx)

x

a2
− 1

a3
sin ax.



58 CHAPTER 5. LAPLACE TRANSFORMS

given y(0) = 1.

Apply the Laplace transform to both sides:

pLp[y] − y(0) + 2Lp[y] =
p

p2 + 1

so

Lp[y] =
p

(p + 2)(p2 + 1)
+

y(0)

p + 2
.

Now
p

(p + 2)(p2 + 1)
=

A

p + 2
+

Bp + C

p2 + 1

implies A = −B = −2/5, C = 1/5. Thus

Lp[y] =
1

5

1

p2 + 1
+

2

5

p

p2 + 1
+

3

5

1

p + 2
.

Now invert the Laplace transform:

y(x) =
1

5
sin x +

2

5
cos x +

3

5
e−2x.

Example 5.4. Solve (D2 + a2)y = sin bx.

Laplace:

p2Lp[y] − py(0)− y(1)(0) + a2Lp[y] =
b

p2 + b2

so

Lp[y] =
b

(p2 + a2)(p2 + b2)
+

y(0)

(p2 + a2)
+

y(1)(0)

(p2 + a2)

Partial fractions:

Lp[y] =
b

b2 − a2

(
1

(p2 + a2)
− 1

(p2 + b2)

)

+
y(0)p

(p2 + a2)
+

y(1)(0)

a

a

(p2 + a2)

Invert Laplace:

y(x) =
b sin ax

a(b2 − a2)
− sin bx

(b2 − a2)
+ y(0) cos ax +

y(1)(0)

a
sin ax.



5.3. SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 59

Example 5.5.

(D2 + 2)y(t) − x(t) = 0

(D2 + 2)x(t) − y(t) = 0

Solve simultaneously! for x and y, subject to x(0) = 2, y(0) = 0, x(1)(0) = 0,

y(1)(0) = 0.

First Laplace transform everything:

p2Lp[y] − py(0) − y(1)(0) + 2Lp[y] − Lp[x] = 0

p2Lp[x] − px(0) − x(1)(0) + 2Lp[x] − Lp[y] = 0

Rearranging:

(p2 + 2)Lp[y] − Lp[x] = 0

(p2 + 2)Lp[x] − Lp[y] = 2p

Eliminate, say, Lp[y]:

Lp[x] =
2p(p2 + 2)

(p2 + 1)(p2 + 3)

Apply partial fractions method:

x(t) = cos t + cos
√

3t

Now eliminate Lp[x] instead:

y(t) = cos t − cos
√

3t.

Note that it is relatively easy to check answers by substitution. So, always

check! CHECK NOW!

Exercise 5.6. Verify

Lp[a + bx] =
ap + b

p2

Lp[
1√
x

] =

√
π

p
.

Exercise 5.7. Solve

(D2 + 4D + 8)y = cos 2x

given y(0) = 2, dy
dx

∣
∣
x=0

= 1, using Laplace transforms. (And check your

answer!)
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Chapter 6

More exercises

Exercise 6.1. This question begins with some revision of Taylor series for

functions of one variable, before going on to investigate the integral of a

function of two variables.

(a) Show that every Taylor series is a Maclaurin series for a certain related

function.

(b) For g(x) a differentiable function, let gi(x) denote the Maclaurin series

for g up to the term in xi.

Recall that the Taylor series for cos(x) about x = 0 (the Maclaurin

series) begins 1 − x2

2
+ x4

4!
+ . . .. Thus we have the approximation

cos(.1) ∼= 1 − .01

2
+

.0001

24
+ ... = 1 − .005 + .000004 + ... ∼= .9950

(angles in radians) correct in all four significant figures. Note that each

term in the series contributes in a lower decimal place than the one

before, which makes it clear that the series is convergent.

Using our notation above, if g = cos(x) then g2 = 1 − x2

2
. Sketch the

functions g and g2 on the same graph, in the region −.1 < x < .1. Make

a separate sketch showing the functions g and g2 on the same graph, in

the region −1 < x < 1. Comment on the relationships between g and

g2 illustrated by your sketches.
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(c) Let f(x, y) = cos(x) cos(y). Let f22 denote the Taylor series about

(0, 0) for f up to terms quadratic in x and y (i.e. neglecting cubic, bi-

quadratic, and higher order terms). Determine f22 and hence compute

I1 =

∫ ∫

R

f22dxdy

where R is the square region given by −.1 < x, y < .1. Compute

I2 =

∫ ∫

R

fdxdy

directly for the same region R. Compare and comment on your answers.
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