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COURSEWORK AND FURTHER EXERCISES I
Attempt all of the following exercises. Solutions to exercises 1.1, 1.3, 1.4 are to be submitted as

coursework.

Exercise 1.1.

(a) As noted in lectures, the ideas of domain, limit, and derivative of a function of one real variable
all have their counterparts for functions of two variables. Recall that the domain of the function
f(x) = 1

1−x
must exclude the point x = 1. We may write the domain as domain(f) = R \ {1}

in set notation.

The domain of a function of two real variables is, then, some subset of R
2 = R × R. What is

the domain of 1
1−exp(xy)?

Given ψ(x, y) = 2x3y + exy2

+ 14, what is the domain of ψ? Determine the partial derivatives
ψx, ψxx and ψy.

(b) Find all the stationary points (maxima, minima and saddle points) of the function

g(x, y) = x2y2 + 2x2 + y2.

(c) Find all the stationary points (maxima, minima and saddle points) of the function

h(x, y) = 4x3 + 4y3 − 3x− 12y + k

where k = 3.

(d) Show that the function

f(x, y) = xy e−
x
2+y

2

2

has a stationary point at x = 0, y = 0.

Find all the other stationary points of f(x, y). Determine the nature of the stationary point at
(0, 0).

Exercise 1.2. Use Taylor’s theorem to expand the function f(x, y) = x3y3 up to second order in the
displacements h, k from the point (1, 1).

Verify your result directly by setting x = 1 + h and y = 1 + k in the function f(x, y).

Exercise 1.3.

(a) The region of integration of the double integral

I1 =

∫ lx

0

(

∫ ly

0

lz dy

)

dx

is the rectangle in the (x, y) plane with corners (0, 0), (lx, 0), (lx, ly), (0, ly). Sketch this region in
case lx = 2, ly = 3, lz = 8. What is the value of I1? (Hint: you do not need to do an integral!)

Note that the equation x = 0 defines a plane in three dimensions. Sketch the volume bounded
by x = 0, y = 0, z = 10 and z = x + y. Compute the volume by means of a double integral.
(You must show the working for your double integral, even if you can work out the answer by
direct geometrical means.)

(b) Sketch the region of integration in the double integral

I =

∫ 1

0

(
∫ 1

√

x

π sin

(

y3 + 1

2

)

dy

)

dx.

Re–express I with the x–integral as the inner (first) integral. By thus changing the order of
integration, evaluate I . (Hint: you will need to make at least one change of variables.)

(c) Show that in polar coordinates the equation of the circle
(x− 1)2 + y2 = 1 takes the form r = 2 cos θ, where −π

2 ≤ θ ≤ π
2 .

Hence, by using the cylindrical coordinate system (r, θ, z) or otherwise, find the volume of the
solid enclosed in the vertical cylinder defined by the circular section (x− 1)2 + y2 = 1, bounded

below by the plane z = −1 and bounded above by the cone z = 2 −
√

x2 + y2.
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Exercise 1.4.

(a) Common sense shows that the point of closest approach of the curve 2y3 + 2x3 + y2 + x2 = 0
lying in the (x, y)-plane to the point (x, y, z) = (0, 0, 1) on the z-axis is the point (0, 0, 0). Show
explicitly that the method of Lagrange’s multipliers confirms this fact.

(b) Find the shortest distance from the point P = (0, 0, 2) to the curve x2 + 8xy + 7y2 = 45 in the
(x, y)-plane.

Exercise 1.5. Determine functions y1(x) and y2(x) in order that y(x) = Ay1(x) + By2(x) is the
general solution of the second-order differential equation

d2y

dx2
− 3

dy

dx
+ 2y = 0,

where A, B are arbitrary constants.
Find a particular solution of the inhomogeneous differential equation

d2y

dx2
− 3

dy

dx
+ 2y = x2.

Hence determine the general solution of this inhomogeneous equation.


