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Chapter 1

Introduction

1.1 Overview

The idea of this course is to touch on as many aspects

as possible of the process of using the power of ‘infor-

mation’, and of computers, and the theory of discrete

mathematics which underlies them.

The aim is to make the student of this course one

of the people in their workplace (wherever that might

eventually be) who ‘knows about computers’.
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8 CHAPTER 1. INTRODUCTION

The ‘power of computers’ is a very big subject. It

includes the things we are aware of computers helping

us with, such as

• word processing,

• bookkeeping,

• audio-visual applications and

• design;

as well as more subtle things like

• information gathering

• information organisation,

• information enrichment

• systems simulation,

• optimisation problems,

• robotics

and a million other things.

Discrete Mathematics is the theory underlying all

these tools.
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Obviously one cannot know everything. Even ‘about

computers’. The idea here is to deal with the following

problem (which is ‘universal’ in the sense that, if you

can solve this one you can work out how to solve all the

others!):

Your boss wants a report on XXX1 by the end of

next week. All the necessary information is out there

on the web somewhere. But all you have on your desk

is a couple of broken computers and some components,

and the technicians were laid off in the last round of

cutbacks. (And anyway, Google is down for two weeks

for legal reasons.) What could you do?

1Perhaps XXX is: the price of pork bellies on the Chicago

futures exchange?
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The course contains two overall components, corre-

sponding to the hardware and ‘software’ aspects of this

problem. The connection between them will be obvious,

but they are very different, and can be studied in any

order.

The theory part of the course is largely covered in

these notes. A suitably concrete version of the problem

described above is set up in Chapter 2, and we will start

there. As we work through this, we encounter various

problems. The theory needed to resolve these problems

is contained in the core of the notes, for example in

Chapter 5. We will jump there as soon as appropriate,

jumping back once we have enough theory to progress

our problem, and so on.

There is also a section of more basic Mathematics which

we can refer to as necessary, but will not, by default,

discuss in class.
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The practical part of the course will consist largely

of ‘lab’ sessions which we can insert at any time to break

up the ‘monotony’ of the theory!

Essentially we will be stripping down a computer to

the smallest realistic components, identifying them, un-

derstanding them (as far as possible) and then reassem-

bling. (This process works as a metaphor for the oper-

ating system as well as the real hardware.) There will

only be limited notes on the practicals, and they will

not be heavily examined (or otherwise assessed). The

motivation for this part of the course will be its very

obvious usefulness!
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1.2 Prerequisites

We assume that the reader has a knowledge of naive

set theory, such as discussed in first year undergraduate

ALGEBRA. However we include a brief refresher on this

subject in Chapter 4.
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1.3 Other support material

• Check out the course homepage.

• Check out the vast amount of related material on

the web. Examples:

http://en.wikipedia.org/wiki/Discrete_mathematics

• Check out past exam papers and solutions.

• Check out books called ‘DISCRETE MATHEMAT-

ICS’ (or similar), such as Mattson [?].

• Check out Stephenson [?], Spiegel [?], Ayers [?],

and other related volumes in the Schaum Outline

series.
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Chapter 2

Paradigms: Searching

We do not propose to deal with every aspect of the use

of computing and discrete mathematics. Rather we will

look at examples. We will look at examples that are so

profound that, once we have understood them, we will

see how to transfer this knowledge to all other appropri-

ate problems.

15



16 CHAPTER 2. PARADIGMS: SEARCHING

2.1 Searching

Each of us has access to an accumulated store of knowl-

edge and information. This store is only useful in so far

as information can be retrieved from it. Methods for

retrieving information from the store are, in this sense,

as useful as the store itself. The study of searching is

the study of these methods.

2.1.1 The PageRank Algorithm: search-

ing the web

The web is part of our accumulated store of knowledge

and information. This store is only useful in so far as

information can be retrieved from it. Methods for re-

trieving information from this store are, in this sense,

as useful as the store itself. We propose to study these

methods.

The web provides a useful paradigm, in that it is

part of cyberspace, and hence accessible by computer (so

some of the practical/physical challenges of information

retrieval are reduced to a standard form).
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Problem: Your boss asks you to prepare a report

on XXX. (This is not a school exercise or test of your

originality — She doesn’t care how you get it, she just

needs the answer.) The requirement is to access the

knowledge store and mine the relevant information. The

simplest way is to see what is on the web.

The difficulty is that there are over 3× 109 pages on

the web. Thus even when you use a search engine to

restrict to pages including the phrase XXX (an interest-

ing exercise in its own right, but not one which concerns

us for the moment) there will be too many pages — too

much information.
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What we need is a search engine which will rank all

the hits in order, so that the ones most likely to be use-

ful will be ranked at the top. Of course current search

engines cannot know what the individual regards as use-

ful! So they have to use a generic algorithm to make this

judgement. How could we even begin to formulate such

an algorithm?

We need to start with some kind of model or rep-

resentation of the web. A model which attempted to

carry any of the real human meaning of the pages would

be (interesting but) extremely complicated. Rather let

us begin by thinking of the pages simply as points in

cyberspace, and concentrate on the links between them.

Thus we have a set of pages, and a set of pairs of pages

(i.e. pairs with the property that there is a link between

them). Abstractly such a contruct is called a graph.



2.1. SEARCHING 19

The notion of graph is fundamental in discrete math-

ematics. If you know all about graphs, continue. If

you do not, it is time to jump to the section discussing

graphs. Return here when you are done.

Exercise 1 Go to Chapter 5 and return when you are

done.

We will base our answer on the search engine Google’s

PageRank algorithm 1.

The idea is to represent the web as a directed graph.

The direction of the edges in the graph is from linking

page to linked page. For simplicity we will assume that

there are no pages without outgoing links.

The PageRank algorithm is not too hard to describe

in these terms. It has a single free input parameter p,

which should lie in 0 < p < 1 (we will interpret this

later). The other input is the adjacency matrix of the

web (!), W say. For simplicity we will consider that

Wij = 1 if there is a link from page i to page j, and is

zero otherwise.

1L Page, et al, Stanford University 1998.



20 CHAPTER 2. PARADIGMS: SEARCHING

The algorithm is run iteratively, at each iteration as-

signing a value to each page. We will arrange the entire

collection of values into a huge vector v (i.e., there is one

such for each iteration). To start the process we must

assign some initial value to each page (we will later con-

sider the effect of this choice on the final result, for now

we will simply assign every page the same initial value).

The objective is to end up with a final vector consisting

of one number for each web page, where these numbers

give the importance rank of the pages (the bigger the

number, the more important the page).
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The idea behind the algorithm is that the impor-

tance of a page is judged on the incoming links. Roughly

speaking, if a page is important, people will link their

pages to it. More subtly, if it is important, other im-

portant pages will link to it. So essentially a page gets

a vote from each linking page, but high ranked pages

votes count for more.

The question is, how to implement this. Since impor-

tance depends on the importance of neighbours (whose

importance may well depend on that of the original

page), there is a question of existence and uniqueness

of solution, not to mention convergence of any concrete

algorithm.



22 CHAPTER 2. PARADIGMS: SEARCHING

Another way of thinking about it which helps with

this is to imagine someone browsing the web ‘forever’.

Which ever page they are on at time t, they step to one

of the linked pages at time t + 1. Now run this process

for a hugely long time, and ask: over all that time, what

is the total amount of time spent at each page (adding

up all visits). The more important the page, the more

often it will be visited. Although other outcomes can

be imagined, you will see that it is possible that the

proportion of the total time of the experiment spent at

any given page may eventually settle down to a steady

figure. Again the question is, from this idea, how do we

get to an actual numerical ranking?
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Let vn be the vector of PageRank values for each

web page, at the nth iteration, so that vn
i is the value for

page i. The iteration is

vn
i = (1 − p) + p

∑

j∈pages

Wjiv
n−1
j

∑

k∈pages Wjk
.

Note that for each page j which links to i we have Wji

nonzero, so that this page makes a contribution to vn
i ,

with the size of this contribution determined by the

ranking of j itself at the previous iteration. (The de-

nominator scales down the weight of these provisional

ranked votes by the number of outgoing links the voting

page has. The idea of this is so that, overall, it casts

a total weight of votes, across all linked pages, propor-

tional to its provisional rank.)
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If and when the algorithm settles down (i.e. stops

changing the values between successive iterations), we

may say that it has assigned each rank based on the

actual rank of that page’s voters.

A number of questions arise. In particular:

How can we implement this algorithm in practice?

How can we tell if the algorithm settles down?

To answer these questions we can usefully recast our

problem in the formalism of Stochatic Processes.
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2.2 Stochastic Processes

Let M be a matrix, v a column vector, and ()t the trans-

pose operation. Consider the elementary fact of matrix

multiplication

Mv = v′ ⇒ vtM t = (v′)t

This ‘duality’ implies that M and M t contain essentially

the same information, and any property of the rows of

M can be states as a property of the columns of M t. If

we wish to manipulate equations of the form above, the

use of M or M t depends simply on whether we prefer

to use row or column vectors. Of course having made a

choice it is necessary to be consistent within any given

calculation.
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A matrix may be called (column) stochastic if its col-

umn sums are all 1, and all the entries are probabilities

(i.e. non-negative). 2

A matrix is called row stochastic if it is the transpose of

a column stochastic matrix.

Different authors use different conventions as to whether

the term stochastic matrix means row or column stochas-

tic. As noted above, the difference is simply a matter of

transposition (although we must be careful to be consis-

tent).

Note that it is possible to be both row and column

stochastic.

2.1. Exercise. Give distinct examples of each of the

following: row stochastic matrix; column stochastic ma-

trix; row and column stochastic matrix.

2Brzezniak and Zastawniak, Basic Stochastic Processes,

Springer 1999.
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Suppose that the value of some variable (perhaps

the price of a unit of pork bellies on the Chicago stock

exchange) evolves randomly through a discrete series of

time steps. If the probability of taking value x at time

n + 1 depends only on the value at time n, then this

process is called a Markov chain. Suppose further that

there are only finitely many values which the variable

can take. Then we have a discrete time, finite state

Markov process. Note that this process is determined

by the set of transition probabilites between the various

possible values. We arrange these into a matrix M , so

that Mij is the probability of taking value j at time n+1,

given a value of i at time n. This means in particular

that
∑

j Mij = 1, since the probability of the variable

taking a value, summed over all values, at time n + 1 is

1.
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Suppose we run this process for a long time. If it

happens that the proportion of the time spent at each

value settles down (irrespective of the initial value) then

the vector ν of these proportions is called an invariant

measure. If we arrange it as a row vector it will satisfy

νM = ν

(in fact no stochastic matrix can have an eigenvalue with

absolute value greater than 1; and they all obviously

have 1 as an eigenvalue).

Our random walk on the web would simply choose

to follow one of the links out of the present page at

random. If we write δ for the diagonal matrix whose

m-th diagonal entry is the number of links out of page

m, then the appropriate stochastic matrix is

M = δ−1W.
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It is possible that only a subset of all web pages can

be reached following outgoing links from some particular

starting point. To avoid getting trapped in this way we

will also allow a 1 − p probability of simply ignoring

the local links and jumping randomly to any point on

the web. (We wouldn’t want to do this totally random

action any more than necessary, which is why we choose

p fairly close to 1.) The stochatic matrix appropriate

for this random jump mode on its own is simply the

matrix f in which every entry is 1/σ, where σ is the total

number of pages on the web. Thus the combined matrix,

allowing for the probability of chosing the random mode,

is

M = (1 − p)f + pδ−1W.

The totally random component makes sure that M does

not break up into blocks which (via such beautiful ideas

as the Peron–Frobenius theorem (see later)) ensures that

the solution to the unit eigenvalue problem is unique

(once the eigenvector is normalised so that the entries

add to 1).
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Let ι be the vector with all entries 1. Then νnσf = ι

for νn any probability distribution row vector (exercise).

It follows that, applying M to some probability distri-

bution νn:

νnM = νn((1−p)f+pδ−1W ) =
(1 − p)

σ
ι+pνnδ−1W = νn+1

confirming that M is the transition matrix for this pro-

cess. The distribution is stable at ν:

ν
(

1 − pδ−1W
)

=
1 − p

σ
ι

so

ν =
1 − p

σ
ι + pνδ−1W

This means that the page rank vector is the invariant

measure for the above random walk.

Since this is the eigenvector for the largest eigenvalue

of the stochastic matrix we may compute it by starting

with an (almost) arbitrary vector and simply repeatedly

multiplying this by the stochastic matrix.
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2.3 Examples

Model 1: Consider the very simple model of the web

consisting of three pages, call them A,B and C, with A

linking to B linking to C linking to A. This model has

matrices

W =









0 1 0

0 0 1

1 0 0









δ =









1 0 0

0 1 0

0 0 1









Then we have

M = (1 − p)









1

3









1 1 1

1 1 1

1 1 1

















+ p









0 1 0

0 0 1

1 0 0









This model has an obvious symmetry under permuting

any two of the pages, so they must all be equally ‘impor-

tant’. This tells us that the invariant measure must be

given by a vector with all entries equal. We can readily

confirm this:

(

1

3

(

1 1 1
)

)

M =
1 − p

3

(

1 1 1
)

+
p

3

(

1 1 1
)

=

(

1

3

(

1 1
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(Note that we could have found the invariant mea-

sure by repeated multiplication on an arbitrary initial

probability vector. In this case the steps in the iteration,

although not the final answer, would have depended on

p. Thus the rate of convergence to the final answer can

depend on p. For an extreme example, considering the

initial vector
(

1 0 0
)

and p = 1 we see that this

never converges!)
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Model 2: Now consider what happens when B intro-

duces a link back to A:

W =









0 1 0

1 0 1

1 0 0









δ =









1 0 0

0 2 0

0 0 1









so

M = (1−p)









1

3









1 1 1

1 1 1

1 1 1

















+p









1 0 0

0 1
2

0

0 0 1

















0 1 0

1 0 1

1 0 0









This model is connected so we can usefully consider p →
1, whereupon

M =









0 1 0

1
2

0 1
2

1 0 0









By the argument above we may determine the (relative)

PageRanks by repeatedly multiplying this matrix into

an initial positive matrix. (To get the absolute ranks

we need to normalise this initial matrix as a matrix of

probabilities, but this normalisation is just a fixed over-

all factor so we will not worry about it for now.)
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Consider

(

1 1 1
)









0 1 0

1
2

0 1
2

1 0 0









n

=
(

1.5 1 .5
)









0 1 0

1
2

0 1
2

1 0 0









n−1

=
(

1 1.5 .5
)

Mn−2 =
(

1.25 1 .75
)

Mn−3 =
(

1.25 1.25 .5
)

M

=
(

1.125 1.25 .625
)

Mn−5 =
(

1.25 1.125 .625
)

Mn−6 = ...

Can you see where this is going? Consider

(

x x y
)

M =
(

x x y
)

giving x = 1
2
x + y, y = 1

2
x, so putting 2x + y = 1 (for

probabilities) we have x = 2
5
, y = 1

5
.

Now explain this in terms of the linking and impor-

tance of the pages! At first site, A and B are clearly

more important than C, but A gets votes from both B

and C, so you might think it beats B. However, B votes

for both A and C, so its vote for A is diluted, while A

always votes entirely for B which, in this model, locks

their importance levels together.

Exercise 2 What happens if we make p < 1?
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Exercise 3 Consider the model with four pages, A,B,

C and D, and matrix

W =















0 1 1 1

1 0 0 0

1 0 0 1

1 0 0 0















Work out the PageRanks in case p = .85.

Exercise 4 (Harder) Do a Google search for the com-

mon name “Paul Martin”. Qualitatively explain the first

page of results using PageRank.
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2.3.1 More exercises

Every simple loop free digraph is a representation of

some model of the web.

Every n × n matrix with zeros down the diagonal

and either 1 or 0 in each offdiagonal position is the ad-

jacency matrix of some such digraph. Let An denote the

set of such matrices. Evidently |An| = 2n(n−1). However,

many of these matrices represent the same digraph up to

isomorphism. (For example, any two such matrices con-

taining precisely one nonzero element are isomorphic.)

A complete list of adjacency matrices of representa-

tive elements of isomorphism classes of 3 vertex simple

loop free digraphs containing at most 2 edges is:









0 0 0

0 0 0

0 0 0









,









0 1 0

0 0 0

0 0 0









,









0 1 0

1 0 0

0 0 0









,









0 1 1

0 0 0

0 0 0









,









0 1 0

0 0 1

0 0 0









,









0 1 0

0 0 0

0 1 0








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We can obtain a 3 edge digraph by taking a 2 edge

digraph and adding an edge. Starting with the first 2

edge digraph above we get








0 1 1

1 0 0

0 0 0









,









0 1 0

1 0 0

1 0 0









,

but no others (up to isomorphism). Starting with the

second 2 edge digraph we get one new digraph (up to

isomorphism)








0 1 1

0 0 1

0 0 0









.

Starting with the third 2 edge digraph we get one new

digraph (up to isomorphism)








0 1 0

0 0 1

1 0 0









.

This is a complete list up to three edges.

We want to restrict attention to matrices with nonzero

row sums. There are only two such in our list so far.

Exercise 5 Compute the page rank vector (invariant

measure) for each of these two cases. (Take p = .85

or another appropriate value of your choice.)
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Exercise 6 Continuing with the three vertex case, list

a complete set of representative elements with 4 or more

edges, such that the matrix row sums are all nonzero.

Compute page rank for every element of your list. (Take

p = .85 or another appropriate value of your choice.)

Exercise 7 Give an example of a model of the web with

8 pages in which you can easily compute page rank (and

compute it!).
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In order to study and compute with finite state Markov

processes in general, and with our applications in partic-

ular, we see that we need familiarity with basic matrix

theory. Here is a quick review.

2.4 Elementary Matrix Theory

Consider the eigenvalue equation for matrix M

Mv = λv

The set of eigenvalues is the set of roots of the charac-

teristic equation

PM(λ) := |M − λI| = 0

Two matrices A, B are similar if they are related by a

similarity transformation, i.e.

A = M−1BM

for some M .

2.2. Exercise. Show that two similar matrices have

the same characteristic equation, and hence the same

eigenvalues.

In particular the trace and determinant of a matrix

are not changed by similarity transformation.
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Theorem 2.3. [Cayley–Hamilton]

PM(M) = 0

It follows that Mn can be expressed as a linear com-

bination of lower powers of M .
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2.4.1 Norms

2.4. Definition. A norm on a vector space V is a real

function ||v ∈ V || such that ||v|| ≥ 0; ||v|| = 0 ⇒ v =

0; ||kv|| = k||v||; ||v + w|| ≤ ||v||+ ||w||.
2.5. Example. The Euclidean norm is the r = 2 case

of ||v||r = +r
√

∑

i |vi|r, and is a norm.

2.6. Definition. A matrix norm is a vector norm as

above extended by the condition on conformable matri-

ces M, N : ||MN || ≤ ||M ||.||N ||.
Examples:

2.7. Definition. The Frobenius norm ||M ||F of a ma-

trix M is defined by

||M ||F = +

√

∑

i,j

|Mij|2 = +
√

Trace((A∗)tA)

2.8. Exercise. (Optional) Show that the Frobenius

norm is a matrix norm.

If || − || is a vector norm on n-component column

vectors then we get an ‘induced’ matrix norm on n × n

matrices by

||M || =
max
||v||=1 ||Mv||

(NB, you need to convince yourself that the maximum

exists!).
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The matrix norm induced from || − ||2 is called the

matrix 2–norm. Assume for a moment that M is real.

Then to determine ||M ||2 we need to determine the max-

imum value of

f(v) = ||Mv||22 = vtM tMv

subject to g(v) := vtv = 1. Form

h = f − λg

(Lagrange multipliers). The system got by differentiat-

ing wrt each vi is

(M tM − λI)v = 0

so λ must be such that (M tM − λI) is singular (i.e.

PM tM(λ) = 0). Thus

vt(M tMv) = λvtv = λ

and

||M ||2 =
max

||v|| = 1 ||Mv|| =
max

||v||2 = 1 ||Mv||

= +

√

max
vtv = 1 vtM tMv = +

√

λmax

where λmax is the biggest such λ. Of course this is just

the biggest eigenvalue of M tM .
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2.9. Definition. The spectral radius of a square matrix

M is

ρ(M) =
max

λ∈S(M) |λ|

where S(M) is the set of eigenvalues of M .
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2.4.2 Jordan form

Let S(M) = {λ1, .., λr} be the set of eigenvalues of M ,

with multiplicities ni. Let Un be the n × n matrix with

all entries zero except for those immediately above the

main diagonal.

U3 =









0 1 0

0 0 1

0 0 0









Then Jn(λ) = λIn + Un is called a Jordan block. Every

n × n matrix is similar to a matrix of form

AMA−1 =
⊕

j

⊕

i

Jni,j
(λj)

where λj ∈ S(M) and
∑

i ni,j = nj.

For the study of Markov processes we are interested

in the behaviour of (certain) matrices when raised to a

high power. Let us start by considering Jordan blocks.

2.10. Exercise. Show that if Jn(λ) is a Jordan block

with n ≥ 2 then (Jn(λ)k)11 = λk and (Jn(λ)k)12 =

kλk−1. Determine the complete form of the k-th power.

If λ < 1 the limit limk→∞(Jn(λ))k is the zero matrix.

By the exercise above, the limit will not exist, indeed the

matrix will diverge (certain entries grow bigger and big-

ger in magnitude as k increases) if |λ| > 1, or if |λ| = 1
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and n > 1.

If λ 6= 1 while of unit magnitude and n = 1 then the di-

agonal term will oscillate, so that (although every power

is finite) again there is no limit. The case λ = 1, n = 1

is obvious.
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Note that for any transform A

AMkA−1 = AMMk−1A−1 = AMA−1AMk−1A−1 = (AMA−1)k

Comparing these observations we see that limk→∞ Mk

will not exist unless |λi| ≤ 1 for all i, and if |λi| = 1 for

some k then nik = 1 for all i.

On the other hand, if M is stochastic then so is Mk

for any k (in particular all entries remain in the prob-

ablistic interval). We deduce that a stochastic matrix

has no eigenvalue with magnitude greater than 1. This

is because, if Mk is finite then so is AMkA−1 for any

finite A, including the transform taking M (and hence

also Mk) to Jordan form, so that if the Jordan form

of Mk diverges (i.e. has entries of unboundedly large

magnitude) we know Mk cannot be finite. By the same

token we know that n = 1 in any Jordan block with

|λ| = 1, so that each eigenvalue with magnitude 1 has

an independent eigenvector associated to it.
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2.5 The Perron–Frobenius The-

orem

A matrix is positive if all its entries are positive.

The Perron–Frobenius theorem states that a finite

positive matrix has a unique eigenvalue of largest mag-

nitude, and this eigenvalue is positive; and that this

eigenvalue has an eigenvector with all positive entries. 3

A matrix M is positivizable if Mn is positive for some

natural number n. It will be evident that the theorem

applies to such matrices.

Let us prove the theorem in the special case of a

matrix M in which the row sums are 1. The idea of this

proof will be to consider
min

k Mn
kj and

max
k Mn

kj and

show that these converge to the same thing as n gets

large (which would force Mn
ij to settle down to a value

independent of i). First we show that
min

k Mn
kj (which

we may take as zero for n = 0) increases with n:

Mn+1
ij =

∑

k

MikM
n
kj ≥min

k Mn
kj

∑

k

Mik =
min

k Mn
kj

3A proof of this theorem can be found, for example, in P P Mar-

tin, Potts models and related problems in statistical mechanics,

World Scientific 1991.
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Similarly

max
k Mn+1

kj ≤max
k Mn

kj

Now impose that M is positive. Let e > 0 be the

smallest Mij. Then

Mn+1
ij =

∑

k

MikM
n
kj =

∑

k

[Mik−eMn
jk]M

n
kj +e

∑

k

Mn
jkM

n
kj

=
∑

k

[Mik − eMn
jk]M

n
kj + eM2n

jj

≥min
k Mn

kj

∑

k

[Mik−eMn
jk] +eM2n

jj = (1−e)
min

k Mn
kj +eM2n

jj

Since the RHS doesn’t depend on i we have

min
k Mn+1

kj ≥ (1 − e)
min

k Mn
kj + eM2n

jj

Similarly

max
k Mn+1

kj ≤ (1 − e)
max

k Mn
kj + eM2n

jj

and hence

max
k Mn+1

kj − min
k Mn+1

kj ≤ (1 − e)(
max

k Mn
kj− min

k Mn
kj)

so the sequence of maxima and the sequence of minima

have the same limit. Let us call it πj . For any i

min
k Mn

kj ≤ Mn
ij ≤max

k Mn
kj
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so

M∞
ij = πj > 0

independent of i.

We have a matrix of form

M∞ =









π1 π2 π3

π1 π2 π3

π1 π2 π3









and

M∞M = M∞

so in particular

(

π1 π2 π3

)

M =
(

π1 π2 π3

)

giving us our invariant measure.
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The trace of M∞ is
∑

i πi = 1. This is the sum

of all eigenvalues of magnitude 1, but if there were any

such eigenvalues not equal to 1 the limit would not exist.

Indeed the rank of M∞ is 1, so all it’s eigenvalues except

one have value zero.

2.11. Exercise. Find the eigenvalues and eigenvectors

for each of the following:

1

2





1 1

1 1





1

4









1 2 1

1 1 2

2 1 1























1 0 0 0

0 0 1

1

1





























1 0 0

0 0 1

0 1



Chapter 3

Coding Theory

Preamble

The aim of this chapter is to study coding theory. We

begin with a few general words about what coding the-

ory is, and why we want to study it (i.e. what is it good

for?). 1

Coding is the act of preparing information for trans-

mission.2

1Warning: This preamble is mildly philosophical in nature. It

might be best to skip it for now, and come back after you have

studied a few chapters of coding practice.
2For example, from Dictionary.com:

http://dictionary.reference.com/browse/coding we have:

11. Linguistics. a. the system of rules shared by the participants

51
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There are many subtleties to this definition. For

example, in order to verify that information exists it

has to be transmitted, so coding is effectively part of

the creation of information. Anyway, from the pseudo-

definition above it will already be clear that coding is

‘important’. It also contains language as a substructure,

which further emphasises its importance.3

All transmission carries the risk of corruption. The

Science (or Theory) of coding is concerned with min-

imising this risk (in some, usually quantitatively proba-

bilistic, sense).

Example: suppose we need to be certain a message

has got through exactly as sent (e.g. a ‘zipped tar’ file).

4 What can we do?

in an act of communication, making possible the transmission and

interpretation of messages.
3See for example

http://leoalmanac.org/journal/Vol 14/lea v14 n05-06/lglazier.asp
4What does ‘certain’ mean here?! This is another Statistics-

meets-Physics/Philosophy question...
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Methodology, caveats and acknowledge-

ments

As you can see, intrinsic to this chapter are notions of

communication, data, risk, and information. These are

not trivial notions, and we won’t be able to define them

up-front. In mathematics we try to keep the number of

terms that are used without definition to a minimum.

This is because every term used without definition is

a possible source of confusion between person A (the

propagator, perhaps, of an idea) and person B (the re-

cipient). Person A simply has to trust that person B

is understanding the same thing by her term. If not,

then any idea built on it will be flawed. Unfortunately

it is never possible to define all terms. In mathemat-

ics, for example, we generally take on trust that others

understand the same thing by the term ‘set’ as we do.

In the applications of mathematics, however, this

‘define everything’ discipline can conflict with progress.

Our strategy will be to use some terms, where necessary,

without an initial definition; but to try to come back to

them later and find a way to check that we really do

agree on their meaning.

To begin with, then, we may consider communication
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as the process whereby some ‘data’ held in one ‘machine’

is passed so that a copy is held in some other machine.

This is somewhat analogous to the process whereby an

idea held in your mind might be communicated to me,

so that I then hold that same idea. 5 The extent to

which this analogy works (or, if failing, we still want

to treat both processes) is a matter for discussion. It is

probably true to say that we can work more comfortably

with the first process than the second, but the second is

ultimately perhaps more interesting?

5Descartes doubts even that other people exist, so communi-

cating with them is something not to be taken lightly, if we are

being really careful! We simply can’t afford to be this careful here

— we have concrete applications to address.
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I thank Martin Speight for lending me his own beau-

tiful notes on Coding Theory, which have been invalu-

able in the preparation of this Chapter.

Some recommended reading:

R Hill, ”First Course in Coding Theory”, Clarendon

Press, 1986.

G A Jones and J M Jones, “Information and Coding

Theory”, Springer, 2000.
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Figure 3.1: A coding theory class.

Coding theory in a single picture

First you need to look at figure 3.1. But then... See fig-

ure 3.3. Here person A tries to communicate the result

of a football match (Win, Lose or Draw). This is done

by: (1) setting up an ‘encoding’ of the set of possible

messages (W,L,D) — in this case by associating them

with different points on the whiteboard; (2) transmitting

the match result down a noisy channel — in this case

by pointing at it. (This communication method might
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Figure 3.2: A noisy channel.

not be a very good practical communication method un-

der the circumstances, but it contains nice analogies of

many of the key points of coding theory.) All these ideas

will be explained as we go along.
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Figure 3.3: Transmitting data through a noisy channel.
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3.1 Coding

A coding is a representation of data. (What is data?...)

Let S be a set. A sequence of elements of S of length

l is an element of

Sl = S × S × ... × S

For example, if S = Salph is the usual 26 element alpha-

bet then

(w, i, l, l, y, o, u, m, a, r, r, y, m, e)

is a sequence of length 14. (Where no ambiguity arises

we might drop the brackets and commas.)

A finite sequence is a sequence of finite length.



60 CHAPTER 3. CODING THEORY

Define S0 to be the empty sequence, and

S∗ = ∪l≥0S
l and S+ = ∪l>0S

l

Define a product on S∗ by

◦S∗ × S∗ → S∗

(x, y) 7→ x ◦ y = xy

where xy is the concatenation of x and y.

3.1. Example. If x = 01010110 and y = 1 then xy =

x1 = 010101101.
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A significant percentage of all human wisdom (?!),

and all human communication, has been encoded as se-

quences using a mild generalisation of the alphabet Salph.

6

‘Data’, for our present purposes, takes the form of

some finite sequence. We assume that this sequence has

value to us for some reason (determining the human-

istic value of a given sequence is beyond the scope of

this section, but it might contain, for example, a list

of transactions in your bank account for the last year).

The challenge we face is to transmit this data to a new

location.

6On the other hand there is no system which will enable us to

encode even a single ‘generic’ element of the set (0, 1) (the unit

open real interval).

Some elements in this interval can be communicated by more

abstract means. For example π, e and
√

2. Such abstractions are

presently among the features distinguishing humans from com-

puters... but that is another story.
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For example, perhaps a person in England wants

to communicate the question implied by the sequence

(w, i, l, l, y, o, u, m, a, r, r, y, m, e) to a friend in Australia.

In this case obviously shouting it out, or writing it onto

a sheet of paper and throwing this in a southerly direc-

tion, is not going to get the job done, even if the recipient

knows to expect a message (audible or written, respec-

tively) in some given time-window. Phoning or sending

an email might work better. But all these efforts can be

considered as involving the same basic process:
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1. Source (person A) has a message to communicate

(I want to offer marriage to person B). We shall assume

that the source has this message expressed as a finite

sequence in some source alphabet T .

2. Source message is encoded in some way suitable

for travel to B (for example by vocalising in spoken En-

glish — whatever that is). We shall assume that the

encoding passes the message to a sequence in a not nec-

essarily distinct coding alphabet S.

3. Encoded version travels somehow to B, degrading

gradually for various reasons as it travels;

4. Degraded encoded version reaches target’s de-

coder (nominally in our example it is a sound, so the

decoder is an ear/brain system; but obviously the sound

heard by B at the appropriate point in time will have

only a negligible amount of correlation with the original

encoding). An attempt is made to decode this version.

5. Some approximation to the original message ar-

rives for use at the target.
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3.2. A code C for a source alphabet T is a function

f : T → S+ to sequences in code alphabet S. The

properties of codes that we shall focus on depend on the

image set f(T ) rather than the details of the map itself,

so one often regards a code simply as this set of words.

The extension of C to T ∗ is obtained simply by using

f to encode each symbol in succession.

3.3. Example. (i) If f(a) = 001 and f(b) = 010 then

f(abba) = 001010010001.

(ii) If f(a) = 1 and f(b) = 010 then f(abba) = 10100101.
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We shall be interested in fixed-length codes (a discus-

sion of variable length codes can be found for example

in Jones and Jones (Springer SUMS, 2000)):

3.4. Definition. A block code

C = {(x1, x2, ..., xn), (y1, y2, ..., yn), ...}

of length n over set S is a subset of Sn. Code C is q-ary

if |S| = q.
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An encoding is a recasting of one code as another

(or the encoding of a message, but no usable message is

really entirely unencoded).

3.5. Example. Let S, T be sets and

f : T → Sl

Then a code C ∈ T n can be coded over S by applying

f to each element of each sequence x in turn as before.

This time:

f : T n → Snl

where f(x)in+j = f(xi)j for j < |S|.
In particular (1) if T = {N, S, E, W} and S = {0, 1}

and f1(N) = (0, 0) = 00, ..., f1(W ) = (1, 1) = 11 then

f1(EESW ) = f((E, E, S, W )) = 10100111

(2) if T, S as above and f2(N) = 000, f2(S) = 011,

f2(E) = 101, f2(W ) = 110, then

f2(EESW ) = 101101011110
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3.2 Transmission

Now suppose we transmit the message EESW — in any

invertible encoding.

We assume that the recipient knows (1) that the orig-

inal message was some sequence in {N, S, E, W}, and

(2) how we encoded it (if at all).

Thus, if the encoded message arrives intact, she can in-

vert the encoding to recover the original message.

BUT We want to consider the realistic scenario in which,

with some probability, part of the encoded message is

corrupted in transmission.

We want to ask: What can be done about that? And

what can ‘best’ be done?

For example, suppose that there is a 1% chance that

recipient B will mishear any term in the sequence in the

original encoding. Then there is a roughly 4% chance

that the message will arrive with a corrupted element.

Note that there is no way for the recipient to tell

whether the message has been corrupted or not, in the

original encoding or in f1 (from Example 3.5).
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In f2, however, not every binary code of length 3 is

the image of an element of T , so if 101 was corrupted to

001, say, we would know at least that there had been an

error in transmission. Indeed with this encoding every

single element transmission error would show up. How-

ever double errors could still appear to be OK.
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Now consider

(3): T, S as in Example 3.5 above and f3(N) = 00000,

f3(S) = 01101, f3(E) = 10110, f3(W ) = 11011.

3.6. Exercise. Verify that if any two errors occur

then the received message is not the image of any sent

message, signaling an error.

Further, if a single error occurs the sent message is re-

coverable anyway. For example suppose E 7→ 10110 →
10010 after transmission. We cannot decode this, but

considering the following table of number of places dif-

fering from the encoding of each element of T :

encoding places differing

00000 2

01101 5

10110 1

11011 2

we guess correctly that the intended element was E.

We say that (3) is 2 error detecting; or single error cor-

recting.

Note that the cost of these improvements was higher

block length, which introduced some redundancy. That

is, we have a trade-off between efficiency and reliability.
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3.3 Hamming distance

Let us try to be more precise about this error-correcting

facility. Recall

3.7. Definition. Let S be a set. A map d : S ×S → R

is a metric on S if it satisfies: (i) d(x, y) = 0 ⇐⇒ x = y

(ii) d(x, y) = d(y, x)∀x, y ∈ S

(iii) d(x, y) ≤ d(x, z) + d(z, y)∀x, y, z ∈ S (triangle in-

equality).

Note that the usual distance in Euclidean space Rn

is a metric. We don’t have numbers (necessarily) in our

‘alphabets’, so our basic distance function is cruder:

3.8. Definition. Given x, y ∈ Sn the (Hamming) dis-

tance between them is d(x, y) = number of positions in

which x, y differ.

3.9. Proposition. The Hamming distance is a met-

ric.

Prove it!
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3.10. Definition. The minimum distance of a code

C ⊂ Sn is

d(C) = min{d(x, y)|x, y ∈ C, x 6= y}

Examples:

C1 00 01 10 11

00 1 1 2

01 2 1

10 1

11

so that d(C) = 1 in case (1). Similarly in case (2) above

the min distance is 2; and in case (3) it is 3. (Exercises!)
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3.11. Proposition. (a) If d(C) ≥ t + 1 then C can

detect up to t errors;

(b) If d(C) ≥ 2t + 1 then C can correct up to t errors

by the ‘pick the closest’ strategy.

Proof: Exercise, or see below.

3.12. Definition. For any x ∈ Sn and r ∈ N the ball

of radius r (or r-ball) centred on x is

Br(x) := {y ∈ Sn|d(x, y) ≤ r}

That is, the set of sequences that differ from x in no

more than r places.

An r-sphere is

Sr(x) := {y ∈ Sn|d(x, y) = r}

That is, the ‘outer shell’ of an r-ball.

3.13. Let C ⊂ Sn. Consider the collection of t-balls

centred on all x ∈ C. This is a ‘fuzzy picture’ of the

elements x. Each is surrounded by the area of uncer-

tainty in it, in a neighbourhood of S, caused by up to t

transmission errors.

This gives us a kind of picture for the proof of (3.11)

(see Figure 3.4):
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Figure 3.4: Ball packing heuristic (using Euclidean met-

ric).

(a) If d(C) ≥ t + 1 then no x lies in another’s ball.

Thus if 1 up to t errors occur then the received message

is not in C and we know we have an error.

(b) If d(C) ≥ 2t+1 then even the balls are disjoint (this

is perhaps not so obvious with the Hamming distance,

cf. say the usual Euclidean metric, but the triangle in-

equality is what we need to confirm it), and if 1 up to

t errors occur then the received message is closer to x

than any other y ∈ C. 2
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3.4 Optimisation

3.4.1 Code choice affects transmission

error probability

We are making a case, superficially, that f3 is more re-

liable than f1 when transmitting over a channel with

errors. But in replacing by sequences 2.5 times as long

we are giving it far more digits to get wrong! Is f3 really

more reliable? Less reliable? Does it really make any

difference?

To settle this we need to compute a probability for a

message being wrongly decoded in each case.

In order to do this it is simplest to make some assump-

tions about error probabilities in the transmission ‘chan-

nel’:

(a) Each transmitted digit is equally likely to be cor-

rupted, with probability p.

(b) If a digit is corrupted, any of the q − 1 other letters

in S are equally likely to occur.

This is a q-ary symmetric channel, with symbol error

probability p.
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Sending symbol S in the f1 code we send 01. It will

be decoded correctly only if no errors occur:

Pcorr(01) = (1 − p)2

so the error probability is

Perr(01) = 1 − (1 − p)2 (3.1)

In f3 we send 01101. This will decode correctly if 0 or

1 errors occur (possibly more) so

Pcorr(01101) ≥ (1 − p)5 + 5p(1 − p)4

so

Perr(01101) = 1 − (1 − p)5 − 5p(1 − p)4 (3.2)

If p is small then (3.2) is much smaller than (3.1).

E.g. if p = 0.01 then Perr(01) = .0199 while Perr(01101) ≤
.0009801496. So increasing word length by 2.5 times re-

duced error probability 20-fold!

If p is bigger then f1 doesn’t look so bad (for example

at around p = .4 and above it is better than f3).

Anyway, the point is it makes a difference. So the

science of coding theory is non-trivial. The game is ON!
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3.4.2 All possible block codes

3.14. Definition. A q-ary (n, M, d)-code is a block

length n code with M codewords and minimum distance

d.

For S a set let P (S) denote the power set of S. Thus

P (Sn) is the set of length-n |S|-ary codes; and a q-ary

(n, M, d)-code C is an element of P (Sn) (some S of de-

gree q) such that |C| = M and d(C) = d.

As a convention, by default we assume that if |S| = q

then

S = {0, 1, ..., q − 1}

Write (n, M, d)-codq for the set of q-ary (n, M, d)-codes

(or just (n, M, d)-cod if q is fixed). Thus:

P (Sn) = ⊔M,d(n, M, d)-cod
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3.4.3 Achievable code parameters

Define

Aq(n, d) = max M , for fixed q, n, d

that is, the size of the largest possible q-ary (n, M, d)-

code. Since q, n determine the size of the ‘space’ in the

picture we considered earlier, and d the size of the ‘ex-

clusion zone’ around each point — a ball in that space, it

is reasonable that only so many such balls can be fitted

in the space without overlap.
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The following gives an upper bound on Aq(n, d):

Theorem 3.15. (Singelton bound) For any q-ary (n, M, d)-

code, M ≤ qn−(d−1). Hence Aq(n, d) ≤ qn−(d−1).

Proof: Let C be such a code, with code alphabet S, and

π : C → Sn−(d−1) be the map

π : (x1, x2, .., xn) = (x1, x2, .., xn−(d−1))

Take x 6= y ∈ C. If π(x) = π(y) then x, y agree in

n− (d−1) places and hence differ in at most d−1. But

then d(x, y) ≤ d − 1. Hence π is one-to-one. Hence its

domain is no larger than its codomain:

M = |C| ≤ |Sn−(d−1)| = qn−(d−1)

2

This is not usually a very good bound, but is satu-

rated in some circumstances.

3.16. Example. What is A2(3, 2)? By the singleton

bound

A2(3, 2) ≤ 23−(2−1) = 22 = 4

But our example (2) is a 2-ary (3,4,2)-code, so A2(3, 2) ≥
4. Hence A2(3, 2) = 4.
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A much better upper bound is generally given by the

‘ball packing argument’. This is built on a consideration

of the amount of ‘space’ occupied by the ‘error ball’

around a codeword transmitted with a given number of

errors:

3.17. Lemma. If x ∈ Sn then

|Bt(x)| =

t
∑

r=0

(

n

r

)

(q − 1)r

Proof: |Sr(x)| is the number of strings in Sn differing

from x in precisely r places. This is product of the

number of ways to pick the r differing places with the

number of ways to assign a differing digit in each place:

|Sr(x)| =

(

n

r

)

(q − 1)r

2
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Theorem 3.18. (Ball packing bound) Let C be a q-ary

(n, M, d)-code with d ≥ 2t + 1. Then

M

t
∑

r=0

(

n

r

)

(q − 1)r ≤ qn

Proof: Since d ≥ 2t+1, the t-balls centred on codewords

are all disjoint. Hence

| ∪x∈C Bt(x)| =
∑

x∈C

|Bt(x)| = M

t
∑

r=0

(

n

r

)

(q − 1)r

by Lemma 3.17. But

(∪x∈CBt(x)) ⊂ Sn ⇒ | ∪x∈C Bt(x)| ≤ |Sn| = qn

2
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We can use this bound to rule out the existence of

codes with certain properties. For example, there is no

3-ary (6,10,5)-code, since, with t = 2 (d = 2 × 2 + 1)

M

t
∑

r=0

(

n

r

)

(q − 1)r = 730

while qn = 36 = 729.

However, even if q, (n, M, d) passes the BP bound it

does not follow that a code exists. For example, there

is no 2-ary (6,9,4)-code, even though

M

t
∑

r=0

(

n

r

)

(q − 1)r = 9(1 + 6) = 63 < 64 = qn

In this case we can actually rule out a code using the

singleton bound:

qn−(d−1) = 26−3 = 8

while M = 9. But even if q, (n, M, d) passes both bounds

it does not follow that such a code exists. (See table 3.1

for example.)
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n d = 3 d = 5

actual singleton ball− actual singleton bp

packing

5 4 8 5 2∗ 2 2∗
6 8 16 9 2∗ 4 2∗
7 16∗ 32 16∗ 2 8 4

8 20 64 28 4 16 6

9 40 128 51 6 32 11

10 72 − 79 256 93 12 64 18

11 144 512

12 256 1024

13 512 2048

14 1024 4096 1092 128 1024 154

15 2048∗ 8192 2048∗ 256 2048 270

16 2560 − 3276 16384 3855 256 − 340 4096 478

17 ≥ 83 ∗ 26

...

47 ≥ 9 ∗ 248

...

163 ≥ 19 ∗ 2151

Table 3.1: Table of known values for A2(n, d),

and some bounds. (See R Hill, A First Course

in Coding Theory; or N Sloane’s online page:

http://www.research.att.com/∼njas/codes/And/. The
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Which value of t do we use in the BP bound? The

largest t such that 2t + 1 ≤ d, that is, t ≤ (d − 1)/2.

The largest integer not exceeding z ∈ R is written

⌊z⌋ (‘Floor function’). So use

t = ⌊1

2
(d − 1)⌋

So the BP theorem implies

Aq(n, d) ≤ ⌊ qn

∑⌊(d−1)/2⌋
r=0

(

n
r

)

(q − 1)r
⌋

since Aq(n, d) is an integer by definition. (These are the

values tabulated under ball-packing.)
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Note that the collection of t-balls is disjoint. If they

completely cover Sn this is obviously the best use of the

‘space’ we can make, and the code is said to be perfect.

3.19. Definition. A q-ary (n, M, d)-code is perfect

if the collection of t-balls centred on codewords, t =

⌊(d − 1)/2⌋, is a partition of Sn.

Note that this happens if and only if equality occurs

in Theorem 3.18.

Note also that this cannot happen if d is even (exer-

cise).

3.20. Example.For our existing examples:

(1) is trivially perfect.

(2) d = 2 is even, so not perfect.

(3) is a 2-ary (5,4,3)-code:

M
∑

r

(

n

r

)

(q − 1)r = 4(1 +

(

5

1

)

1) = 24

while |S5| = 25 = 32, so not perfect.
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3.21. Another kind of error-robust code, favoured by

deaf people such as the author (!)7, is a repetition code.

A binary repetition code of length n = 2t + 1 is

C = {00...0, 11...1}

Clearly this is a (2t + 1, 2, 2t + 1)-code.

Every string y ∈ S2t+1 either has more 0s than 1s, im-

plying y ∈ Bt(00...0);

or more 1s than 0s, implying y ∈ Bt(11...1).

Hence S2t+1 = Bt(00...0) ⊔ Bt(11...1).

3.22. Now, why did we only include the d odd cases in

our table of A2(n, d)?

For A2(n, d) we can deduce the even d cases from the

odd.

7and roadies
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3.23. Definition. The weight of a string x ∈ Sn is

w(x) = #non-zero entries in x

E.g. w(011) = 2 = w(10010).

3.24. Lemma. Suppose S = {0, 1} and x, y ∈ Sn both

have even weight. Then d(x, y) is even.

Proof: Let n = {1, 2, ..., n} and, fixing x, y,

nij = nij(x, y) = {k ∈ n | xk = i and yk = j}

For example if x = 01101, y = 10110 then n00 = ∅ and

n01 = {1, 4}.
(We will give the proof in the binary case as stated.

Generalisations of the result are possible. Formulation

of a suitable statement is left as an exercise (but will not

be needed here).)

Now w(x) = |n10| + |n11| = 2l for some l, since w(x) is

even; and w(y) = |n01|+|n11| = 2m for some m similarly.

Thus

d(x, y) = |n10| + |n01| = 2l + 2m − 2|n11|

2
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3.25. Definition. An q-ary (n, M, d)-code is optimal

if M = Aq(n, d).

For k ∈ {1, 2, ..., n} define ‘projection’

πk : Sn → Sn−1

by x 7→ πk(x) = x1x2...xk−1xk+1...xn (deleting the k-th

digit). This also acts, by restriction, on any subset of

Sn, and hence on any code C ∈ P (Sn), to produce a

new code πk(C) ∈ P (Sn−1).

For i ∈ S define ‘projection onto xk = i-hyperplane’

(abusing notation as if Sn were Rn)

πi
k : Sn → Sn

by x 7→ πk(x) = x1x2...xk−1ixk+1...xn (replacing the k-

th digit by i).

Note that if D ∈ (n, M, d)-cod with d > 1 then

|πk(D)| = M , since the maximum reduction in distance

between distinct points caused by deleting one letter is

1 (so distinct points are still distinct after projection).

That is

πk : (n, M, d + 1)-cod → ⊔d′∈{d,d+1}(n − 1, M, d′)-cod
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Theorem 3.26. Suppose d odd. A 2-ary (n, M, d)-code

exists iff a 2-ary (n + 1, M, d + 1)-code exists.

Proof: (i) (Only if part): Let C ∈ (n, M, d)-cod. We

construct C ′ ∈ (n + 1, M, d′)-cod (some d′) as follows.

For each x ∈ C let x′ = x0 if w(x) even and x′ = x1

if w(x) odd.

Note that d ≤ d′ ≤ d + 1. But every x′ has even

weight by construction so d′ is even by Lemma 3.24.

Hence d′ = d + 1.

(ii) (If part): Let D ∈ (n + 1, M, d + 1)-cod2. Take

x, y ∈ D such that d(x, y) = d + 1. Find a digit, the k-

th say, where they differ. Construct D′ ∈ (n, M, d′)-cod2

by D′ = πk(D). Note that d ≤ d′ ≤ d+1. But d(x′, y′) =

d(x, y) − 1 = d. Hence D′ ∈ (n, M, d)-cod2. 2

Corollary: If d odd then A2(n + 1, d + 1) = A2(n, d).
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3.27. Lemma. Aq(n, d + 1) ≤ Aq(n, d).

Proof: Let C be an optimal (n, M, d + 1)-code, so M =

Aq(n, d + 1). Choose x, y ∈ C with d(x, y) = d + 1.

Assume x, y differ in k-th digit. Remove x from C and

replace it with x′:

x′ = πyk

k (x)

New code C ′ contains x′ and y and d(x′, y) = d by con-

struction, so d(C ′) ≤ d. Let z, w ∈ C ′. If neither is x′

then z, w ∈ C so d(z, w) ≥ d + 1 > d. If z = x′ (say)

then

d + 1 ≤ d(x, w) ≤ d(x, x′) + d(x′, w) = 1 + d(z, w)

so d(z, w) ≥ d. Thus d(C ′) ≥ d, so C ′ ∈ (n, M, d)-cod,

so Aq(n, d) ≥ M . 2

This gives us one last bound on Aq(n, d):
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Theorem 3.28. Aq(n + 1, d) ≤ qAq(n, d)

Proof: Let C be an optimal q-ary (n + 1, M, d)-code.

Define Ci = C ∩ πi
n+1(C). Clearly C = ⊔i∈SCi so

M = |C| =
∑

i∈S |Ci|. Thus at least one of the Cis

has order at least M/q. Choose such a Ci (i = k, say)

and construct C ′ from it by deleting the last digit of

each codeword:

C ′ = πn+1(Ck)

Since Ck ⊂ C we have d(Ck) ≥ d(C) = d. But d(C ′) =

d(Ck) since all codewords in Ck agree in the last digit.

Hence C ′ is a q-ary (n, M ′, d′)-code with M ′ ≥ M/q and

d′ ≥ d, so Aq(n, d′) ≥ M/q. But d′ ≥ d so by (iterated

use of) the Lemma above

Aq(n, d) ≥ Aq(n, d′) ≥ M/q = Aq(n + 1, d)/q

2

3.29. Example. Given A2(10, 3) ≤ 79 it follows that

A2(11, 3) ≤ 2 × 79 = 158.

3.30. Exercise. Use the above theorem to give an

alternative proof of the singleton bound.
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3.4.4 More exercises

3.31. Exercise. For each of the following triples (n, M, d)

construct, if possible, a binary (n, M, d) code:

(6, 2, 6) (3, 8, 1) (4, 8, 2) (8, 40, 3)

If no such code exists, prove it.

Answer:

A q-ary repetition code has M = q and d = n for any

q, n. Our first case is an example of this: {000000, 111111}
is a (6,2,6) code.

As we have set things up, all codewords are necessar-

ily distinct. This means that d is necessarily at least

1. To make a d = 1 code, then, all we have to do is

make any code at all. The biggest q-ary length n code

has M = qn (just include every possible codeword). For

binary n = 3, therefore, this biggest code has M = 8.

That is, for (3,8,1):

{000, 001, 010, 011, 100, 101, 110, 111}

is the unique such code.

For our third case we can use the parity idea (proof of

Theorem 3.26) to increase the distance by 1 from our

(3,8,1) code:

{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}
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For our fourth case it is no longer obvious how to con-

struct a code. Under the circumstances it is prudent to

check if such a code is impossible, by checking the BP

and singleton bounds. In this case one finds that the

BP bound fails, so there is no such code.

An (undirected) graph G is a set VG of vertices to-

gether with a set EG of edges between them (for a more

careful definition see Chapter 5). A complete graph is

a graph in which every pair of vertices is connected by

one edge.

A graph morphism φ : G → G′ is a map φ : VG → VG′

such that (v1, v2) ∈ EG implies (φ(v1), φ(v2)) ∈ EG′ .
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3.32. Exercise. Consider the graph G(n, k) each of

whose vertices is a 2-ary sequence of length n; with an

edge (x, y) whenever d(x, y) ≥ k. A 2-ary length n code

C is any subset of the vertex set of G(n, k). If G(n, k)

restricts to the complete graph on C then d(C) ≥ k.

(a) Prove it!

(b) Write down a maximal complete subgraph of each

of the following: G(3, 3), G(4, 3), G(5, 3).

(c) If there is a complete graph of order l in G(n, k) (l

vertices) then there is a complete graph of order l in-

cluding the vertex 000...0. Prove it.

(d) Let Ψ : Zn
2 → Zn

2 denote swapping the first two en-

tries in the sequence (e.g. Ψ(10111) = 01111). Then

Ψ defines a graph homomorphism from G(n, k) to itself.

Prove it. (Can we say more?)
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ANSWERS: (a) Try this yourself. Note that it says

that A2(n, k) is the size of a maximal complete subgraph

in G(n, k).

(b) We give our complete graph as a list of vertices in

each case:

G(3, 3): {000, 111} (equally good would be {001, 110},
but it will be clear than neither subgraph can be en-

larged without losing the completeness property);

G(4, 3): {0000, 1110};
G(5, 3): {00000, 11100, 10011, 01111}.
(c) If we change the first entry in every vertex sequence

in G(n, k) (from 0 to 1 or from 1 to 0) then the Hamming

distances between vertices are not changed. The same

applies if we change any given entry in every sequence

simultaneously. In this way we may take any vertex (in

a complete subgraph, say) and change it to 000...0 with-

out changing the edges in the subgraph (so it remains

as the complete graph). 2

(d) For every pair of vertices d(x, y) = d(Ψx, Ψy), since

the first two entries are interchanged in both. In fact Ψ

gives a graph isomorphism of G(n, k) with itself. But

of course Ψ would not fix some arbitrary subset C in

general.
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3.5 Finite fields

We have repeatedly thought of Sn as if it were something

like Rn, that is, as if it were a vector space, and C ⊂ Sn

a vector subspace. Now we want to go further and think

of strings

x = x1x2...xn = (x1, x2, ..., xn)

as vectors, so that we can add them, and multiply by

scalars.

In its simplest form this means that we want S itself

to be like R, in the sense of having addition and multipli-

cation defined (perhaps even subtraction, and division

by ‘non-zero’ elements). But S cannot be R, since it is

finite.

The composition requirements are summarised by

saying that we want S to be a field. We should recall

the definition of field; and then see if we can think of

any finite fields that we could use for our alphabet.

The definition of field is quite long. We can break it

up a little into stages:
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3.33. Definition. A commutative ring is a set F

equipped with 2 closed associative and commutative op-

erations

+ : F × F → F

× : F × F → F

(we will write ab for ×(a, b) = a × b), such that:

(1) × is distributive over +:

a(b + c) = (ab) + (ac)

(2) there is an additive identity element 0 ∈ F , so that

a + 0 = 0 + a = a ∀a

(3) there is a multiplicative identity element 1 ∈ F , so

that

a1 = 1a = a ∀a

(4) Every a ∈ F has an additive inverse −a such that

a + (−a) = 0.

3.34. Example. The integers form a commutative

ring.



3.5. FINITE FIELDS 97

3.35. Definition. A field is a commutative ring such

that

(5) Every a ∈ F \ {0} has a multiplicative inverse a−1

such that a(a−1) = 1.

3.36. Example. The obvious example is the real num-

bers. The rational numbers also work. As do the com-

plex numbers.

The integers do not work, since 2 has no integer multi-

plicative inverse.



98 CHAPTER 3. CODING THEORY

3.37. The challenge is to find finite sets F that can have

all these properties. A great source of such examples

comes from thinking about modular arithmetic:

Define a relation of congruence modulo 5 on Z by a ∼= b

if a − b = 5n for some integer n.

It is easy to see that this is an equivalence relation. The

equivalence classes are:

[0] = ...,−10,−5, 0, 5, 10, ...

[1] = ...,−10 + 1,−5 + 1, 0 + 1, 5 + 1, 10 + 1, ...

and indeed for r = 0, 1, 2, 3, 4:

[r] = ...,−10 + r,−5 + r, 0 + r, 5 + r, 10 + r, ...

Miraculously, when we do ordinary integer arithmetic we

find that it respects these classes. That is, if a + b = c

and a, b are congruent to a′, b′ respectively then a′ + b′

is congruent to c. Example:

1 + 2 = 3 21 + (−98) = −77

In this sense we can define arithmetic on the classes

mod.p (where at this stage p is any natural number).

The resultant structure of integer arithmetic mod.p is

denoted Zp. Thus Zp is a set with + and × which are

commutative and associative, distributive...



3.5. FINITE FIELDS 99

3.38. Exercise. Check this!

...with additive and multiplicative identity; and ad-

ditive inverse.

Example: For p = 5 the additive inverses of [0], [1], ...

are given by

[0] + [0] = [0] [1] + [4] = [0] [2] + [3] = [0]

so that [0]=-[0]; [4]=-[1] and [3]=-[2].

What about multiplicative inverses? Is there an [x]

such that [2][x] = [1]?

If we are working in Z5 then: Yes! [2][3] = [6] = [1].

And [4][4] = [16] = [1].

Thus

Theorem 3.39. Z5 is a field.

On the other hand Z4 is a commutative ring, but not

a field. The complete row of the multiplication table for

[2] is

[2][0] = [0] [2][1] = [2] [2][2] = [0] [2][3] = [6] = [2]

Since none of the right hand sides is [1] we see that [2]

does not have a multiplicative inverse.
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In fact

Theorem 3.40. (i) Zp is a field iff p is prime.

(ii) there is a field of order q iff q = pe where p is prime

and e ∈ N.

(iii) two fields of the same order are isomorphic.

Part (i) can be proved as an exercise.

Part (ii) is standard in algebra textbooks, but for now we

will content ourselves with understanding the statement.

Part (iii) just says that when we have understood part

(ii) we will have a handle on all finite fields!

So, what about part (ii)? Part (i) tells us how to

construct the fields of prime order; and that the fields

of order p2 and so on are not Zp2 and so on.

...so what are they?

One way to address this question is to think about

how the rational field sits inside the real field; and the

real field inside the complex field. We can ask ourselves

what happens when we adjoin i =
√
−1 to R and try

to make a field containing these objects. Since a field

is closed under addition we see immediately that the

smallest field containing R and i is C. On the other

hand if we adjoin i to Q we can construct a ‘complex

rational field’ bigger than Q but smaller than C.
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One way of thinking of this is that we have added

to Q a new number v, which number obeys v2 + 1 = 0.

We don’t really need to know too much else about this

number! We can already check the axioms:

A general element of the field can be written in the form

a + bv where a, b ∈ Q. Adding obviously works:

(a1 + b1v) + (a2 + b2v) = (a1 + a2) + (b1 + b2)v

and multiplying (using v2 = −1):

(a1 + b1v)(a2 + b2v) = (a1a2) + (a1b2 + a2b1)v + (b1b2)v
2

= ((a1a2) − (b1b2)) + (a1b2 + a2b1)v

and the multiplicative inverse is given by v−1 = −v,

since

v(−v) = −v2 = 1

and more generally by:

Exercise!

3.41. Example. What happens if we further extend

this field by adding in an object w obeying w2−2 = 0?
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3.42. The idea for finite fields is to make such exten-

sions to the prime fields Zp (p prime). Let us consider

the prime p = 2, and try to extend the field Z2. We start

by adding in an element that obeys a polynomial equa-

tion. We might as well start with a quadratic. Since we

want to end up with ‘coefficients’ in Z2 the coefficients

in the polynomial need to be in Z2. There is then only

one irreducible polynomial available: f(x) = 1 + x + x2.

Adjoining a root of f to Z2 we get a number system

consisting of {0, 1, x, 1 + x}, and that’s it! The inverse

of x is 1 + x, since

x(1 + x) = x + x2 = −1 = 1 (mod.p)

This field is called F4.

More generally we can adjoin a root of an irreducible

polynomial of degree e and get F2e . More generally still,

Fpe.
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3.5.1 Practical coding with finite fields

We said some time ago that coding is interested in the

way the code C sits as a subset in the set of all possi-

ble received words (i.e. it is interested in the minimum

distance d(C) and so on). From this point of view, the

precise choice of symbols used in codewords is not di-

rectly relevant. However, realistically, the message itself

is quite likely to take the form of strings of letter from

some human alphabet — and the recovery of the correct

letters at the end of the process is the essential aim. In

practice, then, since we are about to start using ele-

ments of finite fields to create codes, the question arises:

How can we use finite fields to represent our familiar

alphabet?
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This is the same question as to ask how we can use

any random set of symbols to represent our alphabet.

Doing this is a vital step, if we are going to use new

symbol sets. But it is, of itself, essentially trivial. Here

we are not trying to maximise Hamming distance or any-

thing like that, so any surjective map from the alphabet

to some set of strings of symbols from the new symbol

set will do. Thus if we have an alphabet with 26 letters

in it (say!), we can represent it with some other symbol

set, so long as there are at least 26 codewords available.

3.43. Example. The 26 letters of the alphabet {A, B, C, ..., Z}
may be represented in Z3

3 by A 7→ 001, B 7→ 002,

C 7→ 010, D 7→ 011, E 7→ 012, ..., Z 7→ 222. This

uses up 26 of the 33 = 27 elements of Z3
3, so we may also

represent ‘space’ by 000.
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3.6 Linear codes

Our original idea was to be able to think of Sn as a set of

vectors, by making S a field. The analogy was with the

case Rn, which is a set of n-component vectors forming

a vector space.

If F is a field then F n is an n-dimensional vector

space over F . Addition is component-wise, as usual.

We say that code C ⊂ F n is a linear code if it is a

linear subspace of F n.

3.44. Example. Let V = Z3
2 = {000, 001, 010, 011, 100, 101, 110, 111}.

Then C = {000, 001, 010, 011} is a subspace.

This is analogous to the fact that {(0, y, z) | y, z ∈ R}
is a subspace of the infinite space R3. A basis of R3 is

{(0, 0, 1), (0, 1, 0), (1, 0, 0)}, and a basis of the subspace

is {(0, 0, 1), (0, 1, 0)}.
A basis of V is {(0, 0, 1), (0, 1, 0), (1, 0, 0)} = {001, 010, 100},
and a basis of C is {001, 010}.
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3.45. Example. Show that if C, C ′ ⊂ F n are linear

codes then C∩C ′ and C+C ′ := {u+u′ | u ∈ C, u′ ∈ C ′}
are also linear codes. When is the code C ∪ C ′ also

linear?

3.46. Picking a code at random from P (F n), it is likely

to be non-linear. However “most of the codes currently

studied and used are linear” (Jones and Jones, 2000).

We will now see why.

When C ⊂ F n is linear, and of dimension k as a

vector space, then M = |C| = |F |k. We call C a linear

[n, k]-code.

3.47. The rate of a code is

R = R(C) =
logq M

n

so for a linear code

R = k/n

Thus the bigger k is, the more information we transmit;

the bigger n is, the longer it takes to transmit. But of

course the bigger n−k is the more checking we are doing,

so the better we can confirm or protect the information.
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Let us now examine some examples of linear codes.

In particular, which of the codes we already looked at

are linear?

If S = F is a field then the repetition code Rn ⊂ F n

is linear of dimension 1. Example: 11...1 + 11...1 =

22...2.

The parity-check code Pn ⊂ F n consists of all vectors

u such that
∑

i

ui = 0

We can consider the first n − 1 digits as information,

and un as a check digit, simply defined as

un = −
n−1
∑

i=1

ui.

Since it is defined by a linear equation this code is

linear. It is a [n − 1, n]-code, so M = qn−1 and R =

n − 1/n.
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Figure 3.5:

3.48. Example. Consider the Venn diagram for sets

A, B, C in Figure 3.5. Suppose we want to encode an el-

ement a of {0, 1}4 as a codeword u ∈ S7. We will assign

the 7 digits to the 7 regions in the figure as numbered.

We set u3 = a1, u5 = a2, u6 = a3, and u7 = a4. We

now want to set u1, u2, u4 for collateral (checking) infor-

mation. We set u4 so that the sum of digits assigned in

set A (i.e. u4, u5, u6, u7) is zero in binary. We set u1, u2

similarly considering C and B.
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The code H7 consists of all codewords u ∈ F 7
2 written

in this way.

Since H7 is determined by linear equations between

variables ui it is a linear code. There are 24 choices for a,

and these fix u, so M = 16. Indeed H7 has basis v1 =

1110000, v2 = 1001100, v3 = 0101010, v4 = 1101001.

Thus the dimension is 4.

We will come back to this example later.
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Here are some quick reminders on linear algebra:

3.6.1 Aside on linear algebra

A linear combination of a set of vectors V = {vi} is a

form like

v =
∑

i

aivi

Obviously we have

0 =
∑

i

0.vi

(on the left we mean the zero vector; on the right the

‘scalar/field element/number’ 0).

The set of all vectors expressible as linear combina-

tions of V is called the span of V .

3.49. Definition. A set of vectors is linearly indepen-

dent if the only way to linearly combine them to get 0

is with all coefficients 0.

A linearly independent spanning set for a vector space

is called a basis.
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Theorem 3.50. Let C be a non-trivial (i.e. non-zero)

subspace of V , a vector space over Fq. Then

(1) C has a basis.

Let B = {v1, v2, ..., vk} be a basis for C. Then

(2i) every vector in C can be uniquely expressed as a

linear combination in B.

(2ii) |C| = qk.

Proof: Exercise.

Note that any two bases for C have the same order,

k. Call this number dimC.

3.51. Example. (i) F n
q has a basis {100..00, 010..00, ..., 000..01}

consisting of n vectors.

(ii) C = {000, 001, 010, 011} is a subspace of Z3
2 with

basis {001, 010}.
(iii) Is C = {000, 001, 002, 010, 020, 011, 022} a subspace

of Z3
3? No! The dim is not a power of 3.

3.52. Proposition. Let F be a finite field of charac-

teristic p. Then F is itself a vector space over Zp.

Proof: Exercise.
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3.6.2 Linear codes

3.53. Definition. A q-ary [n, k, d]-code is a linear

code in F n
q of dim k and minimum distance d. Write

[n, k, d]−cod for the set of all such (with q understood).

Thus C ∈ [n, k, d]− cod implies C ∈ (n, qk, d)− cod,

but the converse is false.

3.54. Example. Our first three examples are all binary

linear codes: C1 ∈ [2, 2, 1] − cod; C2 ∈ [3, 2, 2] − cod;

C3 ∈ [5, 2, 3] − cod. Exercise: check this.

Recall that for a general code we need 1
2
|C|(|C| − 1)

calculations to compute d(C). We can radically reduce

this for a linear code.

To see this first note that

d(x, y) = w(x − y)

Thus

Theorem 3.55. For a linear code let

w(C) = min{w(x) | x ∈ C \ {0}}

(here we write 0 for the appropriate 000..0 sequence, for

convenience). Then

w(C) = d(C).
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Proof: Exercise.

For linear codes we usually just give a basis rather

than listing out the whole thing.

3.56. Definition. A k× n matrix is called a generator

matrix for C if its rows form a basis for C.

3.57. Example. C3 has generator matrix

G =





01101

10110





However in computing d(C) it is NOT enough to

find the minimum weight among the basis vectors! For

example

G =





1111

1110





has min weight 3, but d(C) = 1.
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Theorem 3.58. Let G generate C. Any matrix ob-

tained from G by

(R1) permuting rows

(R2) multiplying a row by a non-zero scalar

(R3) adding one row to another

generates the same code.

3.59. Example. Show that the 3-ary linear codes gen-

erated by

G =









210222

012101

011112









and

G′ =









100201

010120

001022









generate the same code. Deduce d(C).

Clues: start by subtracting row two from row three in

G. Then subtract row 2 from row 1. Then row 3 from

row 2. Then multiply row 1 by the scalar 2. How does

it look now?!

Obviously d(C) ≤ 3, since there is a weight 3 row in G′.

But to see if this bound is saturated (it is) you still have

some work to do!
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3.60. Definition. Codes C, C ′ are equivalent (write

C ∼ C ′) if there is a one-to-one mapping

φ : C → C ′

such that

d(x, y) = d(φ(x), φ(y))

for all x, y. In particular d(C) = d(C ′).

3.61. Exercise. Check C ∼ C ′ is an equivalence rela-

tion, i.e. a reflexive, symmetric, transitive relation.

Theorem 3.62. Let C be a linear code generated by G.

Let G′ be obtained from G by

(C1) permuting columns

(C2) multiplying a column by a non-zero scalar a ∈ Fq.

Then G′ generates C ′ an equivalent linear code to C.

Proof: Exercise (optional!).

By using all the row and column operations you can

always reduce G to a standard form

G′ =















100..0 A11A12..A1,n−k

010..0 A21A22..A2,n−k

...

000..1 Ak1Ak2..Ak,n−k















= [1k|A]

where 1k is the k × k unit matrix and A has entries in

Fq.
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3.63. Example. A binary [5,3,d]-code is generated by

G =









11111

10011

11001









∼









11111

01100

00110









∼









10011

01010

00110









3.64. Exercise. Let Ci be the 3-ary code generated by

Gi, where

G1 =





1011

0112



 , G2 =





1011

0111





For each of i = 1, 2, list Ci and hence compute d(Ci). Is

Ci perfect?
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3.6.3 Encoding

Given C, a linear code over Fq (i.e. a subset of F n
q for

some n) generated by G, we have a natural identification

between C and F k
q (k = dim C, not the same as n, the

length of the code).

Each x ∈ C is uniquely expressible as

x =

k
∑

i=1

aivi

(the vis are the rows of G in the natural order). So

x ↔ (a1, a2, ..., ak) ∈ F k
q

is a one-to-one correspondence.

We think of the a = (a1, ..., ak) vectors as the mes-

sage words of the code, and the n-tuples x as the code-

words representing them.

Note that the encoding map

a → x

is then simply

x = aG

That is, right multiplication by the generating matrix

— a linear map!
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3.65. Example. Let C be 3-ary and generated by

G =









10010

01010

00102









Encode the messagewords 000, 101 and 122.

Clearly 000 → 00000, so we need

101 → (101)G = (10112)

122 → (122)G = (12201)

Note that the first three digits of the codeword are the

same as the messageword. This always happens if G is

in the standard form. The other digits are then ‘check’

digits.

This makes the last part of decoding trivial:

messageword
encode→ codeword

transmit(noise)→ received vector

project→ nearest codeword
interpret→ decoded messageword

The last step is just to drop off the check digits.
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3.6.4 Coset decoding

Our picture above raises a key point. When x ∈ F n
q is

transmitted down a noisy channel y is received. Define

the error vector

e = y − x

Then the number of transmission errors is w(e). (Of

course no one knows both x and y for sure...)

We want an algorithm which decides from y which x was

(probably) sent; or equivalently, what e has occurred.

3.66. Definition. Suppose C ∈ [n, k, d] − codq (some

d) and a ∈ F n
q . Then set

a + C = {a + x | x ∈ C}

is called a coset of C in F n
q .

Theorem 3.67. [Lagrange] (a) The cosets of a linear

code C ⊂ F n
q partition F n

q .

(b) Each coset has size qk.

Proof: (Idea) Think of C as a subspace (such as a plane

in R3 through the origin). We can think of a as shifting

this subspace parallel-ly away from the plane; in other

words to a new plane not including the origin.

We dont have R3, but the same idea works. 2
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3.68. Example. Let C be 2-ary generated by

G =





1011

0101





That is C = {0000, 1011, 0101, 1110}. Cosets:

0000 + C = C

1000+C = {1000, 0011, 1101, 0110} = 0011+C (etc)

and so on.

Given any subset U of F n
q (such as a coset), we

may partition U into subsets containing words of equal

weight. Among these will be a subset of words in U of

least weight. (For example, if we consider the whole of

F n
q then there is always a fixed-weight subset containing

just the word of weight zero.)

Henceforth we assume that we always have a way of

choosing a single word from any such subset. (If we have

totally ordered the words in F n
q then we could simply

take the first one in the order induced on the subset,

say.)

Now suppose that the subset we have in mind is

a coset. The chosen vector of min weight in a coset

is called the coset leader (for that choice). E.g. in
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{0100, 1111, 0001, 1010} either 0100 or 0001 could be

chosen as leader.

(3.6.1) We can use the idea of coset leaders to generate

an arrangement of F n
q called a standard array for C.

Assuming as before that we have a way to choose a word

from a set (via a total order, say), then we can do this

algorithmically:

(i) make a row list of the codewords of C, with 00..0 on

the left. This row is coset 00..0 + C, with 00..0 as coset

leader; arranged in some chosen order.

(ii) choose any distinct vector a1 of min weight in F n
q \C

and row list a1 +C in the obvious order (i.e. with a1 + c

under codeword c). This has a1 as coset leader.

(iii) choose any a2 not already listed, of min weight, and

row list a2 + C.

(iv) repeat until all words of F n
q appear.

Note that there were two kinds of choices in the con-

struction of the standard array: (1)the order in which

to write out the row C after 00...0; (2) the choices of

coset leaders (the column below 00...0). As we shall see,

the first choice has no real bearing on decoding in what

follows. The second choice can affect decoding (but all

such choices are equally ‘good’ in probablistic terms).
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In our example 3.68 the standard array (for an obvi-

ous set of choices) is















0000 1011 0101 1110

1000 0011 1101 0110

0100 1111 0001 1010

0010 1001 0111 1100















(don’t worry — we won’t always need to write out this

whole table — see section 3.7.1).

(3.6.2) We are now ready to explain coset decoding.

Note that a given standard array A determines, for

each word y in F n
q , a coset leader eA(y) (the first word in

the row of y); and a codeword cA(y) (the first word in the

column of y). For example, the coset leader associated

to 1010 in the array above is 0100. Thus if we receive y,

we may associate two other words to it, related by

eA(y) = y − cA(y)

Coset decoding:

if we receive y, we decode it as the codeword cA(y) ap-

pearing in the column containing y.

IS this a good strategy?

In coset decoding we are effectively assuming that the
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actual error from the transmitted codeword x

e = y − x

is the coset leader eA(y) of coset y + C.

Suppose the actual error e is a coset leader. Then

y = x + e, so y does lie in the coset with leader e, so

eA(y) = e and cA(y) = x. That is, our decoding is cor-

rect.

On the other hand, if the actual error is not a coset

leader, then by assuming that it is, we are bound to get

the decoding wrong.

By choosing coset leaders to have min weight, we always

decode y as the (Hamming) nearest codeword to y (or

at least one of the joint nearest). E.g. y = 0110 decodes

as x = 1110 in our example. That is, we assume the

fewest errors possible.

In case of low single-digit error probability it is hope-

fully already clear that this is a good assumption —

probablistically. (But see section 3.6.5 for details.)

Returning to our example code, note that d(C) =

w(C) = 2. Thus it is not even single error correcting, so

even single errors might not be corrected properly. (In

fact a single error will be corrected if it occurs in the

1st, 2nd or 3rd digit, but not the 4th.)
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Specific instances:

messageword codeword noisy channel decode truncate

→
01 0101 0111 (say) 0101 01 (correct)

10 1011 1010 1110 11 (incorrect)

This glitch is precisely to do with the fact that we

had a choice of coset leaders in 0100 + C. We could

have chosen 0001 instead, in which case the 4th digit

errors would be recovered and the 2nd digit errors not

recovered.
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3.6.5 Probability of error correction/detection

As noted before, it is the probabilities of a successful

outcome which really dictate the success of our coding

methodology. We have accumulated a lot of technology

since our last probability calculation, so now it is time

to put it all together.

Suppose we transmit a linear code down a symmet-

ric channel with symbol error probability p, then use

coset decoding. Then we get the decoding of any re-

ceived word y right if and only if our error correction is

right. This happens in coset decoding if and only if the

actual error e = y − x is a coset leader. Thus for any

transmitted codeword x

Pcorr(x) = Prob(error e = one of the coset leaders )

(Note that this is independent of x!) In our exam-

ple 3.68, therefore

Pcorr(x) = P (e = 0000)+P (e = 1000)+P (e = 0100)+P (e = 0010)

= (1 − p)4 + 3p(1 − p)3

Perr(x) = 1 − Pcorr(x)

Call this Perr(C) since it depends only on C, not on x.

It is the word error rate of the code.
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More generally: Let C be any linear code whose coset

leaders are a0 = 00..0, a1, a2, ..., al. We have

Pcorr(C) =
l

∑

r=0

P (e = ar) =
l

∑

r=0

pw(ar)(1−p)n−w(ar) =
n

∑

s=0

γsp
s(1−p)n−s

where γs is the number of coset leaders of weight s.

How can we compute the γss? In general it is hard,

but:

Theorem 3.69. If d(C) ≥ 2t + 1 then every vector of

weight ≤ t is a coset leader for C. Hence

γs =

(

n

s

)

(q − 1)s = |Ss(00..0)|

for 0 ≤ s ≤ t. (Recall Ss(00..0) is the sphere around

00..0.)

Proof: Consider the vectors in Bt(00..0). Every vector

lies in some coset, so if y ∈ Bt(00..0) is not a coset leader

then there exists z with w(z) ≤ w(y) and x ∈ C (x 6= 0)

such that

y = x + z

But then

d(C) ≤ w(x) = w(y − z) = d(y, z) ≤ d(y, 0) + d(0, z)

= w(y) + w(z) ≤ 2w(y) ≤ 2t

This contradicts the first hypothesis, so y is a coset

leader. 2
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Theorem 3.70. If C is a perfect [n, k, 2t+1]-code then

its coset leaders are precisely the vectors of weight ≤ t.
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3.71. Example. Let C be a 3-ary [11, 6, 5]-code. What

is Perr(C)?

By Theorem 3.69, d = 5 implies all vectors of weight

≤ 2 are coset leaders. Therefore

γ0 = 1 γ1 =

(

11

1

)

21 = 22 γ2 =

(

11

2

)

22 = 220

(For w > 2, what is γw? We don’t know, but let’s press

on!) Therefore

Pcorr(C) =

n
∑

w=0

γwpw(1 − p)n−w ≥
2

∑

w=0

γwpw(1 − p)n−w

= (1− p)11 + 22p(1− p)10 + 220p2(1− p)9

so

Perr(C) = 1−Pcorr(C) ≤ 1−((1−p)11+22p(1−p)10+220p2(1−p)9)

In fact the bound is saturated, because this code is per-

fect. We know the weights of 1+22+220=243 of the

coset leaders. But the number of cosets is

|F n
q |

|C| = qn/qk = 311/36 = 35 = 243

so there are no more cosets!

If we use C for error detection, rather than error

correction, the analogue of Perr(C) is Pundetec(C), that is,
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the probability that a word is received with undetected

errors.

Again we transmit x ∈ C and receive y ∈ F n
q . The

received vector has undetected errors iff y 6= x but y ∈
C. That is, iff e ∈ C \ {00..0}.

The probability of this is again independent of x:

Pundetec(C) =

n
∑

w=1

δwpw(1 − p)n−w

where δw is the number of codewords of weight w.

3.72. Example. C = {0000, 1011, 0101, 1110}. δ1 = 0,

δ2 = 1, δ3 = 2, δw = 0 (w ≥ 4). Thus

Pundetec(C) = 0.p(1 − p)3 + 1.p2(1 − p)2 + 2.p3(1 − p)

= p2(1 − p)(1 − p + 2p) = p2(1 − p2)

= 0.00009999 if p = 0.01

If y is received and y 6∈ C we detect an error and request

retransmission. How likely is this?

Pretrans = 1 − P (no error detected)

= 1−(P (no errors)+P (error occurs but is not detected))

= 1 − (1 − p)n − Pundetec(C)

In our example

Pretrans(C) = 0.039394 if p = 0.01

which is about 4%.
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3.7 Dual codes

Notation: Here we use Gt (or GT ) to denote the matrix

transpose.

Recall the inner (or scalar) product u.v of two vectors.

3.73. Example. In Z4
2: 1001.1101=1+0+0+1=0.

3.74. Definition. Given C ⊂ F n
q , its dual code is

C⊥ = {u ∈ F n
q | u.v = 0 ∀ v ∈ C}

3.75. Lemma. If C generated by G then v ∈ C⊥ ⇐⇒
vGt = 0.

If U, V are vector spaces over Fq and

L : U → V

is a linear map, then the range L(U) ⊂ V is a subspace

of V . Its dimension is called the rank of L.

The set of vectors

ker L = {u ∈ U | L(u) = 0} ⊂ U

is a subspace of U , called the kernel of U . The dimension

of the kernel is called the nullity of L. We have

rank L + dim(ker L) = dim U
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(The Rank-Nullity Theorem from linear algebra.)

Let F be a field (such as Fq). Let us explicitly regard

vector space V = F n as the space of n-component row

vectors (as has been our convention throughout), i.e. as

1 × n matrices. There is, formally, another realisation

as column vectors — and even given the choice of row

vectors, the explicit matrix representation of individual

vectors v ∈ V depends in principle on a choice of basis.

But as soon as we fix all these choices, then each n × k

matrix H with entries in F defines a map

LH : F n → F k

by

v 7→ vH

Equivalently each k × n matrix G with entries in F de-

fines a map LG by v → vGT .

Let α, β ∈ F . Since H(αv + βw) = αHv + βHw we see

that LH is a linear map.

If we consider the standard ordered basis for F n then

its image under LH will be the set of row vectors in H .

Thus

3.76. Lemma. The dimension of LH(F n) (the rank of

LH) is the same as the rank of H as a matrix.
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The same argument holds for LG and the rank of G.8

3.77. Example. Let’s try a matrix with rank 1:

(

x y
)





1 1

1 1



 =
(

x + y x + y
)

Clearly the image space has dim=1 (albeit embedded in

a 2d space).

Theorem 3.78. If C an [n, k]-code over Fq (i.e. an

[n, k, d]-code for some d), then C⊥ is an [n, n − k]-code

over Fq.

Proof: Let G be a generator matrix for C, and consider

the map

L : F n
q → F k

q

defined by

L : v 7→ vGT

(note that G has k rows and n columns, so GT has n

rows and k columns). Then C⊥ = ker L by Lemma 3.75.

Thus C⊥ is linear. Now

dim C⊥ = dim(ker L) = dim F n
q −rank L = n−rank L

8One can reconstitute all of this for the case where one re-

gards vectors as column vectors, simply by ‘transposing every-

thing’: vT 7→ (vGT )T = (GT )T vT = GvT .
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But rank L = rank(G) = k, since a generator matrix

has full rank by definition.

2

3.79. Example. C = {000, 110, 011, 101} over Z2 has

dimension 2, so the dimension of C⊥ is 3-2=1. We have

G =





110

011





and v ∈ C⊥ iff

(v1, v2, v3)G
t = (v1 + v2, v2 + v3) = (0, 0)

Over Z2 this holds iff v1 = v2 = v3. Thus C⊥ =

{000, 111}.
Theorem 3.80. For all linear codes (C⊥)⊥ = C.

3.81. Definition. Any generator matrix H for C⊥ is

called a Parity Check Matrix (PCM) for C.

Theorem 3.80 says x ∈ C iff x ∈ (C⊥)⊥ iff xH t = 0

(via Lemma 3.75). This says that we can think of C as

the kernel of the linear map from F n
q to F n−k

q given by

x 7→ xH t

This says that the n − k rows of H give the coefficients

in n − k linear equations which x must satisfy to be a

codeword:

H11x1 + H12x2 + ... + H1nxn = 0
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and so on. These are parity check equations (hence

PCM).

3.82. Definition. The redundancy of a linear code is

r = n − k, the number of extra digits added compared

to the messageword.

Usually r < k (fewer check digits than message dig-

its), so H is smaller than G and the PCM is a more

efficient way to define C than G is.

Given G, can we write down H?...

Theorem 3.83. Let C be a [n, k]-code over Fq generated

by

G = [1k|A]

where A is a k × (n − k) matrix (i.e. G is in standard

form).

Then H = [−At|1n−k] is PCM for C.

Proof: Exercise.

3.84. Example. 3-ary [6,4]-code generated by

G =















1 0 0 0 1 1

0 1 0 0 0 2

0 0 1 0 2 1

0 0 0 1 2 2














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has PCM

H =





−1 0 −2 −2 1 0

−1 −2 −1 −2 0 1



 =





2 0 1 1 1 0

2 1 2 1 0 1





3.85. Definition. A PCM H is in standard form if

H = [B|1n−k] where B is a (n − k) × k matrix.

(Every linear code is equivalent to one whose PCM is in

standard form.)

3.7.1 Syndrome decoding

We can use the PCM idea to make decoding more ef-

ficient. The idea is, if we receive a vector y ∈ F n
q we

can compute which coset of C it lies in by computing its

syndrome:

3.86. Definition. Let H be a PCM for a [n, k]-code C

over F n
q . The syndrome map of C is

S : F n
q → F n−k

q

S(y) = yH t

S(y) is the syndrome vector of y. (Note this is a linear

map.)

Note that C = ker S. In fact cosets of C are in

1-to-1 correspondence with syndromes.
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3.87. Lemma. Vectors u, v ∈ F n
q are in the same coset

of C iff S(u) = S(v).

Indeed the number of cosets is qn−k, which is the

number of vectors in F n−k
q , so cosets and syndromes are

in bijective correspondence.

3.88. Example. (NB this is Example 3.68 revisited.)

Binary code generated by

G =





1 0 1 1

0 1 0 1





gives PCM

H =





1 0 1 0

1 1 0 1





The coset leaders for C are 0000, 1000, 0100, 0010, and

the syndromes: S(0000) = 00,

S(1000) = (1, 0, 0, 0)















1 1

0 1

1 0

0 1















= 11

S(0100) = (0, 1, 0, 0)















1 1

0 1

1 0

0 1















= 01
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S(0010) = (0, 0, 1, 0)















1 1

0 1

1 0

0 1















= 10

If we receive y = 1010 then

S(y) = (1010)















1 1

0 1

1 0

0 1















= 01

so y is in the coset 0100 + C. Thus we decode as x =

y − 0100 = 1110.

Note that we no longer need most of the standard array;

just the coset leaders and their syndromes: a syndrome

look-up table.

Therefore we have a new decoding scheme:

(i) receive y ∈ F n
q , calculate S(y) = z ∈ F n−k

q .

(ii) look up z in table, i.e. find the coset leader l (say)

such that S(l) = S(y) = z.

(iii) decode y as x = y − l.

This is much more efficient for large codes.

So, how do we compute d(C) in all this?

Theorem 3.89. Let C be a [n,k]-code over Fq with

PCM H. Then d(C) = d iff every set of d − 1 columns
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of H is linearly independent, but there exists some set

of d columns which is linearly dependent.

Proof: Let ci be the i-th column of H . If x ∈ C has

weight w then H has a set of w columns which is linearly

dependent: x has w non-zero digits, xi1 , xi2 , ..., xiw (say),

and xH t = 0 so

(0, .., xi1, .., 0, .., xi2, ..., xiw , .., 0)















ct
1

ct
2

...

ct
n















=
∑

i

xici = 0

so the set of w columns {ci1 , ci2, ..., ciw} is linearly de-

pendent.

Conversely, to each LD set of columns one has a code-

word x. If d(C) = d then C has a codeword of weight

w = d, but no codeword of weight w = d − 1. 2

Special cases:

d(C) ≥ 2 iff no set of 1 columns is LD ⇐⇒ H has no

zero columns.

d(C) ≥ 3 iff no set of 2 columns is LD ⇐⇒ H has no

parallel columns.

3.90. Example. What is d(C) for the binary codes
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generated by

G1 =





1011

0101



 G2 =





10110

01101





giving

H1 =





1010

1101



 H2 =









11100

10010

01001









H1 has no zero column, but has parallel, so d(C1) = 2;

while H2 has no zero or parallel columns, so d(C2) ≥ 3.

On the other hand c1 + c3 + c4 = 0 for H2, so d(C2) ≤ 3

(since 10110 ∈ C). Thus d(C2) = 3.

3.91. Example. Consider linear code C over Z11 with

PCM

H =





1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 X





This C has length 10 (number of columns of H), redun-

dancy 2 (number of rows), so dimension 8. There are no

parallel columns, so d(C) ≥ 3. We have c1−2c2 +c3 = 0

so 1910000000 ∈ C, so d(C) ≤ 3. Hence d(C) = 3 — it

is a single error correcting code.

This code has a neat partial decoding scheme:

Since d(C) = 3 every vector of weight ≤ 1 is a coset
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leader of C (by our earlier result). There are 100 weight

1 vectors in Z10
11, namely all non-zero multiples Dei of

all ei (standard ordered basis elements). 9

The syndrome of the coset led by Dei is given by:

S(Dei) = DeiH
t = (0, 0, .., 0, D, 0, .., 0)



























11

12
...

1 i
...

1X



























= (D, Di)

So from (D, Di) we get the coset leader: Dei.

The partial decoding scheme is:

(i) receive y ∈ Z10
11, compute S(y) = (A, B) ∈ Z2

11.

(A, B) = (y1, y2, .., y10)



























11

12
...

1 i
...

1X



























= (
10

∑

i=1

yi,
10

∑

i=1

iyi)

(ii) if (A, B) = (0, 0) then y ∈ C: decode as x = y.

(iii) if A, B both nonzero assume single error occurred

9There are 1110/118 = 121 cosets altogether.
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since (A, B) is S(Dei) for some D, i. Decode as x =

y − Aei where i = A−1B.

(iv) If only one of A, B is non-zero y is not in a coset

led by a weight 1 or 0 vector. Therefore at least 2 errors

have occured. Request retransmission.

(This is why it is a partial scheme. We could have

searched through the standard array for weight 2 coset

leaders, but they will not be unique, so our ‘best’ guess

will probably have some arbitrariness. Instead just get

a retransmission.)

3.92. Example. decode y = 1025234260 ∈ Z10
11:

A =
∑

i

yi = 1 + 2 + 5 + 2 + 3 + 4 + 2 + 6 = 2 + 1 = 3

B =
∑

i

iyi = 1×1+2×0+3×2+4×5+5×2+6×3+7×4+8×2+9×6 = 10

We are in case (iii) so assume error is A = 3 in digit

i = A−1B = 3−1 × 10 = 4 × 10 = 7. Thus subtract 3

from y7: x = 1025231260.

(Exercise: check this is in C!)

On the other hand y = 2610197034 has A = 0 and B 6= 0

(check it!), so seek retransmission in this case.

3.93. Remark. This partial decoding generalises to

d = 2t + 1 — all vectors of weight ≤ t coset leaders:
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list their syndromes. If receive y with S(y) in the list

decode it; else seek retransmission.

3.7.2 More Exercises

Encoding

Consider linear code C, with generator matrix G.

The code is a certain copy of F k
q →֒ F n

q (ideally chosen

so that points are Hamming well separated in F n
q ).

So far, we took no account of frequency of use of

messagewords, or any other differentiation among mes-

sagewords. Thus all points of C, as encodings of mes-

sagewords, are of equal standing. In particular there is

no reason to try to make some further apart than others.

Thus also there is no particular merit in one embedding

of the set of messagewords in C over another.

We encode by

w 7→ wG ∈ C

but there are many Gs corresponding to C. Thus for a

given message, while fixing C we still get many different

encodings.

If G = Gs is in the standard form, we could call the

resultant encoding the standard encoding.

If G is a row perm of Gs we might call this semistandard
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— the encoding of a message is already different. (This

practical change should not be forgotten — noting that

the ‘code’ as we define it has not changed; the PCM does

not need to change; and the probablistic effectiveness of

the code is not affected.) (An example follows shortly.)

If it is a row and column perm the code changes, and the

PCM changes (albeit not in a deep way — the encoding

is just permuted by the row perm).

Now read on.

1. The 26 letters of the alphabet may be represented

in Z3
3 by A 7→ 001, B 7→ 002, C 7→ 010, ..., Z 7→

222. Let us also represent ‘space’ by 000.

We are given the parity check matrix

H =









101201

011100

000011









of a linear code C. That is, w ∈ C iff Hwt = 0.

(As usual we write simply 0 for the zero vector,

where no ambiguity can arise.)

For example H(100012)t = 0, so 100012 ∈ C.

(a) Note that H is not in standard form. Confirm
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that

G =









221000

120100

200021









is a generator matrix for C.

ANSWER: This means we have to check that

the rows of G are a basis for C. We check

(I) that the rows are linearly independent —

so that they are a basis for something. We

confirm this, for example, by noting how the

rows differ in columns 3,4 and 6.

(II) that GH t = 0 (by an explicit calculation)

— this checks that the rows all belong to C.

(III) that the rows span C. Since the dual

code has dimension 3 (the number of rows

of H) we know that C itself has dimension

6 − 3 = 3, so G must have 3 rows.

(b) Write down another generator matrix for C.

Compute the encoding of the letter E, both

by G and by your own choice of alternative

generator matrix.
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ANSWER: For example

G′ =









120100

221000

200021









The encoding of E is different by G and by

G′. We have

(012)G = (012)









221000

120100

200021









= 220112

(012)G′ = (012)









120100

221000

200021









= 021012

ASIDE: Note that we do not in general get

the messageword from the first digits of the

encoded form — this only happens if G is

in standard form. Indeed the digits of the

messageword might not appear anywhere in

the encoded version! This emphasises that

the practical encoding of a message depends

very much on G, rather than on C.

(c) What is d(C)?

ANSWER: Clearly d(C) ≤ 3, but no column

of H is “parallel” to another, so d(C) = 3.
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(d) How many coset leaders are there? How many

coset leaders of weight 1 are there? What are

the syndromes of coset leaders?

ANSWER: |C| = 33 = 27 and |Z6
3 | = 36 so

there are 27 coset leaders. Since d(C) = 3 all

the weight 1 vectors are coset leaders. There

are 12 of these. Their syndromes, and the

syndrome S(000000), are easy to compute:

000000 7→ 000, x00000 7→ x00 (x ∈ {1, 2}),
0x0000 7→ 0x0, 00x000 7→ xx0, 000100 7→
210, 000200 7→ 120, 0000x0 7→ 00x, 00000x 7→
x0x.

The remaining 27− (12 + 1) = 14 coset lead-

ers are much harder to find. It is not impos-

sible, since the standard array is not impossi-

bly large in this case, but it is uncomfortable.

In practice, a good strategy might be to wait

and see what message is received, and hence

what syndromes we need coset leaders for (in

order to try to do error correction), rather

than just computing them all up front.

Of course there are (6.5/2)22 = 60 weight 2

vectors in the space. Several, but not all, of
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these are in cosets led by weight 1 vectors.

The syndromes of weight 2 vectors are each

easy to compute by linearity, given the weight

1 syndromes above. For example:

S(120000) = S(100000)+S(020000) = 100+020 = 120 = S(000200)

S(010001) = S(010000)+S(000001) = 010+101 = 111 (new!)

S(001010) = S(001000)+S(000010) = 110+001 = 111 = S(010001)

But these cases illustrate the problem. The

first is not new; the second is new, and can

be taken as a coset leader; but the third is

an equally good choice as leader of the same

coset (which thus confirms that the code is

not reliably 2 error correcting, as we already

knew!).

To this point we do not even know if all the

remaining coset leaders can be found from

among the weight 2 vectors, or whether higher

weights are needed. A couple more new ones

at weight 2 are: S(010010) = 011 and S(100001) =

201 (and we can multiply through by 2 to get

some more from these), but we would have to

keep working through to find the rest. (Ex-

ercise!)
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This nicely illustrates one of the problems

thrown up by coding theory. The syndrome

map S : Z6
3 → Z3

3 is a surjective linear map.

The set {S(e1), S(e2), S(e5)} is a basis of the

image, so we could choose ‘coset leaders’ of

the form x = α1e1+α2e2+α3e5 with (α1, α2, α3) ∈
Z3

3, but this does not give the lowest possi-

ble weights, so for channels with low single

digit error probability this would give highly

statistically non-optimal error correction be-

haviour.

(e) Given that G above is used for encoding, what

messageword encodes to 212012, if any? What

messageword encodes to 012212, if any?

ANSWER: encoding is

(x, y, z) 7→ (x, y, z)G = (2x+y+2z, 2x+2y, x, y, 2z, z)

so for 212012 we could try to solve 2x + y +

2z = 2, 2x + 2y = 1, x = 2, y = 0, 2z = 1,

z = 2. The 3-rd, 4-th and 6-th of these give

(x, y, z) = (2, 0, 2) (the codeword for the let-

ter T). The others are checks, all of which are

satisfied.

For 012212 the 3-rd, 4-th and 6-th of these
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give (x, y, z) = (2, 2, 2), but two of the checks

fail, so 222 is unlikely to be what was in-

tended!

To make a guess for the intended message-

word we could compute the syndrome:

H(012212)t = (2, 2, 0)t

The coset leader with this syndrome is 002000.

Thus the intended encoding was probably 012212-

002000=010212. This decodes as 022=H.

(f) Decode as much as possible of the following

received message, given that the transmitted

message was encoded using C with generator

matrix G, assuming nearest neighbour decod-

ing.

Message:

002112 012212 220112 112100 220112 000000

200021 112000 220112 000000 022022 221000

022200 000000 220112 112000 112000 101200

112000 012020 000000 221000 111112 000000

212012 010212 221000 212021 002000 211121

220112 012021 012021 200021 110221 220112

Hints:
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i. The message digits in 212012 are 202 (why?)

ii. 202 is the representation of the 20-th let-

ter: T.

iii. The message digits in 012212 are 222.

What is going on here?

ANSWER:

002112H t = 000 so decode as 212 − > W

012212H t = 220 so must correct by 012212 →
012212 − 002000 = 010212 so decode as 022

→ H

− > E − > R − > E space

A R E

000000 → 000 → space

022022H t = 111 so must correct by some

choice of weight 2 coset leader (which is at

least as likely to be wrong as right, but it

no worse than any other choice): choosing

010001 we get 022022 - 010001 = 012021 − >

201 − > S (choosing 001010 we get 022022 -

001010=021012 → K here instead!)

221000H t = 000 so decode as 100 → I

...and so on.
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3.8 Hamming codes

Recall: A linear [n,k]-code over Fq with PCM H has

d(C) = d iff every set of d − 1 columns of H is LI, but

there is a set of d columns of H that is LD.

For binary codes, no repeated column in H implies

d(C) ≥ 3. Hamming’s idea was to construct the biggest

possible binary H with no zero columns and no repeated

columns. Fixing a positive integer r, then Zr
2 contains

2r − 1 non-zero vectors. We could simply use them all!:

3.94. Definition. Let H be a r×(2r−1) matrix whose

columns are the distinct non-zero vectors in Zr
2. Then

Ham(Zr
2) is the binary linear code whose PCM is H .

3.95. Example. For r = 3:

H =









0001111

0110011

1010101









Note columns ordered lexicographically. Really we

think of Ham(Zr
2) as a collection of several different

equivalent codes, since we can order the columns as we

like.
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For Ham(Z3
2) we could write

H̃ =









1110 100

1101 010

1011 001









which is in the standard form. Then the generator ma-

trix is

G̃ =















1000 111

0100 110

0010 101

0001 011















3.96. Exercise. Connect this formulation to the ex-

ample introduced earlier.

Theorem 3.97. Ham(Zr
2) has minimum distance 3 and

is perfect.

Proof: H has no zero or parallel columns by construc-

tion, so d ≥ 3. But it contains columns c1, c2, c3 in

lex order obeying c1 + c2 + c3 = 0, so d = 3. Hence

Ham(Zr
2) is perfect iff the collection of 1-balls centred

on codewords exhausts Zn
2 , where n = 2r − 1. But

|B1(x)| = 1 +

(

n

1

)

= 1 + n = 2r

and M = |Ham(Zr
2)| = 2k where k = 2r − 1 − r. So

| ⊔x∈Ham(Zr
2) B1(x)| = 2k × 2r = 2n
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2

Hence the coset leaders of Ham(Zr
2) are all vectors

of weigth ≤ 1. Note that weight 1 binary vectors are

just the eis. Syndrome:

S(ei) = eiH
t = (0, 0, .., 0, 1, 0, .., 0)





















c1

c2

c3

...

cn





















= ci

(here we write ci for the columns written out as rows,

for brevity).

If the columns are ordered lexicographically then the i-

th column is just the binary representation of i. So if

we receive y ∈ Zn
2 with one error, its syndrome S(y) is

the digit position of the error (in binary).

3.98. Example. receive y = 1101101. Then

S(y) = (1, 1, 0, 1, 1, 0, 1)H t = 101 = S(e5)

Syndrome decoding: x = y − e5 = 1101001.

3.8.1 Hamming over non-binary fields

3.99. Definition. Let u, v ∈ F r
q \{0}. u is projectively

equivalent to v, written u ∼ v, if there exists λ ∈ Fq\{0}
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such that u = λv.

This says that u, v are parallel. (NB, being parallel is

an equivalence relation.)

We call the set of projective equivalence classes the pro-

jective space of F n
q , denoted P (F n

q ).

3.100. Example. Z2
5 has the following projective

equivalence classes:

[01] = {01, 02, 03, 04}

[10] = {10, 20, 30, 40}

[11] = {11, 22, 33, 44}

[12] = {12, 24, 31, 43}

...

[14] = {14, 23, 32, 41}

In general there are q − 1 elements in each class, so

there are qr−1
q−1

projective equivalence classes.

3.101. Definition. Let H be a r × qr−1
q−1

matrix (over

Fq) each of whose columns belongs to a different class

in P (F r
q ). Then the q-ary linear code whose PCM is H

is a q-ary Hamming code, denoted Ham(F r
q ).
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3.102. Example. For Ham(F 2
5 ) we could choose PCM

H =





0 1 1 1 1 1

1 0 1 2 3 4



 or H =





0 3 4 1 2 3

2 0 4 2 1 2





Of these, H is best for easy decoding in practice. In

H we chose from each class the unique vector whose

first non-zero digit is 1; and then ordered the vectors

lexicographically. (If we refer to the code Ham(F 2
5 ),

this is the PCM we mean.)

Theorem 3.103. Ham(F r
q ) has minimum distance 3

and is perfect.

Proof: Exercise (optional).

SYNDROME DECODING:

Again we know that coset leaders are vectors of weight

≤ 1, that is, the zero vector (let’s call it 0); and the

vectors of form Aei, where A ∈ Fq \ {0} and 1 ≤ i ≤ n.

Syndromes: S(0) = 0

S(Aei) = AeiH
T = A[0, 0, .., 0, 1, 0, .., 0]



























c1

c2

...

ci

...

cn



























= Aci
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NB, if H is our ‘standard’ choice , then

first non-zero digit of ci is 1 implies first non-zero digit

of S(Aei) is A, which implies that we can read off A

immediately.

SCHEME: (i) receive y; compute S(y);

(ii) If S(y) = 0 then x = y;

(iii) any other S(y) ∈ F r
q must lie in one of the classes of

P (F r
q ), so S(y) = Aci = S(Aei) for some A ∈ Fq \ {0},

1 ≤ i ≤ n.

Decode by subtracting A from digit i:

y 7→ x = y − Aei

3.104. Example. Ham(F 2
4 )

n = |P (F 2
4 )| = 42−1

4−1
= 5, r = 2 implies k = 3, so we

have a [5, 3, 3]-code over F4.

H =





0 1 1 1 1

1 0 1 a b





Suppose we receive y = bab10. We have

S(y) = [b, a, b, 1, 0]HT = [a+b+1+0, b+b+a] = [1+1, a] = [0, a] = a[0, 1]

so

y 7→ x = y − aei = [b − a, a, b, 1, 0] = 1ab10.
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In summary, this is very similar to previous exam-

ples. The main change is in the type of arithmetic done.

3.9 Cyclic codes

We start this section by introducing the technology we

shall need. The use we shall make of it comes later.

3.105. Definition. A code C is cyclic if it is linear and

any cyclic shift of a codeword is also a codeword.

3.106. Example. 2-ary code C = {000, 101, 011, 110}
is cyclic.

3.9.1 Some rings and fields

3.107. Definition. Let F be a field. Then F [x] is the

set of all polynomials in x:

a(x) =
∑

i

aix
i

where ai ∈ F . If a(x) has degree m and am = 1 then

a(x) is said to be monic.

F [x] is a ring, but not a field.

Associated to any polynomial a(x) ∈ F [x] there is a

function: x 7→ a(x) (the evaluation function). In general
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a polynomial is more than a function, however, in the

following sense.

3.108. Example. There are 4 distinct functions from

Z2 → Z2. But there are infinitely many different polyno-

mials in Z2[x]. E.g. a(x) = x5+x2+x+1, b(x) = x17+1,

both have the same function associated to them (exer-

cise!).

Theorem 3.109. [The remainder theorem]

For every pair a(x), b(x) ∈ F [x] with b(x) 6= 0, there

exists a unique pair q(x) (the quotient) and r(x) (the

remainder) in F [x] such that deg(r(x)) < deg(b(x)) and

a(x) = q(x)b(x) + r(x).

Proof: Can construct q(x), r(x) by usual long-division

algorithm, using appropriate arithmetic. 2

3.110. Exercise. Divide a(x) = x3 +3x2 +4 by b(x) =

2x2 + 3 in Z5[x]. 10

3.111. Definition. Choose a fixed polynomial f(x) ∈
F [x]. Then polynomials a(x), b(x) ∈ F [x] are congruent

modulo f(x) (written a(x) ≡ b(x) mod. f(x)), if a(x)−
b(x) is divisible by f(x) (meaning a(x)−b(x) = q(x)f(x)

10Answer:

x3 + 3x2 + 4 = (3x + 4)(2x2 + 3) + (x + 2)
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for some q(x) ∈ F [x], with no remainder).

This is an equivalence relation on F [x] (check it! This

is just like our modular arithmetic).

As usual, denote equivalence (congruence) class of

a(x) by

[a(x)] = {b(x) ∈ F [x] | b(x) ≡ a(x) mod.f(x)}

Let F [x]/f(x) denote the set of such classes. We can

define addition and multiplication on F [x]/f(x):

[a(x)] + [b(x)] = [a(x) + b(x)]

[a(x)][b(x)] = [a(x)b(x)]

(These are well defined by a lemma that you should state

and check, analogous to one we had earlier.)

By these operations F [x]/f(x) is a ring.

Any polynomial a(x) ∈ F [x] has a unique remain-

der r(x) ‘modulo’ f(x), with deg(r(x)) < deg(f(x)) by

Theorem 3.109.

3.112. Lemma. a(x) ≡ a′(x) mod. f(x) iff their

remainders r(x), r′(x) are equal.

The upshot of this is that we can identify [a(x)] with

r(x), the remainder of any of its elements. In this way

we may identify

F [x]/f(x) ↔ {
n−1
∑

i=0

aix
i | a0, a1, .., an−1 ∈ F}
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the set of polynomials of degree < deg(f(x)) = n. Of

course, this set may then be identified with F n — the

list of coefficients.

Altogether this gives us a way to regard the vector

space F n as a ring. That is, we equip it with the extra

operation of multiplication of vectors!

3.113. Example. R = Z2[x]/(x2+x+1) (NB f(x) here

has degree 2), gives R ≡ {0, 1, x, 1 + x} = polynomials

of degree < 2.

Compute the addition and multiplication tables.

Can you compute inverses too?

In fact every non-zero element does have an inverse,

so R is even a field in this case!

3.114. Definition. f(x) ∈ F [x] is reducible if there

exist a(x), b(x) ∈ F [x] with degrees less than that of

f(x), such that f(x) = a(x)b(x).

FACT: F [x]/f(x) is a field iff f(x) is not reducible

(irreducible).

3.115. Lemma. (i) f(x) ∈ F [x] has a degree 1 factor

(x − a) iff f(a) = 0.

(ii) If degree f(x) =2 or 3 then f(x) is irreducible iff for

all a ∈ F , f(a) 6= 0.

(iii) Over any field F , xn − 1 = (x − 1)(xn−1 + xn−2 +

... + x + 1).
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Proof: (i) Use Theorem 3.109. (iii) by induction on n.

2

3.116. Example. Completely factorise x4 − 1 ∈ Z5[x].

11

For cyclic codes the ring of interest is as follows.

3.117. Definition. For given field F , define

Rn = F [x]/(xn − 1)

NOTES:

(a) (xn − 1) is always reducible, so Rn is never a field.

(b) xn ≡ 1 mod. xn − 1, so xn+m = xm for any m. No

need to use remainder theorem to compute products.

E.g. in R5 = Z3[x]/(x5 − 1)

(x2+x)(x4+2) = x6+2x2+x5+2x ≡ x+2x2+1+2x = 2x2+1

(c) Since deg(xn − 1) = n we can identify Rn with poly-

nomials of degree less than n, and hence with F n:

a0 + a1x + ... + an−1x
n−1 ↔ (a0, a1, .., an−1)

addition of polys ↔ vector addition

11Answer: over Z5

x4−1 = (x−1)(x−2)(x−3)(x+1) = (x+4)(x+3)(x+2)(x+1)
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multiplication by constant ↔ scalar multiplication

multiplication by x ↔ cyclic shift.

3.9.2 Back to the codes

We can think of a q-ary code of block-length n as a

subset of Rn (with F = Fq). Then:

Theorem 3.118. A code C ⊂ Rn is a cyclic code iff

(i) a(x), b(x) ∈ C implies a(x) + b(x) ∈ C;

(ii) a(x) ∈ C, r(x) ∈ Rn implies r(x)a(x) ∈ C.

(NB (ii) is more than closure of C under multiplica-

tion!)

3.119. Definition. Let f(x) ∈ Rn. Then

〈f(x)〉 = {r(x)f(x) | r(x) ∈ Rn}

called “the ring span of f(x)”.

Clearly this satisfies properties (i), (ii) of Theorem 3.118.

Hence it is a cyclic code over Fq — the cyclic code gen-

erated by f(x).

3.120. Example. Fq = Z2, C = 〈1 + x2〉 ⊂ R3 =

Z2[x]/(x3 − 1)

R3 = {0, 1, x, 1 + x, x2, 1 + x2, x + x2, 1 + x + x2}

C = {0, 1+x2, x+1, x2+x, 1+x, x+x2+x3+x4, 1+x+x2+x2+x3+x4}
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= {0, 1 + x2, 1 + x, x + x2} ↔ {000, 101, 110, 011} ⊂ Z3
2

3.121. Exercise. Show that 〈1 + x2〉 = 〈1 + x〉 =

〈x + x2〉 in this case.

That is, more than one polynomial can generate a

given cyclic code. However, there is a canonical choice

of generating polynomial:

Theorem 3.122. Let C be a non-zero cyclic code in

Rn. Then

(i) there exists a unique monic polynomial g(x) of least

degree in C;

(ii) C = 〈g(x)〉. In fact every codeword a(x) ∈ C is a

strict multiple of g(x): a(x) = r(x)g(x) (not just con-

gruent mod. xn − 1).

(iii) g(x) is a factor of xn − 1.

3.123. Definition. The unique minimal degree monic

polynomial g(x) in a cyclic code C is called the generator

polynomial of C.

For example, g(x) = 1 + x is the gen. poly. for our

last example.

CRUCIAL FACT:

Since the gen. poly. is unique, cyclic codes of length n

are in 1-to-1 correspondence with monic factors of xn−1.
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This completely characterises all cyclic codes!

3.124. Example. (a) Find all cyclic codes over Z2 of

length 3.

C ⊂ R3 = Z2[x]/(x3 − 1). But

x3 − 1 = (x − 1)(x2 + x + 1) = (x + 1)(x2 + x + 1)

so there are four such codes: 〈1〉 = R3 = Z3
2

〈1+x〉 = {0, 1+x, 1+x2, x+x2} = {000, 110, 101, 011}
〈1 + x + x2〉 = {0, 1 + x + x2} = {000, 111}
〈(1 + x)(1 + x + x2)〉 = {0} = {000}
(b) How many cyclic codes of length 4 over Z5 are there?

Answer: same as number of monic factors of x4 − 1 ∈
Z5[x]. But we already saw that x4 − 1 = (x + 4)(x +

3)(x + 2)(x + 1) over Z5, so the general monic factor is

g(x) = (x + 4)p4(x + 3)p3(x + 2)p2(x + 1)p1

where each pi can be either 0 or 1. Since there are 24

choices here, we have 16 cyclic codes.

For example p1 = p4 = 1, p2 = p3 = 0 gives code

〈(x + 1)(x + 4)〉 = 〈x2 − 1〉
What can we say about this code? What is its di-

mension?

Theorem 3.125. Let g(x) =
∑r

i=0 gix
i be the gen. poly.
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for cyclic code C (note gr = 1). Then

G =















g0 g1 g2 .. gr 0 .. 0

0 g0 g1 g2 .. gr .. 0
. . .

0 ... 0 g0 g1 g2 .. gr















is a generator matrix for C.

3.126. Corollary. A cyclic code C ⊂ Rn whose gen.

poly. has dim. k = n − r has redundancy r.

3.127. Example. Construct a generator matrix for

each 3-ary cyclic code of length 4.

R4 = Z3[x]/(x4 − 1)

(x4−1) = (x2−1)(x2+1) = (x−1)(x+1)(x2+1) = (x+1)(x+2)(x2+1)

(NB (x2 + 1) is irreducible here) so there are 23 monic

factors, hence 8 cyclic codes generated by

g(x) = (x + 1)p1(x + 2)p2(x2 + 1)p3

with pi ∈ {0, 1}. We have the list given in Table 3.2.

To find d(C), do syndrome decoding, etc, it is better

to have a PCM than a generator matrix. So how can we

construct H here?

Recall H is generator matrix for C⊥.

Theorem 3.128. If C is cyclic so is C⊥.
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g(x) redundancy dimension G

1 0 4 14

1 + x 1 3









1 1 0 0

0 1 1 0

0 0 1 1









2 + x 1 3









2 1 0 0

0 2 1 0

0 0 2 1









1 + x2 2 2





1 0 1 0

0 1 0 1





(1 + x)(2 + x) 2 2





2 0 1 0

0 2 0 1





(1 + x)(1 + x2) 3 1
(

1 1 1 1
)

(2 + x)(1 + x2) 3 1
(

2 1 2 1
)

(1 + x)(2 + x)(1 + x2) 4 0 −

Table 3.2:
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So C⊥ has a unique generator polyomial, that is also

a factor of xn−1. If we find it we can us Theorem 3.125

to find a generator matrix for C⊥ and hence a PCM for

C.

3.129. Definition. Let C ⊂ Rn be cyclic with genera-

tor polynomial g(x). Then Theorem 3.122 implies that

there exists another polynomial h(x) such that xn −1 =

g(x)h(x), and h(x) is unique by Theorem 3.109. We call

h(x) the check polynomial of the code C.

3.130. Example. Given that g(x) = x2 + x + 3 is the

gen. poly. of a cyclic 5-ary [4,2]-code C, we have

(x2 + x + 3)(x2 + 4x + 3) ≡ x4 − 1

so h(x) = (x2 + 4x + 3).

Note incidentally that C⊥ 6= 〈h(x)〉.
Theorem 3.131. Let h(x) be the check poly. for code

C. Then a(x) ∈ C iff a(x)h(x) ≡ 0.

It is not true in general that C⊥ = 〈h(x)〉, but we

can construct the gen. poly. for C⊥ from h(x).

Define

H =















hk hk−1 hk−2 .. h0 0 .. 0

0 hk hk−1 hk−2 .. h0 .. 0
. . .

0 ... 0 hk hk−1 hk−2 .. h0














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We have
(

a0 a1 ... ak−1

)

H = 0 (3.3)

for a(x) ∈ C.

Consider C ′, code generated by H . Since h(x) is

monic we have hk = 1, so leading diagonal is all 1s. Thus

H has maximal rank ((n−k)), so dim C ′ = n−k. Also,

any w ∈ C ′ is perpendicular to all a(x) ∈ C by (3.3).

Thus C ′ ⊂ C⊥. But dim C ′ = dim C⊥, so C ′ = C⊥.

Theorem 3.132. Let C ⊂ Rn be a cyclic code with

check poly. h(x). Then H is a PCM for C.

3.133. Example. Recall h(x) = 3 + 4x + x2 is check

poly. for C = 〈x2 +x+3〉 ⊂ R4 = Z5[x]/(x4−1). Hence

H =





1 4 3 0

0 1 4 3





is a PCM for C.

Exercise: check aHT = 0 for all a ∈ C.

THIS is what we want! A construction for the PCM

for C. Armed with this, we can do our usual routines

for coding with C.

It remains to compute a gen poly. for C⊥:

Comparing G and H we see that they are of similar

form. However the reversing of the indices means that
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it is an open question whether

g⊥(x) = hk + hk−1x + ... + h0x
k

— the candidate for the gen. poly. for C⊥ on this basis

— is monic.

We can obtain a monic version by dividing by h0... ...un-

less h0 = 0.

But we need not worry about this: If h0 = 0 then

h(0) = 0 and

xn − 1 = g(x)h(x) ⇒ −1 = g(0)h(0) = 0

which cannot happen.

3.134. Definition. Given p(x) = p0+p1x+ ...+pkx
k ∈

Fq[x] (pk 6= 0) the reciprocal of p(x) is

p(x) = pk + pk−1x + .... + p0x
k ∈ Fq[x]

So we have

3.135. Corollary. Let C ⊂ Rn be a cyclic code with

check poly. h(x). Then C⊥ is the cyclic code with gen

poly.

g⊥(x) = h(0)−1h(x)
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3.136. Example. C = 〈x2+x+3〉 ⊂ R4 = Z5[x]/(x4−
1) has check poly h(x) = 3 + 4x + x2. Hence gen poly.

for C⊥ is

g⊥ = h(0)−1h(x) = 3−1(1+4x+3x2) = 2(1+4x+3x2) = 2+3x+x2

3.10 More Exercises

3.137. Exercise. Can you describe an ‘alphabet’ Σq

of size q, and give an n such that this entire question is

a codeword in some C ⊂ Σn
q ?

Answer:

If we have a Σq consisting of all upper and lower case

letters, all Greek letters, all punctation, some typeset-

ting instructions (subscript etc), and a ‘space’ symbol,

then we can assemble the question from these. The q is

roughly 52+20+20+20 (say). Let’s add in some math

symbols too, and say q = 130.

For n we just count up the number of symbols in the

question, including spaces etc: roughly n = 100.

Another construction would be to have a Σq containing

highly complex composite symbols, whose shapes form

whole words, or perhaps even whole sentences. Of course
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this is much less realistic (the symbol set would be dif-

ficult or impossible to use in most circumstances), but

in the extreme we could have q = 1 (the element is an

image of the whole question) and n = 1!

3.138. Exercise. A code C is known to be 21 error

correcting. State a lower bound on d(C).

Answer:

By our Proposition: If d(C) ≥ 2t + 1 then C can

correct up to t errors by the ‘pick the closest’ strategy.

Thus in our case d(C) ≥ 43.

3.139. Exercise. The set En of even weight binary

vectors of length n is a subspace of Zn
2 . Hence En is a

binary linear code. What are the parameters [n, k, d] of

En? Write down a generator matrix for En in standard

form.

Answer:

k = dim En = n − 1.

d is the minimum weight of non-zero vectors in En ,

which must be 2 (all vectors have even weight, so d ≥ 2,

and 1100 ∈ En has weight 2). Hence En is a binary

linear [n, n−1, 2]-code. Its generator matrix in standard
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form is




















100...01

010...01

001...01

........

000...11





















3.140. Exercise. (i) Construct a binary linear [8,4,3]-

code.

(ii) How many different matrices in standard form gen-

erate such codes?

Answer:

(i) We are looking for a length 8 code C ⊂ Z8
2, with

dimension 4, thus we are looking for a 4 × 8 generator

matrix. Putting this in standard form (without loss of

generality) means

G = [14|A]

where A is a 4 × 4 binary matrix. There are a grand

total of 24×4 such matrices, including the zero matrix;

the identity matrix and so on. Not all of them generate

d = 3 codes, however. For example A = 0 means that

each generating vector (in G = [14|0]) has total weight 1

(so d = 1). Similarly A = 14 means that each generating

vector (in G = [14|14]) has total weight 2.
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In other words each row of A must have at least two non-

zero entries (so that each row of G has at least three),

if we want d = 3. For example

A =















1 1 0 0

1 0 1 0

1 0 0 1

0 0 1 1















Now for each candidate, such as this, we need to check

that the minimum weight of all nonzero vectors is 3.

There are several ways to do this. One way is to con-

struct the PCM:

H = [−At|14] = [At|14]

Here we just need to check that no column is zero and

no two columns are the same (by Theorem 3.89). This

is clearly the same as checking that no two rows of A

are the same (we have stipulated that each row has at

least two non-zero entries, so their transposes cannot be

the same as any of the vectors in 14).

This requirement is satisfied in our example, so we are

done. The code in full consists in all linear combinations

of the row vectors in our G. Thus it starts

C = {00000000, 10001100, 01001010, 00101001, 00010011, 11000110, 1010010
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..., 11111100}

(16 elements altogether).

Remark: Another example satisfying the criteria is

give by

A =















1 1 0 0

1 1 1 0

1 0 0 1

0 0 1 1















Remark: A2(8, 3) = 20, so a binary (8,20,3)-code

exists. Of course no such code can be linear, since |C| =

M = qk for some integer dimension k for a linear code,

and no integer k obeys 20 = 2k! Thus |C| = 24 = 16 is

the biggest linear code we can hope for.

(ii) As for the number of such distinct generating ma-

trices G = [14|A], we can choose the first row of A freely,

except not choosing 0000, or any of the four weight-1

vectors, so there are 24−5 possibilities. The second row

can be chosen freely except not 0000, or weight-1, and

not the same as the first row, so there are 24 − 6 possi-

bilities. Continuing similarly, altogether we have (24−5)!
(24−9)!

choices.

3.141. Exercise. (i) Construct standard arrays for the
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binary linear codes C1, C2 generated by

G1 =





101

011



 G1 =





10110

01011





(ii) Decode the received vectors 11111 and 11011 and

01011 in C2.

(iii) We receive 00101. What is going on?! Explain with

a ball-packing analogy.

Answer:

(i) C1 = {000, 101, 011, 110}. Evidently this has d(C1) =

2.

As usual, the first row of the array is

000 101 011 110

Since 100 is not in the code, and hence has not appeared

in the array so far, we can use it as the next coset leader

(we could have used 001 instead, say). We get the next

row:

100 001 111 010

(just vector shift all the code elements by 100).

At this point we see that all eight vectors in Z3
2 are IN,

so we stop.

Since the weight 1 vectors are not in distinct rows, this
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code is not even 1 error correcting. (Of course we knew

that already, since d(C1) < 3.)

For C2 we start with the code itself in the first row:

00000 10110 01011 11101

Then we construct rows with coset leaders which are (a)

not in the code; (b) of lowest possible weight, i.e. of

weight 1. Since 10000 has not appeared in the code we

lead with that next:

10000 00110 11011 01101

then

01000 11110 00011 10101

In this case none of the weight 1 vectors appear in each

other’s cosets, so we construct a total of 5 rows this way,

continuing with coset leaders 00100, 00010 and 00001.

E.g.

00010 10100 01001 11111

Since |Z5
2| = 32 and each row has 4 vectors in it, we need

8 rows altogether. We have 6 so far. The remainder will

have to be led by vectors of higher weight.

Some weight 2 vectors have already appeared, but 11000,
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10001, 00101, 01100 have not. We can make:

11000 01110 10011 00101

and

10001 00111 11010 01100

and then we are done.

Of course we could have started with one of the others,

which would have produced a different array! This tells

us that our code is not reliably 2 error correcting.

(ii) 11111 lives in a column below codeword 11101

11011 lives in a column below codeword 01011

01011 is a codeword.

(iii) We decode 00101 as 11101, because we decide that

the error in this case was 11000, based on our array

(11000 is the coset leader). Clearly there is no code-

word closer to 00101 than 11101, but there are code-

words equidistant. Indeed 00000 is a codeword at dis-

tance 2 from 00101. Statistically, then, we might just as

well have decoded 00101 as 00000 — and that is what

we would have done if we had made a different arbitrary

choice of a weight 2 coset leader.

This just goes to show that our error correction is not

perfect. It is just the best we can do.

In ball-packing terms, the ball around 00000 of ‘radius’
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2 intersects the ball around 11101 of radius 2. They in-

tersect in vectors such as 10001 and 00101 and 01100.

None of these vectors is any closer to any other code-

word, so we know, receiving one of these, that at least

2 symbol errors have occurred in transmission.

In trying to correct this we’d like to choose the closest

codeword, but there is no unique closest. Thus there

is really nothing to choose between guessing 00000 and

11101. We pick arbitrarily from these codewords at dis-

tance 2 and hope for the best (or perhaps seek retrans-

mission).

3.142. Exercise. Let C be the 3-ary [4,3]-code gener-

ated by

G =









1 2 2 1

2 1 0 1

0 1 1 1









Find a PCM for C. Hence list the codewords of C⊥.

Answer:

First we try to get G in standard form. We subtract

two lots of row 1 from row 2:

G 7→









1 2 2 1

0 −3 −4 −1

0 1 1 1









≡









1 2 2 1

0 0 2 2

0 1 1 1








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Then subtract two lots of row 3 from row 1; then add

row 2 to row 3; then swap rows 2 and 3; then mult row

3 by 2:

G 7→









1 0 0 2

0 0 2 2

0 1 1 1









7→









1 0 0 2

0 0 2 2

0 1 0 0









7→









1 0 0 2

0 1 0 0

0 0 1 1









Now viewing this as G = [13|A] we put H = [−At|14−3].

Thus

H = (−2, 0,−1, 1) ≡ (1, 0, 2, 1)

This generates C⊥ = {0000, 1021, 2012}.
3.143. Exercise. Let C be the [3,2] code over F4 =

{0, 1, a, b} generated by

G =





1 0 a

0 1 b





Explain the meaning of the symbols a and b in this field;

write down the addition table for it; and hence or oth-

erwise determine the codewords of C and C⊥.

3.144. Exercise. Let C be the binary [7,4] code gen-

erated by

G =















1000111

0100110

0010101

0001011














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(a) (i) find a PCM H for C

(a) (ii) compute G.H t

(b) show that d(C) = 3

(c) (i) show that C is perfect

(c) (ii) how many coset leaders have weight 1?

(d) construct a syndrome look-up table for C

(e) decode the received vector 1110100.

3.145. Exercise. Write down a PCM for the binary

Hamming [15,11] code.

Answer:

We need to write down all non-zero vectors in Z4
2 as

columns:

H =















000000011111111

000111100001111

011001100110011

101010101010101

















Chapter 4

Mathematical

Preliminaries

4.1 Sets

• A SET is a collection of objects.

• A specific set is ‘defined’ by any means which un-

ambiguously tells us how to determine whether an

arbitrary object is in the set or not.

• The objects in a set are called the ELEMENTS of

the set. We write x ∈ S in case x is an element of

set S. We write x 6∈ S otherwise.

181
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3
4

21

Example 1 Suppose we write S = {1, 2, 3, 4}. Then S

is a set, 1 ∈ S, and 2 ∈ S, but 5 6∈ S, and of course

[My pet ElephanT ] 6∈ S (see figure).

Example 2 Suppose T = {x an integer | x2 < 27}.
This is another set (here | means ‘such that’). We have

−1 ∈ T , 6 6∈ T , −6 6∈ T , 0 ∈ T , and so on.

Example 3 Suppose V = {0, 1, 2, 3, 4, 5,−1,−2,−3,−4,−5}.
This is also a set. The order in which we write the ele-

ments in a set is not important.
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4.1. Definition.[SUBSET] A set S is a subset of a set

T if and only if every element of S is an element of T .

A mathematical notation representation of this defi-

nition is:

S ⊆ T ⇐⇒ (x ∈ S ⇒ x ∈ T ).

Make sure you understand what each symbol means, and

how to read this line as a sentence in ordinary language!

For example, ⊆ is the symbol for subset; ⇐⇒ , also

written iff, means ‘if and only if’; and ⇒ is the symbol

for ‘implies’. The brackets here are a guide to the eye,

containing a statement within the sentence which is a

composite of other statements.

Example 4 Comparing S from example 1 and T from

example 2 we see that S ⊆ T .

Example 5 Let S be the set of playing cards in a 52

card deck of playing cards. Then the set of all ‘club’ cards

is a subset S♣ of S. Suppose that a card dealer deals out

the pack into 4 equal hands (i.e. 13 cards each). Each

of these hands is a subset of S. What is the probability

that one of these hands is S♣?

A set S ⊆ T is called a PROPER subset of T (written

S ⊂ T ) provided at least one element of T is not in S.
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We write S = T if S ⊆ T and T ⊆ S.

Example 6 Comparing T from example 2 and V from

example 3 we see that T = V .

Exercise 8 Write down five sets — call them S1, S2, S3, S4, S5,

say — with the property that Si ⊂ Si+1 for i = 1, 2, 3, 4

(i.e. S1 ⊂ S2, and so on).

Exercise 9 Show that for A, B, C sets, if A ⊂ B and

B ⊂ C then A ⊂ C.

The general procedure for solving this kind of problem

is as follows:

State what is to be done in mathematical notation;

if the solution is very long (not the case here, as we will

see!) give a one sentence overview of your plan of attack;

convert the known information into mathematical nota-

tion (expanding up all terms to their full definitions)

and rearrange to achieve the required result....

Solution 9.1 We need to show that x ∈ A implies x ∈
C, and that there is some y ∈ C such that y 6∈ A. Sup-

pose that A ⊂ B and B ⊂ C. Since A ⊂ B then x ∈ A

implies x ∈ B. Further since B ⊂ C then x ∈ B implies

x ∈ C. Altogether then x ∈ A implies x ∈ C, which
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shows that A ⊆ C. But A ⊂ B also implies that there

exists y ∈ B such that y 6∈ A, and since y ∈ B implies

y ∈ C then A ⊂ C. QED.

4.1.1 Sets built from other sets

In what follows, S, T are two sets:

4.2. Definition.[INTERSECTION] We define a new

set, the ‘intersection of S and T ’, written S ∩ T , by

S ∩ T = {x|x ∈ S and x ∈ T}.

For example, if S = {1, 2, 4}, T = {1, 3, 4, 5, 6}, then

S ∩ T = {1, 4}.
The EMPTY set, denoted ∅, is the set containing no

objects. For example,

{1, 3, 5} ∩ {2, 4, 6} = ∅.

4.3. Definition.[DISJOINT] We say that two sets A, B

are disjoint in case A ∩ B = ∅.

Example 7 Let W be the set of all those ancient Egyp-

tian pyramids under whose northernmost foundation stone

is hidden evidence that aliens once visited the Earth. It

is true to say that there is a set E such that W ⊇ E,
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since W ⊇ ∅ and W ⊇ W . But is it true that there is a

set E such that W ⊃ E?

4.4. Definition.[UNION] We define a new set

S ∪ T = {x|x ∈ S or x ∈ T}.

N.B. The ‘or’ here is the inclusive or.

For example, if S = {1, 2, 4}, T = {1, 3, 4, 5, 6}, then

S ∪ T = {1, 2, 3, 4, 5, 6}.

Exercise 10 Verify that S ∪ (T ∪ V ) = (S ∪ T )∪ V for

all sets S, T, V .

From this exercise we see that we may speak unambigu-

ously of the union of several sets (i.e. not just two sets).

4.5. Definition.[POWER SET] The power set of a set

S, denoted P(S), is the set of all subsets of S.

Example 8 P({∅}) = {∅, {∅}}. Notice how careful one

must be with the brackets for this to make any sense.

In SET THEORY it is useful to have a notion of ‘all

possible objects’ which might be collected together to

form sets. Unfortunately this notion is really too vague

as it stands. In practice we define a UNIVERSAL set

U to be a set containing all possible objects under dis-

cussion (with the kind of object under discussion be-

ing determined, perhaps implicitly, by the context). We
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usually specify a universal set for a given problem as

some set which, at least, contains as subsets all the sets

in which we are currently interested.

The COMPLEMENT of a set S (with respect to

some such universal set U) is written S ′, and means

the set of all objects in U NOT in S.

4.1.2 Cartesian product

4.6. Definition.[CARTESIAN PRODUCT] The Carte-

sian product of two nonempty sets S and T , written

S × T , is the set S × T given by

S × T = {(a, b)|a ∈ S and b ∈ T}

where (a, b) ∈ S × T is a constructed object made from

the ordered pairing of a and b.

For example,

{1, 2, 3}×{x, y} = {(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)}.

Note that the order in which we write the pair (1, x)

(say) is important. This pair is a single element of the

Cartesian product. The pair (x, 1) is NOT an element

of the Cartesian product in our example (but it would

be an element of {x, y}×{1, 2, 3}, so obviously S×T 6=
T × S in general!).
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Example 9 Let H = {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K}
— the set of values on the cards in a 52 card deck of

playing cards. Then the set S from example 5 may be

written

S = H × {♣,♥,♠,♦}

where (2,♣) represents the two of clubs, and so on. In

this notation we might write S♣ = H × {♣} (it might

be safer to write ∼= instead of =, see later). We may

similarly introduce S♥ = H × {♥}, and so on. Note

that S♥ ∩ S♣ = ∅; and S♥ ∪ S♣ ∪ S♠ ∪ S♦ = S.

4.1.3 Aside on the subsets of the set of

real numbers

We will discuss the topic of real numbers later, but in or-

der to introduce some notation we here note that the set

of real numbers, denoted R, has a sequence of subsets:

∅ ⊂ N ⊂ Z ⊂ Q ⊂ R.

Exercise 11 Explain the meaning of each of these sym-

bols.
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The set of NATURAL NUMBERS, denoted N, satisfies Peano’s axioms:

(a) 1 ∈ N;

(b) for each n ∈ N there exists a unique n′ ∈ N called ‘the successor of n’,

(n + 1);

(c) 1 is not the successor of any n ∈ N;

(d) if n′ = m′ then n = m;

(e) if S ⊆ N and 1 ∈ S and if n ∈ S implies (n + 1) ∈ S, then S = N.

Let us see what we get using these axioms:

N = {1, (1 + 1), ((1 + 1) + 1), (((1 + 1) + 1) + 1), ((((1 + 1) + 1) + 1) + 1),

Of course we have a shorthand for this:

N = {1, 2, 3, 4, 5, .....}.

Exercise 12 Give an example of a set N which satisfies all of Peano’s axioms

axiom (c): 1 is not the successor of any n ∈ N.

Solution 12.1 Without this axiom we could allow, for example,

(((((1 + 1) + 1) + 1) + 1) + 1) = 1.

Then

N = {1, 2, 3, 4, 5}

(and + doesn’t have its usual meaning!).

We have lots more to say about sets and numbers. We

will come back to them later.
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4.2 Relations and Functions

Let S and T be nonempty sets. A RELATION from S

to T is any subset of S × T .

For example, if S is the set of Mathematicians, and T

is the set of Statisticians, then we might define a relation

ρ by writing

ρ = {(a, b) ∈ S × T |a is older than b}.

It is often convenient to write aρb (and say ‘a has the

relation ρ with b’, or ‘a stands in relation ρ to b’, or in

this case simply ‘a is older than b’) in case (a, b) ∈ ρ.

Note in particular than in this example (and in gen-

eral) aρb does not imply bρa!

Suppose we have a relation ρ ⊆ S × T . Then

4.7. Definition.[DOMAIN] The domain of ρ, written

dom ρ, is the set of elements of S which appear as the

left hand sides of pairs which are elements of ρ.

For example, if ρ = {(1, x), (2, x)} then dom ρ =

{1, 2}.

4.8. Definition.[RANGE] The range of ρ, written

ran ρ, is the set of elements of T which appear as the

right hand sides of pairs which are elements of ρ.

In our example, ran ρ = {x}.
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4.9. Definition.[INVERSE] The inverse of ρ, written

ρ−1, is the set obtained by reversing the order of each

pair in ρ.

In our example ρ−1 = {(x, 1), (x, 2)}.
Let ρ be a relation from S to T . Then it is also a

relation from dom ρ to T .

Exercise 13 Show that ρ is also a relation from S to

ran ρ.

Solution 13.1 This is an example of a simple kind of

‘proof’ of a claim, where we simply have to insert the

definitions of the terms and rearrange a little:

We have to show that (a, b) ∈ ρ implies b ∈ ran ρ.

But the definition of ran ρ says that it is the set of all

right hand sides of such pairs, so certainly it includes

this one!

Exercise 14 (compulsory) By similar means:

1) Show that a relation ρ is also a relation from

dom ρ to any Q such that Q ⊃ ran ρ.

2) Show that a relation ρ is NOT a relation from

dom ρ to any P such that P ⊂ ran ρ.

4.10. Definition.[ FUNCTION] A function is a rela-

tion in which each element of the domain appears ex-

actly once as the left hand side of a pair.
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Thus {(1, x), (2, x)} is a function, but {(x, 1), (x, 2)}
is not. To generate some more examples let us consider

A = {a, b, c, d}, B = {r, s, t, u, v}. Then:

(i) {(a, t), (c, r), (d, s), (c, v)} is not a function from A to

B because c appears twice;

(ii) {(a, u), (b, r), (c, s), (d, u)} is a function;

(iii) {(a, c), (a, u), (b, s), (c, r), (d, t)} is not a function;

(iv) {(a, u), (b, u), (c, u), (d, u)} is a function;

(v) {(a, r), (b, s), (c, t), (d, u)} is a function.

Recall that we can think of the set of real numbers

R as the set of points on the x-axis of a Cartesian x, y

frame. Then the set R × R = R2 may be represented

by the points on the whole plane (i.e. with ”coordi-

nates” (x, y) ∈ R2). It follows that any subset of the

points of the plane is a relation! In particular any line

drawn on the plane gives a relation. We are familiar

with the representation of functions from R to R by this

means. On the other hand, we know that only certain

lines drawn on the plane correspond to a function (an

arbitrary scribble, while giving a perfectly good relation,

would not normally be a function). You should compare

your intuitive understanding of this with the definition

above!

Since each element of the domain appears exactly
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once in a function, we have the opportunity for a new

and neater notation. The right hand side of each pair

in the function is uniquely given by the left hand side.

We can recognise this by writing the pair (x, f(x)) ∈ f ,

say. Of course we then often go on to specify the right

hand side ”as a function of” the left hand side explicitly,

arriving at the more familiar notation for functions, for

example:

f(x) = 1 + x2.

Altogether we give the concrete definition of a specific

function as follows. First we specify the name of the

function, and the domain, and the CODOMAIN (which

is any set containing the range - this definition may seem

rather arbitrary at first, but it is quite convenient, as we

will soon see). For example if f is the function, A is the

domain and B ⊇ ran f we write

f : A → B

and say ”the function f maps the set A into the set B”.

Then we write

f : x 7→ f(x)

which means that the action of f on a specific element

x ∈ A is to take it to f(x) ∈ B. In practice at this point
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we may be able to give f(x) explicitly. For example we

might write, altogether,

f : R → R

f : x 7→ x3 + 3x − 2.

This may seem like a lot of fuss over nothing! It isn’t,

and you should take care to study it very carefully.

There will be examples shortly. First, here are some

refinements:

4.11. Definition.[ONTO] A function f : A → B is

called onto (or SURJECTIVE) if ran f = B.

Note that examples (ii),(iv) and (v) above are NOT

onto.

4.12. Definition.[ONE-TO-ONE] A function is one-

to-one (or INJECTIVE) if

( (a, b) ∈ f and (a′, b) ∈ f ) implies a = a′.

That is, distinct elements in A have distinct ”im-

ages” in B (f(a) ∈ B is called the ”image of a under

f”). Note that examples (ii) and (iv) above are not

one-to-one, but that example (v) is one-to-one.

A function which is not one-to-one is called MANY-

TO-ONE.
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4.13. Definition.[BIJECTION] A function which is

both one-to-one and onto is called a bijection.

Exercise 15 Give three examples of bijections.

There are various useful pictorial representations of

functions. These will be discussed in class.

4.14. Definition.[IDENTITY FUNCTION] For each

set A there is a function from A to A, called the identity

function, denoted 1A, and given by

1A : A → A

1A : a 7→ a.

Two functions h and g are said to be EQUAL (writ-

ten h = g) if they have the same domain and codomain,

and h(x) = g(x) for all x in the domain. For example, if

h, g are two functions from R to R given by h(x) = x+x

and g(x) = 2x, then h = g.

The restriction of a function f to a subset of the do-

main is the function on that subset obtained by applying

f to it.

4.2.1 Composition of functions

Let f : A → B and C ⊇ ran f and g : C → D. Then
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4.15. Definition.[COMPOSITE FUNCTION] The com-

posite function g ◦ f is defined by

g ◦ f : A → D

g ◦ f : a 7→ g(f(a)).

We write (g ◦ f)(a) = g(f(a)).

For a relation ρ we understand ρ(a) to be the set of

objects b such that aρb. For S a subset of the domain of

ρ we understand ρ(S) to be the union of sets ρ(s) over

every s ∈ S. Relations are then composable in much the

same way as functions.

Although every relation has an inverse (and hence

every function has an inverse as a relation), not every

function has an inverse which is itself a function.

Exercise 16 Show that the inverse of a function is a

function if and only if the function is a bijection.

Exercise 17 For f : A → B a bijection, show that

f ◦ f−1 = 1B

and

f−1 ◦ f = 1A.
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4.2.2 Permutations

If the number of elements in a set is a natural number

(i.e. if it is finite, since then it is certainly a non-negative

whole number!) then the set is called a finite set. For

example, A = {a, b, c, d, e, f, g} is a finite set, as it has 7

elements; meanwhile R is not a finite set. We will return

to this point later.

4.16. Definition.[ORDER] The order (or degree) of a

finite set A, denoted |A|, is the number of elements in

the set.

Denoting the set of all finite sets by F , then the

‘order’ operation is a function

Order : F → N

i.e.

Order : A 7→ |A|.

For example, if B = {a, b, c, d} then Order(B) = |B| =

4.

4.17. Definition.[PERMUTATION] A bijection f :

A → A on a finite set A is called a permutation of A.

For example, if S = {1, 2, 3, 4} then f given by

f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 1 is a permu-
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tation. Permutations may be written in the form





a b c ... x

f(a) f(b) f(c) ... f(x)



 .

This one then becomes




1 2 3 4

2 3 4 1



 .

Exercise 18 Verify that any f : A → A is 1–to–1 if

and only if it is onto.

Let A be a finite set of degree n, and f be a permuta-

tion of A. If repeated composition of f with itself pro-

duces the identity function after |A| compositions and

not before (or, equivalently, if for any x ∈ A we have

that {x, f(x), (f ◦ f)(x), (f ◦ (f ◦ f))(x), ...} = A) then

the permutation is called a CYCLE of A, or n–CYCLE.

More generally, if f restricts to a cycle of B for some

B ⊂ A, and acts as f(x) = x for all x 6∈ B, then f is

a |B|–cycle. (Note that there are no permutations of A

which are p-cycles with p > n.)

Exercise 19 Show that the f defined in the example

above is a cycle. Give an example of a bijection g : S →
S which is not a cycle.
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Exercise 20 Let A be the set of letters in the alphabet,

together with the hyphen symbol – (so |A| = 27). Let A′

be the subset of these symbols occuring at least once in

the word gerbil–brain. Write down A′.

Let f : A′ → N be the alphabetical ordering of these

symbols (so f(a) = 1, f(b) = 2, f(e) = 3, and so on)

with f(–) = 9. Note that |ran f | = 9. What is the word

obtained by applying the inverse of f to the sequence of

elements of ran f given by 1653791643281?

4.3 Equivalence Relations

Let ρ be a relation from set A to A (i.e. ρ ⊆ A × A).

Then

4.18. Definition.[REFLEXIVE/SYMMETRIC/TRANSITIVE]

.

1. ρ is reflexive if and only if aρa for all a ∈ A.

2. ρ is symmetric if and only if whenever aρb then

bρa.

3. ρ is transitive if and only if whenever (aρb and

bρc) then aρc.

Examples:

ρ = ”belongs to the same family as” is reflexive,

symmetric and transitive;
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ρ = ”is an ancestor of” is transitive;

ρ = ”is the mother of” is none of these!

4.19. Definition.[EQUIVALENCE RELATION] A re-

flexive, symmetric, transitive relation is an equivalence

relation.

Such a relation is often written ∼ (as in a ∼ b) unless

it already has a name.

For specific relations, we usually define a pair, con-

sising of the set A together with its equivalence relation:

(A,∼). Thus we have:

(1) (N, =) given by aρb if and only if a = b;

(2) (Z,∼) given by a ∼ b if and only if 5|(a−b) (here

we have introduced the following

4.20. Definition.[DIVIDES] For n, m ∈ Z we say p

divides m, and write p|m (not to be confused with p/m),

in case the equation m = pn is solved by some n ∈ Z.

for example here 11 ∼ 1 (i.e. 5|(11−1)) since 11−1 =

5.2 - see later).

Let’s check these:

In (1) we have a = a for any number a, so the re-

lation is reflexive; if a = b then certainly b = a, so it

is symmetric; and if a = b and b = c then a = c, so

transitive;
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(2) is more of a challenge, we have (a−a) = 0 and 5|0,

so reflexive; we have (a−b) = −(b−a), so if 5|(a−b) then

5|(b− a), so symmetric; and finally if (a− b) = 5k (say)

and (b − c) = 5l (with k, l ∈ Z) then (a − c) = 5(k − l),

so transitive!

The relation (2) is sometimes written a ≡ b (mod.5).

4.3.1 Equivalence classes

4.21. Definition.[EQUIVALENCE CLASS] Given a

pair (A,∼) we define the equivalence class containing

a ∈ A to be the set

[a] = {x ∈ A : x ∼ a}.

Note that [a] ⊆ A; a ∈ [a]; and if b, c ∈ [a] then

a ∼ b, c ∼ a and indeed b ∼ c (i.e. any two elements of

the same class are equivalent).

Theorem 4.22.[On equivalence classes] Let ∼ be an

equivalence relation on a set A and let [a] be the equiv-

alence class of a ∈ A. Then for any a, b ∈ A

(i) [a] = [b] if and only if a ∼ b;

(ii) if [a] 6= [b] then [a] ∩ [b] = ∅.
Proof: The theorem may be broken into three parts.

Firstly, the ‘if’ part of (i):
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We can write this part [a] = [b] ⇐ a ∼ b, so this is

what we need to show. In other words we must show

that if we assume a ∼ b, then [a] = [b] follows, so....

Let a ∼ b. Then by definition a ∈ [b]. Then again,

[a] ⊆ [b], since if x ∈ [a] then x ∼ a, but a ∼ b and so

by transitivity x ∼ b, that is x ∈ [b]. Similarly [b] ⊆ [a],

so finally [a] = [b].

Now the ‘only if’ part of (i) (i.e. to show [a] = [b] ⇒
a ∼ b):

If [a] = [b] then since b ∼ b we have b ∈ [a] and so

b ∼ a;

Lastly, part (ii):

We will prove this by CONTRADICTION. This means

we assume the opposite to what is required, and prove

this must be false (if the opposite is false, then logically

the statement itself must be true). The trick here is to

figure out what the opposite of the statement is! This is

not always obvious, but in our case the opposite would

be:

a and b can be found such that [a] 6=
[b] but [a] ∩ [b] 6= ∅.
Let’s assume this statement true, and see what happens.

Consider such an a and b, and consider any x ∈ [a]∩ [b].

If it exists (the last ingredient of the statement says
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it does!) then this means x ∼ a and x ∼ b. This

then implies a ∼ b by symmetry and transitivity. But

part (i), which is already proved, says that this can only

happen when [a] = [b] — a contradiction between the

consequences of the first and second ingredients of the

statement. The only resolution is that there can be no

such x — that is, [a] ∩ [b] = ∅. QED.

There will be more examples of this kind of proof

shortly.

4.23. Definition.[PARTITION] Given a set A, if there

exists a set I and a collection of nonempty subsets {Xi | i ∈
I} of A such that

(i) x ∈ A implies x ∈ Xi for some i ∈ I;

(ii) Xi ∩ Xj = ∅ unless i = j,

then the collection {Xi | i ∈ I} is said to form a partition

of A.

So BY THEOREM 1 an equivalence relation ∼ on a

set A defines a partition of A into its equivalence classes.

Example 10 (Z,∼) where a ∼ b iff (a− b) divisible by

5.

We have

[0] = {....,−10,−5, 0, 5, 10, 15, ...}
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[1] = {....,−9,−4, 1, 6, 11, 16, ....}

[2] = {....,−8,−3, 2, 7, 12, 17, ....}

and [3], [4] similarly (exercise). Altogether there are five

classes partitioning the integers Z. Sometimes we write

these classes simply as 0, 1, 2, 3, 4 ‘modulo 5’ (or mod 5).

Note that [0] = [5] = [10] = ..., and [3] = [8] = [13] = ...

and so on.

The SET OF EQUIVALENCE CLASSES here has

five elements and is written Z5 - sometimes called the

set of ‘residues’ mod 5.

We can do ‘mod 5’ arithmetic, as in

4 + 3 = 2 mod 5.

This makes sense in as much as the sum of any element

of [4] with any element of [3] is always some element

of [2]. (For example 9 + 8 = 17. Now check it in the

general case!). Multiplication also works on residues, in

a similar way (check it!).

This can be done for residue classes modulo any in-

teger. For example we have a complete arithmetic ‘mod
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3’:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

× 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

.

Special things happen when the integer is prime as here.

See later.

Conversely, given a partition of A we can define an

equivalence relation on A by a ∼ b iff a, b belong to

the same set Xi of the partition. For example: Let A =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 0}with partition {1, 2, 0}, {3}, {4, 5, 7}, {6, 8}, {9};
then the corresponding equivalence relation is

{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (0, 0), (1, 2), (2,

(0, 1), (2, 0), (0, 2), (6, 8), (8, 6), (4, 5), (5, 4), (4, 7), (7, 4), (5, 7), (7, 5)}.

4.4 Countability

Consider the collection A of all sets. (We could say the

set of all sets. This is a potentially dangerous notion —

see [Cohn] on Russell’s Paradox — but the dangers need

not concern us here.) For X, Y sets let X ∼ Y iff there

exists a bijection f : X → Y . Note

(i) 1X : X → X, so ∼ is reflexive;
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(ii) If f : X → Y is a bijection, then f−1 : Y → X

is a bijection, so ∼ is symmetric;

(iii) f : X → Y and g : Y → Z bijections implies

(g ◦ f) : X → Z is a bijection, so ∼ is transitive.

Altogether then, we have an equivalence relation.

In some sense (and precisely for the finite sets) each

equivalence class contains all the sets with the same

‘number of elements’.

For a set A the equivalence class [A] is written

Card A (‘Cardinal A’). Card A = Card B iff A, B

are ‘numerically equivalent’.

For finite sets the equivalence class of all sets contain-

ing n elements is sometimes written simply as n. This

n is called a ‘cardinal number’ (in general such numbers

are the numbers associated with set sizes - but the finite

cardinal numbers are the natural numbers n ∈ N).

A set in Card N is called COUNTABLY INFINITE.

A countable set is either finite or infinite. A set is count-

able, it ‘can be counted’, if when one sets out to count

the elements (i.e. assign a distinct number to each of

them from 1,2,3,...) there is a way of doing this such that

any given element of the set eventually gets counted.

N.B. This is not the same as saying that all the elements

will be counted in finite time. Card N is sometimes de-
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noted ℵ0 (‘aleph zero’).

Example:

E = {2, 4, 6, 8, 10, 12, ...} ⊂ N

what is the cardinality of E? Well,

f : N → E

f : x 7→ 2x

is a bijection (check it!), so Card E = ℵ0.

Obviously ℵ0 is not any finite cardinal number. In

a sense it is bigger. In a similar sense, as we will see

shortly, there are still bigger infinite numbers (i.e. there

are infinite sets too big to have a bijection with N)!

We call ℵ0 a TRANSFINITE NUMBER. We have the

following transfinite arithmetic:

2 ℵ0 = ℵ0

(since naively we threw away half the elements of N to

get E, and yet it didn’t change the cardinality)

ℵ0 + ℵ0 = ℵ0

ℵ0 + 1 = ℵ0

....so, is every infinite set countable? Well, what sets

do we know which are bigger than N? Obviously we
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have the rational numbers - even the set Q+ of positive

rational numbers obeys Q+ ⊃ N, but in fact:

4.24. Proposition. Card Q+ = ℵ0

Proof: We will list the elements of Q+ in such a

way that a bijection with N (i.e. a way of ‘counting’

the elements such that any given element is eventually

counted) can be explicitly given.

We organise the elements of Q+ as follows:

1/1 1/2 1/3 1/4 1/5 ...

2/1 2/2 2/3 2/4 2/5 ...

3/1 3/2 3/3 3/4 3/5 ...

...

(here many elements are counted more than once, but at

least we can be sure that eventually any given element

does appear on the grid). Now suppose we consider

an arbitrary element, which is of the form x = p/q by

definition. Each South-East diagonal of the grid gives

all the numbers with fixed p+ q. We will count through

the grid starting from the top left and then counting

up each such diagonal in turn (i.e. running through the
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diagonals in order p + q = 2, 3, 4, 5, ...). That is, our

bijection will be:

f(1/1) = 1

f(2/1) = 2

f(1/2) = 3

f(3/1) = 4

(2/2 has already been counted as 1/1)

f(1/3) = 5

f(4/1) = 6

and so on. QED.

You should check that you understand how the one-to-

one and onto conditions are satisfied here.

4.25. Corollary.[Exercise] Card Q = ℵ0.

4.4.1 Uncountability

So we still havn’t found any bigger ‘numbers’ than ℵ0,

even though Q contains N and much much more. What

about the even bigger set R?

4.26. Proposition. Card R 6= ℵ0.

Proof: We will prove the proposition by contradic-

tion! In other words we will assume that R is countable,

and prove that this must be wrong.
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If we assume that R is countable then any subset

must also be countable (if every element can be counted,

then every element of a subset can be counted). Let

us consider the set (0, 1) ⊂ R, which is the set of real

numbers between 0 and 1. Our assumption implies that

(0, 1) is countable, so that each x ∈ (0, 1) may be num-

bered distinctly by some function f , a bijection onto the

natural numbers. Since it is a bijection it has an inverse

f−1, i.e. for each natural number n there is a unique

real number f−1(n) in the interval (0, 1).

Now consider an x ∈ (0, 1) written in decimal form.

This form may be familiar to you. For example x =

.7 = .70000... (recurring 0s) or x = .76582342222.... (re-

curring 2s), or x = π − 3 = .1415926... (no recuring

pattern!). Note that to avoid duplicating values x we

can avoid recurring 9s. To see why recurring nines are

redundant consider, say, .79999... (recurring 9s) and

.80000... (recurring 0s). The calculation 9× .79999... =

(10 × .79999...) − .79999... = 7.9999... − .79999... = 7.2

shows that .79999... = .8 . Now consider a particular

decimal

y = .a1a2a3a4....

(e.g. y = .2343479...., so each ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}).
Suppose that for all i, the ith decimal place - ai - is cho-
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sen to be different from the ith decimal place of the real

number f−1(i). For example a1 is different from the first

decimal place of f−1(1); a2 is different from the first dec-

imal place of f−1(2); and so on.

By this construction y differs from each and every el-

ement of the list of images of f−1 in at least one decimal

place. But of course if two numbers are the same then

(excluding the situation with recurring 9) they must be

the same in every decimal place, so y is actually a differ-

ent number from each and every element of the list. But

it is of the form y = .a1a2...., so certainly y ∈ (0, 1). But

then f−1 is not onto, so it is not a bijection, so neither

is f , which is then a CONTRADICTION of the original

assumption.

We conclude that the assumption must be wrong,

that is (0, 1) is ‘uncountable’. Then R is uncountable.

QED.

Now we can introduce a new ‘number’: Card R,

which is often written C for ‘continuum’.

This raises some intriguing questions. For example:

Are there any cardinal numbers ‘between’ ℵ0 and C?

Are there numbers bigger than C? The mathematician

CANTOR has thought a lot about these problems, with

limited success. For the first question we have ‘Cantor’s
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continuum hypothesis’, in which he claims that there are

no cardinal numbers between ℵ0 and C. What do you

think?......

For the second question - let us recall the notion of

power set P(S) - the set of all subsets of S.

Exercise 21 Verify that for finite sets

|P(S)| = 2|S|.

In general considering Card P(S) (which we may abuse

notation to write as 2Card S) is a reasonable way of trying

to generate new cardinals. Cantor proved that Card P(S) >

Card S continues to hold for transfinite numbers, so

there exist infinitely many transfinite cardinals:

ℵ0, 2
ℵ0, 22ℵ0

, ....

Exercise 22 (Difficult) Prove that Card P(N) = 2ℵ0 =

C.

4.27. Definition.[ℵ1] We define ℵ1 to be the next big-

ger cardinal after ℵ0.

This raises the question: Is ℵ1 = C? What do you

think?...
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4.5 Orderings

Let P be a non-empty set.

4.28. Definition.[Partial Order Relation] A partial or-

der relation on P , usually written ≤, is a relation with

the following properties:

(i) x ≤ x for all x ∈ P (reflexivity);

(ii) x ≤ y and y ≤ x implies x = y (‘anti-symmetry’);

(iii) x ≤ y and y ≤ z implies x ≤ z (transitivity).

Then the pair (P,≤) is called a partially ordered set,

or just a poset for short.

Examples:

(1) (N,≤) where ≤ means ‘less than or equal to’ is

a poset.

(2) (N, <) is NOT a poset (it fails reflexivity test).

(3) (Z, a divides b) is NOT a poset (1 divides -1, and

-1 divides 1).

(4) (N, a divides b) is a poset.

(5) For X any set then (P(X),⊆) is a poset.

Let us check this one:

Reflexivity: A ⊆ A for any set A, so OK.

Anti-symmetry: A ⊆ B, B ⊆ A implies A = B, again

for any two sets.

Transitivity: A ⊆ B, B ⊆ C implies A ⊆ C, so OK.
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(6) For X a nonempty set, the set of all real valued

functions f : X → R, with relation f ≤ g iff f(x) ≤ g(x)

for all x ∈ X, is a poset.

4.5.1 Diagrammatic representation of posets:

Hasse diagrams

In a Hasse diagram we take advantage of the definition

to represent a poset as follows. We draw a ‘node’ or spot

for each element of the set, and a bond between nodes

x and y (say) if either x ≤ y or y ≤ x (if there is some

z such that x ≤ z ≤ y we only draw bonds between

x and z and between z and y, since this automatically

creates a connection for us between x and y). We draw

y ABOVE x on the page if y ≥ x.

For example: (1) S = {x, y} with x ≤ y then the

diagram is

x

y

where x ≤ x and y ≤ y are to be understood implicitly.

(2) S = {x, y, z, t} with x ≤ y, y ≤ t, x ≤ z (and

x ≤ x, y ≤ y, z ≤ z, t ≤ t and x ≤ t implicitly) is
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z

t

x

y

We will give some more examples in the lecture.

4.29. Definition.[Comparability] In a poset (P,≤) two

elements x, y ∈ P are said to be comparable iff x ≤ y or

y ≤ x (i.e. if joined in the Hasse diagram).

For example, in (P({1, 2, 3}),⊆) the elements {1}
and {2} are NOT comparable, but {1} and {1, 2} are

comparable.

Then again in (N, m divides n) we have that 4 and 6 are

not comparable but 3 and 6 are comparable.

4.30. Definition.[Total Ordering] A poset in which

every pair of elements is comparable is called a total

ordering, or a linear ordering, or a CHAIN.

For example (N,≤) is a chain; (P(X),⊆) is not a

chain; and (N, a divides b) is not a chain.

A linear ordering ≤ on a set P in which every non-

empty subset has a LEAST ELEMENT (i.e. an element

l such that l ≤ x for all x in the subset) makes (P,≤) a

WELL ORDERED SET.

4.31. Proposition.[Exercise]
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1. (N,≤) is well ordered.

2. Every finite chain is well ordered.

3. ({x ∈ Q : x ≥ 0},≤) is NOT well ordered.

4.32. Definition.[BOUNDEDNESS] A poset (P,≤) in

which there exists an element, ⊥ (say), such that ⊥ ≤ x

for all x ∈ P , and an element, ⊤ (say), such that x ≤ ⊤
for all x ∈ P is said to be BOUNDED.

For example:

1. (P(S),⊆) is bounded (even when S is infinite).

Exercise: What are ⊥ and ⊤ here?

2. ({1, 2, 3, 4, 6, 9}, a divides b) has no ⊤, so is not

bounded (exercise: draw the diagram).

4.33. Definition.[MAXIMAL/MINIMAL ELEMENTS]

In a poset (P,≤) an element x ∈ P is MAXIMAL iff

y ≥ x implies y = x (i.e. x is not ≤ any other element).

Similarly for MINIMAL elements.

e.g.1. in ({1, 2, 3, 4, 6, 9}, a divides b) the elements

4,6,9 are maximal.

e.g.2. in a bounded poset ⊤ (also called ‘the top el-

ement’) is the unique maximal element, and ⊥ (also

called ‘the bottom element’) is uniquely minimal.

4.34. Definition.[LOWER BOUND] In (P,≤) let A

be a nonempty subset of P . Then x ∈ P is a LOWER
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BOUND of A if x ≤ a for all a ∈ A.

4.35. Definition.[GREATEST LOWER BOUND /

INFIMUM] With A as above, x is a GLB (or ‘inf’) of A

if x ≥ every lower bound of A.

Exercise 23 If inf A exists it is unique. Prove it!

Similarly, y is an UPPER BOUND of A if y ≥ a for all

a ∈ A, and y is a LEAST UPPER BOUND (or SUPRE-

MUM, or ‘sup’) if it is ≤ every upper bound of A.

Example: (N, is a factor of) - let A = {4, 6}, then

12,24,36,... are all upper bounds for A; 1,2 are lower

bounds.

Sup A = 12 (Lowest Common Multiple (LCM) of 4

and 6)

Inf A = 2 (Highest Common Factor (HCF) of 4 and

6).

4.36. Proposition.[Zorn’s Lemma (see later)] A poset

P in which every chain has an upper bound has a max-

imal element.

There are some more advanced notes on posets (specif-

ically on LATTICES) to be found in the version of these

notes published on the maths web pages. Of course,

looking at these additional notes is optional.
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4.6 Sets with Binary Operations

A (closed) binary operation ∗ on a non-empty set S is a

function

∗ : S × S → S.

If ∗((x, y)) = z we usually write x ∗ y = z.

Note that x ∗ y is defined for all x, y ∈ S and that

x ∗ y = z ∈ S.

Examples:

1. (N, +), i.e. the natural numbers with operation

given by addition;

2. for L a lattice both (L,∨) and (L,∧) give binary

operations;

3. (N,×), ...muliplication of natural numbers is closed;

4. (N,−) is NOT closed (here ∗ : N × N → Z, since,

for example, 3 − 4 = −1 6∈ N), and:

5. (Z,−): − on Z is a closed binary operation.

4.37. Definition.[ASSOCIATIVITY] An operation ∗
on S is associative iff

(x ∗ y) ∗ z = x ∗ (y ∗ z)

for all x, y, z ∈ S.

For example addition in N is associative:

(1 + 2) + 5 = 1 + (2 + 5)
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(note that this example does not constitute a proof of

associativity on its own), but subtraction is not associa-

tive:

(1 − 2) − 5 6= 1 − (2 − 5).

With assocative operations we usually write just xyz for

x ∗ (y ∗ z).

4.38. Definition.[COMMUTATIVITY] A binary op-

eration ∗ is commutative iff

(x ∗ y) = (y ∗ x).

For example 1 + 3 = 3 + 1 (and so on), a∧ b = b∧ a,

but 2− 3 6= 3− 2. We DO NOT assume commutativity.

4.39. Definition.[IDENTITY] The pair (S, ∗) has a

(two sided) identity (usually denoted by e) iff there ex-

ists e ∈ S such that for all x ∈ S

e ∗ x = x ∗ e = x.

4.40. Proposition. If ∗ is a closed binary operation

with identity then the identity is unique.

Proof: Assume e, f two identities, then f = e∗f = e

by definition. QED!

Examples:

1. in (Z, +) the identity is e = 0;
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2. in (P(X),∪) then e = ∅;
3. in (P(X),∩) then e = ? (exercise);

4.41. Definition.[IDEMPOTENT] Any x ∈ S obeying

x ∗ x = x is called an idempotent.

4.42. Definition.[INVERSES] Let (S, ∗) be a set with

a closed binary operation and identity e. An element y

is an inverse of x iff x ∗ y = e = y ∗ x (so x is also an

inverse of y).

Examples: (Z, +), inverse of 3 is −3;

(Q,×), 1 is the identity and the inverse of 3 is 1/3.

4.43. Proposition. For a closed associative binary

operation (S, ∗) with identity e, if x has an inverse then

the inverse is unique.

Proof: Let y, z be inverses of x. Then x ∗ y = e and

z ∗ x = e so

(z ∗ x) ∗ y = e ∗ y = y

and

z ∗ (x ∗ y) = z ∗ e = z

so y = z by associativity. QED.

As a notation, if we write xy for x ∗ y then we write

x−1 for the inverse of x.
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4.6.1 Groups

4.44. Definition.[GROUP] A group (G, ∗) is a set G

with a closed associative binary operation ∗ such that:

1. there exists an (unique) identity;

2. there exists an (unique) x−1 for each x ∈ G.

Examples: (Z, +) is a group;

(Q,×) is NOT a group (0 has no inverse); but (Q −
{0},×) is a group;

(L,∨) is not a group.

4.45. Definition.[ABELIAN] A group (G, ∗) with ∗
commutative is called a commutative or abelian group.

Such groups are often written (G, +) even though

the operation may not be the usual addition (but in

particular (Z, +) is abelian).

(Z3, +) is an abelian group (see the table at the end

of section 4), but (Z,×) is not a group (because 0 does

not have an inverse, again see the end of section 4);

4.46. Proposition. Let Sn be the set of permutations

of a set A consisting of n objects (recall, from defini-

tion 18, that this is the set of bijections f : A → A),

and let ◦ be the binary operation given by composition

of functions, then (Sn, ◦) is a group.

Proof: We have to check that the operation is closed
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and associative, that there is an identity, and that each

element has an inverse.

Firstly, the composition of two bijections from A to A

is a bijection from A to A, so we have closure. Secondly

f ◦ (g ◦ h) : A → A

is given by

f ◦ (g ◦ h)x :7→ f(g(h(x)))

as is (f ◦g)◦h, so we have associativity. The bijection 1A

acts as the identity, and since the functions are bijections

they all have inverses as functions which also serve as

their group inverses. QED.

4.47. Proposition.[Exercise] The group (S3, ◦) is not

abelian.

4.48. Definition.[SUBGROUP] Let (G, .) be a group.

Then (H, .) is a subgroup of G iff H ⊂ G and (H, .) is a

group.

Example: Consider the group (S3, ◦). The set S3

consists of elements which we can write (as in section 3.2):

1A =





1 2 3

1 2 3



 ; a =





1 2 3

2 1 3



 ; b =





1 2 3

1 3 2





a◦b =





1 2 3

3 1 2



 ; b◦a =





1 2 3

2 3 1



 ; a◦(b◦a) =





1 2 3

3 2 1



 .
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This is the complete list, since the bottom rows should

give all possible permutations of the list 1, 2, 3, of which

there are 6 possibilities (i.e. 3!=3.2.1 possibilities). As

an exercise you should check, for example, that b◦(a◦b)

doesn’t give anything new (i.e. check closure).

We have labelled the identity element 1A, as appro-

priate. The identity element MUST appear as an el-

ement of any subgroup (since the subgroup is also a

group). In fact the smallest subgroup would be ({1A}, ◦),
that is, the group containing only the identity element

(which is its own inverse).

Another subgroup is ({1A, a}, ◦). You should check

closure. Is this subgroup abelian?

We write H ≤ G if H, G are groups (we often supress

explicit reference to the binary operation for brevity)

and H is a subgroup of G. Note that subgroup is a

much stronger condition than subset. H a subgroup of

G implies H a subset of G, but NOT the other way

round.

For example, {a, b} is a subset of Sn, but it is not a

subgroup because it is not closed, and does not contain

the identity (exercise).
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Chapter 5

Graphs

To read this section you will need to know about sets. If

necessary, see the section on sets, and return here when

you are done.

Graph Theory has applications in Sorting and Search-

ing, Combinatorics, queuing theory, programming, car-

tography, Physics, systems engineering, representation

theory, and a host of other areas. It is aslo interesting

(to Mathematicians) in its own right.

5.1 Definitions

(5.1.1) A directed graph (or digraph) is a pair of sets

(V, E) together with a pair of functions i and f from E

225
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into V .

The elements of V are the vertices of the graph, and

those of E are the edges. If i(e) = v1 and f(e) = v2 then

e is an edge from v1 to v2.

Diagrammatically we may represent a digraph as a

collection of dots on the page (the vertices), together

with a collection of lines (the edges) with direction ar-

rows on them, each starting at some vertex and finishing

at some vertex.

A graph is similar to a digraph, except that the edges

have no direction arrows.

A simple (di)graph has no pair of vertices with mul-

tiple edges between them.

(5.1.2) A loop is an edge having the same initial and

final point.

If G = (V, E) and G′ = (V ′, E ′) are graphs then G′

is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. A special

kind of subgraph is an induced subgraph. If G′ is an

induced sugraph of G then every edge of G for which

both endpoints are present in V ′ is present in E ′.

A graph is connected if for any two vertices there is

a sequence of edges joining one to the other.

A (di)graph is planar if it can be represented on the

plane in such a way that edges only ever touch at their
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endpoints (the vertices).

The degree of a vertex in a graph is the number of

edges incident with that vertex.

The complete graph Kn on n vertices is the loop–free

graph in which every pair of vertices is connected di-

rectly by an edge. For example, K4 may be represented

as:

(5.1.3) Execises.

What is the largest n for which Kn is planar?

Discuss the representation of elements of the group

Sn as graphs.

(5.1.4) A path from v1 to v2 is a sequence of edges with

the first beginning at v1, each subsequent one beginning
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where the previous one finished, and with the last one

ending at v2. (On a graph either end of an edge may

be regarded as the beginning, whereupon the other end

must be the end.)

A circuit is a path from any vertex x to itself with at

least one edge, and no edge occuring twice. For example,

a loop is a circuit.

(5.1.5) A tree is a connected graph without circuits.

(5.1.6) Let G be a (di)graph whose vertices are totally

ordered. There is a map from the set of such graphs

with n vertices to the set of n × n matrices, as follows.

Mij(G) is the number of edges from vertex i to vertex

j. (Thus if G is a graph, not a digraph, the matrix is

symmetric.)

We say that two (di)graphs, G and G′, are isomor-

phic if their vertices can be ordered in such a way that

M(G) = M(G′).

Note that if, from a given order of the vertices of

G we reorder by exchanging two vertices, then M(G)

will change by having the corresponding pair of rows

interchanged, and the corresponding pair of columns in-

terchanged. Note that this is a similarity transformation

(i.e. it can be achieved by conjugating M(G) by an ap-
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propriate matrix). Note also that any reordering can be

achieved by a sequence of such vertex pair reorderings.

(We are back with the symmetric group again!) Hence

any reordering acts like a similarity transformation on

M(G).

Note also that the order on vertices is not usually

deemed to be intrinsic to the graph, so unless an order

is specified, any of the versions of M(G) in the same sim-

ilarity class are equally good representations of G. (Al-

though of course the vertices of G are distinguishable.)

However, if G and G′ are simply different orderings of

the same vertex set, let us say by a pair permutation of

vertices v and v′, and M(G) = M(G′), then the graph

has a kind of symmetry under swapping v and v′.

For example, if w is an eigenvector of M(G): wM(G) =

λM(G), then the entries in w are naturally associated to

vertices. If P is the similarity transform matrix which

interchanges v and v′ then M(G) = PM(G′)P−1, and

with the symmetry: M(G) = PM(G)P−1. Thus wM(G)P =

w(PM(G)P−1)P = wPM(G) = λwP , so wP is an

eigenvector of M(G) with the same eigenvalue. Note

that wP is related to w simply by exchanging the en-

tries corresponding to the vertices v and v′. Then if, for

example, the eigenvector associated to the eigenvalue λ
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is know to be unique (up to scalar multiplication, as

usual), we have that the entries corresponding to the

vertices v and v′ must be the same.

These observations can be useful in computing PageRank-

like properties of graphs.

Exercise 24 What do matrix addition and multiplica-

tion correspond to at the level of graphs?

5.2 Colouring

(5.2.1) Let C be any set (for example, but not necessar-

ily, a set of colours). A colouring of a loop–free graph G

with C is a function f from V to C such that if there is

an edge between any v1 and v2 then f(v1) 6= f(v2).

(Note that the restriction to loop–free graphs is not re-

ally necessary in this definition, but there is no colour-

ing of a graph with a loop, since the loop imposes the

unsatisfiable condition that the corresponding vertex is

coloured differently from itself!)

For any loop–free graph its ‘chromatic number’ is the

smallest degree of C such that there exists a colouring

of G with C. For example, the chromatic number of Kn

is n (exercise!).
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Exercise 25 Let G be a graph and let CG(Q) denote the

number of ways of colouring G with at most Q colours.

(For example, CK2(Q) = Q(Q − 1).) Show that CG(Q)

may be expressed as a polynomial in Q for every graph

G.

For graphs G and G′ having no vertices in common,

let G ∪ G′ denote the natural disconnected composite

graph. For a graph G with distinct vertices v and v′

connected by an edge e, let Ge denote the subgraph

differing from G only in the absence of edge e, and let

Gvv′ denote the graph obtained from G by identifying v

and v′ and discarding e.

Note that the transformation G 7→ Ge (any e) takes a

simple graph to a simple graph, but the transformation

G 7→ Gvv′ does not necessarily do so. For example,

picking any e in K3 we have that (K3)vv′ is a graph like

K2 but with two edges instead of one.

Exercise 26 Verify the polynomial identity CG(Q) =

CGe
(Q) − CGvv′

(Q).

Hint: note that G and Ge have the same vertex sets.

Pick a suitable example and consider which colourings

of Ge become ‘illegal’ when e is re-inserted. How can we

count the number of such colourings using Gvv′?
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A more mundane hint is to start by considering some

examples.

If G = K2 then (K2)e is K1∪K1 (suitably interpretted),

and (K2)vv′ = K1, so the claim is that CK2(Q) = Q2−Q,

which is correct (see above).

Suppose G is like K2, but with the edge tripled! Then

removing one edge does not change the number of pos-

sible colourings, i.e. CG(Q) = CGe
(Q). But identifying

the two vertices leaves two edges which are now loops,

even after removing the edge e, so CGvv′
(Q) = 0 and the

identity holds.

(5.2.2) Example application — Scheduling. Suppose

various jobs are to be done in an industrial process pro-

ducing some product. Suppose that it is possible to

perform some of the jobs simultaneously, but not others

(perhaps they require the same piece of machinery). A

schedule for the jobs may be obtained as follows. The

set of jobs is represented as vertices in a graph, joining

any two if and only if they CANNOT be peformed at

the same time. A colouring of this graph by a set of

times then effectively assigns times for performance of

jobs in such a way that jobs which cannot be performed

simultaneously are not scheduled together.
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5.3 Planar graphs

(5.3.1) Consider the plane with its natural metric topol-

ogy. We will call a subset of the plane open if it is open

with respect to this topology. (For example, consider a

circle drawn in the plane — the set of all those points in-

terior to, but not actually touching, the circle is an open

subset.) An open subset of the plane is connected if it

cannot be cut into two non–empty open pieces (roughly,

it is an open region with the property that we may move

continuously from any point within it to any other with-

out leaving the region). Suppose that a graph G has a

representation in the plane. A face of this representation

is a bounded maximal connected region of the plane dis-

joint from the vertices and edges representing the graph.

An edge is external if it has a face on at most one

side of it.

5.1. Proposition. Let finite non–empty connected pla-

nar graph G have vertex set V , edge set E, and a planar

representation with face set F . Then

|V | + |F | − |E| = 1.

Proof: By induction on |E|. The base |E| = 0 is

trivial. Assume the result true for all graphs with |E| <
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n and let G = (V, E) have n edges (and face set F ).

Without loss of generality let e be any external edge

of G, with ends v1 and v2. If the subgraph G′ got by

removing e is connected then the inductive hypothesis

applies to it. It has the same number of vertices, one

fewer edge and (since e was external) one fewer face than

G. Thus, in this case, the hypothesis holds on G.

If on the other hand removing e separates G into

disconnected components then we have two subgraphs

(V ′, E ′) and (V ′′, E ′′), say, with V ′ ∩ V ′′ = ∅, E ′ ∩E ′′ =

∅, V ′ ∪ V ′′ = V , E ′ ∪ E ′′ ∪ {e} = E, and similarly

F ′ ∩ F ′′ = ∅, and F ′ ∪ F ′′ = F . Both sugraphs must

obey the inductive hypothesis, so

|V |+|F |−|E| = |V ′|+|V ′′|+|F ′|+|F ′′|−(|E ′|+|E ′′|+1) = 1+1−1 = 1

as required. 2

(5.3.2) The famous 4 colour theorem asserts that any

finite planar graph can be coloured with no more than

4 colours. It is clear that there are planar graphs re-

quiring at least 4 colours (see K4 above). The fact that

no more are required is one of the most intriguing and

tantalising results in Graph Theory. The known proof

is very complicated, although many authors (including

the present one) have expended much effort in trying to
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produce a slicker one. For our purposes it will suffice to

prove a weaker result.

5.2. Proposition. Any finite loop–free planar graph

can be coloured with no more than 5 colours.

Proof: We may assume G to be simple and con-

nected. Proceed by induction on the number of vertices.

If there are 5 or fewer vertices then the result follows

trivially, so the base is clear. Now assume all graphs

with fewer vertices than G may be coloured with 5 or

fewer colours. We will show that G must have a vertex

of degree ≤ 5 and build a 5 colouring of G around such

a vertex, thus establishing the inductive step.

Let M be the number of pairs (e, f) where e is an

edge of face f . Each edge bounds at most 2 faces, so

M ≤ 2|E|

and each face contributes at least 3 to M since G is

simple, so

M ≥ 3|F |.

Thus

|E| ≤ |E| + (2|E| − 3|F |) = 3|V | − 3

(using Euler’s formula from proposition 5.1 at the last).
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Let Vi be the number of vertices of G of degree i, then

2|E| =
∑

i

iVi

and so
∑

i

iVi ≤ 6|V | − 6

giving
5

∑

i=1

(6 − i)Vi ≥ 6 +
k

∑

i=7

(i − 6)Vi

where k is the maximum degree in G. In particular

5
∑

i=1

(6 − i)Vi ≥ 6

and at least one of V1, V2, V3, V4, V5 is non-empty!

Now let P be a vertex of degree ≤ 5. Let G′ be the

induced subgraph of G on V \ {P}. Graph G′ is still

planar and has fewer vertices, so it can be 5 coloured by

hypothesis. Consider such a 5 colouring of G′. We will

show how to modify this colouring so that a colouring

of the whole of G is possible.

If less than 5 colours are used for the neighbours of

P in the colouring of G′ then we can colour P with the

fifth colour, so assume that P has degree 5 and its neigh-

bours use all 5 colours. (Obviously we have to make a

modification so that only 4 are used, while preserving



5.3. PLANAR GRAPHS 237

the colouring of G′.) Label the neighbours by number

clockwise around P . Suppose there is a path from 1 to

3 using only vertices coloured with two colours (red and

blue, say); then there can be no such path from 2 to 4

(any path from 1 to 3 cuts a path from 2 to 4, since the

graph is planar). Thus we may assume that at least one

of these pairs does not have a two colour path between

them. Without loss of generality, then, let 1 and 3 be

a pair without a two colour path between them. Now

let us say red is the colour of 3, and blue is the colour

of 1. To colour the graph G including P , colour P red,

and change the colour of 3, and any vertex in a red–blue

path from 3, to the other one of these two colours.

To see that this works, it remains to check that we

still have a colouring of G′. Both 1 and 3 are now blue,

but they are not adjacent. All the red–blue paths of

changed vertices starting at 3 are still consistent with

colouring (red–blue–red becomes blue–red–blue, and so

on). Further, there is no vertex adjacent to, but not on,

any of these paths which is coloured either red or blue

(else it is on a path and so changed to be consistent by

construction). 2
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5.4 Exercises

Exercise 27 You are in a game show on TV. The host

shows you three closed doors. Behind one of the doors is

a prize. You have to guess which door leads to the prize.

There are no clues, so you guess at random, but after

you have guessed the host opens one of the other doors

and shows that there is not a prize behind that door. She

then asks if you would like to change your guess, or stay

with your original guess.

Is it better to change, or stay, or does it make no

difference to your probability of success?

Draw a graph which illustrates the relevant probabil-

ities and hence gives the answer to this well-known old

puzzle.

Exercise 28 Show that isomorphism is an equivalence

relation on the set of all graphs.

Exercise 29 Up to isomorphism, how many different

simple, loop-free graphs are there with 2 vertices? How

many are there with 3 vertices? How many are there

with 4 vertices?

Exercise 30 Up to isomorphism, how many different

simple, loop-free graphs are there with n vertices and
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n(n−1)
2

− 1 edges? How many are there with n vertices

and n(n−1)
2

− 2 edges?

Exercise 31 If we have a planar representation of a

graph, then this ‘restricts’ to a planar representation of

any subgraph (by simply erasing the relevant vertices and

edges). However, it is not always possible to extend a

planar representation of a subgraph to a planar represen-

tation of a planar graph by adding appropriate objects.

Give an example to show this.

An Euler tour of a graph is a walk that uses each

edge of the graph once.

Euler’s theorem states that if connected graph G has

an Euler tour then there are either no vertices of odd

degree, or two vertices of odd degree. Conversely, if

there are no vertices of odd degree then there is an Euler

tour, and it may start at any vertex but must end at the

same vertex; while if there are two vertices of odd degree

then there is an Euler tour, it must start at one of the

vertices of odd degree and end at the other one.

Exercise 32 (Harder) Prove Euler’s theorem.

A spanning tree for a connected graph G is a tree

which is a subgraph of G whose vertex set coincides

with that of G.
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Exercise 33 Construct an algorithm which takes a graph

G as input and produces a spanning tree of G as output.



Chapter 6

Sorting and

Permutation

As we will see, the process of sorting is very much in the

realm of pure discrete mathematics. However, even to

say what is sorting, and why it is worth doing, become

complex philosophical questions when viewed in a purely

mathematical light. One advantage of coupling with

the issue of sorting as a computing problem is that this

gives us a collection of applications which serve to put

these questions on a more concrete footing. Thus we

will proceed, as far as possible, with reference to the

mathematical and computational aspects at the same

time.

241
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The definitive text on sorting is, perhaps, Knuth [?].

6.1 Introduction

What is sorting? According to the WordNet online dic-

tionary to sort is “to arrange or order by classes or cat-

egories” (that is, to put things together which are of

the same sort). It is convenient to add to this that the

classes then be put into some order, and we will usually

assume that this means a total order. Indeed, this sec-

ond part of sorting may also achieve the first since, if

we have a hierarchical classification scheme and a total

order of all (sub)classes then lexicographic ordering au-

tomatically arranges objects into a sequence consisting

of runs of objects in the same class (just as a dictionary

order groups together all words beginning with A).
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Why sort? Arranging objects into classes has many

uses. In particular it helps with searching. Depending

on the nature of the search either a total order or a

classification may be the more useful. For example, if I

am looking for a book in a library it is useful if the books

are totally ordered. If I am looking for information in a

library it may be more useful to have all the books on

my subject grouped together, for browsing.
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Exercise: Let {Ri | i = 1, 2, 3, ..., n} be a row of

books on a shelf. Let us say that the books are labelled

each by an integer (representing a book title!). Thus

the order of the books on the shelf may be represented

as a sequence of integers. Give an algorithm to sort the

first 5 of these book into non–descending order of their

labels.

An answer: Let {Ii | i = 1, 2, 3, 4, 5} denote the

current list (i.e. possibly after reordering). For i =

1, ..., 4 compare Ii, Ii+1 and swap if Ii > Ii+1. Iterate

this loop until there is no further change.
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Example:

43521 → 34521 → 34251 → 34215

→→ 32415 → 32145 →→ 23145 → 21345 →→ 12345

Q1. Does this process converge in general?

A1. Yes. Note that in each loop the largest numbered

book not yet in its correct position is moved to its correct

position.

Q2. Is it optimal?

A2. This is the interesting question, but it is not yet

well posed, since different algorithms require different

operations to be performed. Before we can ask a better

question we need some more algorithms for comparison.

The above procedure is called “Exchange Sort”.
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We could also do:

“Insertion Sort”: Construct a new sequence as fol-

lows. Locate an empty shelf (hopefully very nearby!).

Put R1 somewhere in the middle to start a new sequence.

Then for i = 2, 3, 4, 5 insert Ri in the correct position

relative to the existing form of the new sequence. Ex-

ample

4〉34〉345〉2345〉12345

“Selection Sort”: Locate the lowest numbered book

and put it on the left on a new shelf. Then locate the

lowest numbered remaining book and put it on the new

shelf to the immediate right of the previous addition,

and iterate.

“Enumeration Sort”: For each Ri count the number

of Rjs which should be to its left. The final list of num-

bers so obtained gives the order in which to arrange the

books on a new shelf. Example:

43521

32410
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We now have enough algorithms to play with. To de-

cide on optimality we need to know relatively how much

effort is required for each of their component operations,

and of course how many times (typically) each operation

would have to be performed. The first of these data will

depend on the system to be sorted (light books/ heavy

books etc.). The second can be well addressed in the

framework of pure combinatorics. In particular, at the

heart of Exchange Sorting is the act of permuting ele-

ments of a list. The set of possible acts of permutation

form a group under composition, and the study of this

group can be seen to inform much of the theory of sort-

ing. Accordingly we will start with (and here concen-

trate mainly on) a study of this group.

We begin by recalling the basic algebraic structures

we will use.
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6.2 Preliminaries

Before proceeding you will need to have read the section

on groups in chapter 4. A good reference book for our

purposes might be the Schaum Outline Series volume

on Groups (but the following is abstracted in part from

works of Knuth, Jacobson[?], Cohn[?, ?], Maclane and

Birkoff[?], Bass[?], and Green[?]).
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6.2.1 Algebraic systems

There follows a list of definitions in the form

ALGEBRAIC SYSTEM A = (A a set, n−ary operations),

axioms.

Extended examples are postponed to the relevant sec-

tions.

(6.2.1) SEMIGROUP S = (S, 2), 2 closed associative

binary operation on S.

(6.2.2) MONOID M = (M, 2, u), (M, 2) a semigroup,

u a unit (au = a = ua).

Example: (N0, +, 0).

(6.2.3) GROUP G = (G, ., u), G a monoid, ∀a ∈ G∃a′

such that aa′ = u = a′a.
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(6.2.4) ABELIAN GROUP G = (G, +, 0), G a group,

a + b = b + a.

(6.2.5) RING R = (R, +, ., 1, 0), (R, +, 0) abelian group,

(R, ., 1) monoid, a(b + c) = ab + ac, (a + b)c = ac + bc.

(6.2.6) INTEGRAL DOMAIN K, K a ring, . commu-

tative, 0 6= 1, mn = 0 implies either m = 0 or n = 0.

(6.2.7) FIELD F , F integral domain, every a 6= 0 has

multiplicative inverse.
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Exercise 34 Show that the complex numbers are a field

when taken with the usual binary operations of addition

and multiplication.

In fact the complex numbers are almost the only ex-

ample of a field which we will need in this course. If

you don’t like the idea of fields, just replace all refer-

ence to them with a reference to the system of complex

numbers!

Before we forget about general fields altogether though,

consider the following exercises.

Exercise 35 Show that the system of arithmetic mod 3

introduced in Chapter 4 is a field.

Exercise 36 Construct the addition and multiplication

tables for the system of arithmetic mod 2 (generalising

those introduced in Chapter 4). Show that this is a field.

We will call these systems F3 and F2 respectively.

Exercise 37 Verify that the definition of group above

coincides with that given in Chapter 4.
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6.2.2 Categories

(6.2.8) A CATEGORY A is a collection of ‘objects’ (the

possible failure of this collection to be a set will not con-

cern us here), together with a non–empty set A(M, N)

of ‘morphisms’ for each ordered pair (M, N) of objects,

and an associative composition

A(M, N) × A(L, M) → A(L, N)

such that there are identities 1M ∈ A(M, M).

Example: Let Set be the collection of all sets, and

for M, N ∈ Set let Set(M, N) be the set of maps from

M to N . The usual composition of maps is associative

and has identities, so this is a category.

Let Ab be the collection of all abelian groups and

Ab(M, N) the set of group homomorphisms from M to

N . This is a category.

f ∈ A(M, N) is an ISOMORPHISM if there exists

g ∈ A(N, M) such that gf = 1M and fg = 1N .

(6.2.9) The DUAL CATEGORY Ao has the same ob-

jects and composition is reversed (A(M, N) = Ao(N, M)).

(6.2.10) A (covariant) FUNCTOR F : A → B is a map

on objects together with a map on morphisms which

preserves composition and identities.
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A CONTRAVARIANT FUNCTOR from A to B is

a functor from Ao to B (examples later).
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6.3 Groups and representations

For F a field let GLn(F ) denote the set of invertible

n × n matrices over F . These matrices form a group

under matrix multiplication.

Exercise 38 Verify this explicitly for F = C in case

n = 2.

Exercise 39 Write down all elements of GL2(F2).

(6.3.1) A group homomorphism is a map ρ : G → H

between groups such that ρ(xy) = ρ(x)ρ(y).

Exercise 40 Construct a group homomorphism between

the groups GL2(C) and GL3(C).

Put ker ρ = {g ∈ G | ρ(g) = e} (where e is the group

identity element); and im ρ = {ρ(g) | g ∈ G}.

(6.3.2) A SUBGROUP S of a group G is a group which

is a subset of G. A NORMAL subgroup N of a group

G (denoted N � G) is a subgroup which is a union of

conjugacy classes of G (thus n ∈ N implies gng−1 ∈ N

for all g ∈ G).
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(6.3.3) For S any subgroup of G we may partition G

into LEFT COSETS OF S as follows. For g ∈ G the

coset

Sg = {sg | s ∈ S}

and the set of left cosets is denoted G/S.

6.1. Proposition. If N � G then G/N is a group with

multiplication (Na)(Nb) = N(ab), and there is a natural

group epimorphism π : G → G/N given by π(g) = Ng.

Proof: We need to show that if a′ ∈ Na and b′ ∈ Nb

then N(a′b′) = N(ab). WLOG put a′ = n1a, b′ = n2b

with ni ∈ N , then an2a
−1 ∈ N by the definition of

normal subgroup, and so

N(a′b′) = Nn1an2b = Nan2b = Nan2a
−1ab = Nab

2

(6.3.4) Let φ : G → H be a group homomorphism.

Then im φ is a subgroup of H and ker φ is a normal

subgroup of G. There is a factorisation φ = φ′ ◦ π

where π : G → G/ ker φ is as in proposition 6.1 and

φ′ : G/ ker φ → im φ is the isomorphism φ′(ker φg) =

φ(g).
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(6.3.5) A REPRESENTATION of a group G over a field

F is a homomorphism ρ : G → GLn(F ) for some n.

A finite group is a group which is a finite set.

(6.3.6) A group G ACTS on a set W if there is a map

from G × W to W (denoted (g, w) 7→ gw) such that

1w = w and g(hw) = (gh)w.
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6.4 The symmetric group

(6.4.1) A PERMUTATION p of a finite set S is a bi-

jection from S to {1, 2, . . . , |S|}, that is to say, an ar-

bitrary total ordering of S. We may represent a per-

mutation by listing the elements of S in the order p =

(p−1(1), p−1(2), . . .).

(6.4.2) Let Pn denote the set of n × n matrices whose

row vectors are a permutation of the standard ordered

basis of Cn. These matrices form a group under matrix

multiplication, denoted Sn.

The set of bijections of any set T of degree n to itself

form a group under composition of bijections, and this

group is isomorphic to Sn (the identity bijection maps

to the identity matrix). We will confuse the two groups

willy–nilly under the name SYMMETRIC GROUP.

It is convenient to use T = {1, 2, . . . , n}.



258 CHAPTER 6. SORTING AND PERMUTATION

(6.4.3) There is a useful pictorial representation of Sn,

obtained by tracking the timelines in a sort of some no-

tionally ordered set. We see from figure 6.1 that each

act of permutation may be viewed as a collection of tra-

jectories between two rows of vertices (representing the

objects in the set before and after rearrangement). Com-

position is then by juxtaposition of such diagrams.

(6.4.4) Abstract to diagrams (i.e. discard the books and

keep the trajectories). These form a group isomorphic

to Sn. The multiplication of diagrams is to juxtapose

them top to bottom (just as they are juxtaposed in the

figure, once the books are removed), and then to equate

diagrams which realise the same connections from top

to bottom.

Exercise: Familiarise yourself with these diagrams

and their multiplication. Given the diagram for some

f ∈ Sn, what does the diagram for f−1 look like?



6.4. THE SYMMETRIC GROUP 259

R1 R2 R3 R4

R4R1

R1 R3 R4R2

R2 R3

Figure 6.1: An act of permutation as a rearrangement

of books on a library shelf. The first step permutes

an adjacent pair of books; the second step is a more

complicated rearrangement.
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(6.4.5) In CYCLE notation a permutation p of T ′ ⊆ T

is interpreted as an element f of Sn by

f(i) = i (i 6∈ T ′),

f(p|T ′|) = p1 and

f(pi) = pi+1 otherwise.

We will call such an element a cycle of length |T ′|.
There is a SHUFFLE action on the set of cycles of

T ′ obtained by taking

p 7→ (p2, p3, . . . , p|T ′|, p1).

The orbits of this action may be represented by the el-

ements in which the numerically lowest element of T

appears first. Note that two different cycles may pro-

duce the same element of Sn — in particular they do so

iff they are in the same shuffle orbit.
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Note also that only a subset of elements of Sn are

produced this way. However

6.2. Proposition. A cycle on T ′ commutes with a

cycle on T ′′ ⊆ T if T ′ ∩ T ′′ = ∅.
Each f ∈ Sn is a product of such disjoint cycles.

We will write such products so that a longer cycle

comes before a shorter one. If we also arrange for the

lowest element of each cycle to be written first, and in

the case of a tie on length for the cycle with the lowest

first element to be written first, then such products are

in bijection with Sn. The cycle structure λ of f ∈ Sn

is then the list (λ1, λ2, . . .) of cycle lengths in the given

order (and hence a PARTITION OF n — we write λ ⊢ n,

and denote the set of partitions of n by Λn).

6.3. Proposition. Two elements of Sn are in the same

conjugacy class iff they have the same cycle structure.

Exercise: Prove this proposition (hint: draw the dia-

gram for a non–trivial conjugation and so determine the

effect of conjugation on a cycle).
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6.4.1 Matrix representations

(6.4.6) Consider the list of all possible initial orderings

of the row of books in figure 6.1. For n distinguishable

books there are n! orderings. Let us consider writing

out all these orderings as a list (for n = 3 we would

have 123, 132, 213, 231, 312, 321). A particular act of

permutation, such as illustrated in the figure, takes each

one of these orderings to a different one. We can encode

its effect on the complete list as a matrix as follows.

To begin let us consider the first (upper) act of per-

mutation in the figure (and neglect its effect on the last

book, R4). In cycle notation the element of the permu-

tation group S4 in question is (12). Its action takes

1234 to 2134, and in particular restricts to take 123

to 213. If the initial ordering had been 1342, say, in-

stead of 1234, the same action would have taken 1342 to

3142 (that is, we have the act of permutation permut-

ing the objects in certain positions, rather than permut-

ing objects with certain labels). Altogether we find that

(123, 132, 213, 231, 312, 321) is taken to (213, 312, 123, 321, 132, 231).
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We can realize this reordering by matrix multiplica-

tion. Specifically, consider the vector space with basis

this list of orderings, and the matrix which transforms

a 6–tuple whose entries are the basis elements in the

original order into one in the new order:

(123, 132, 213, 231, 312, 321)



























001000

000010

100000

000001

010000

000100



























= (213, 312, 123, 321, 132, 231)

Again ignoring R4, the rearrangement whose cycle no-

tation is (23) is captured similarly by

(123, 132, 213, 231, 312, 321)



























010000

100000

000100

001000

000001

000010



























= (132, 123, 231, 213, 321, 312)

In this way we build a matrix R(x) for each element

x ∈ Sn. If we now discard the vectors, we find that

the matrices give us a representation of Sn (Exercise:

Explain exactly how this works).
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(6.4.7) Further, if some of the books are duplicates we

still get a representation (exercise). We thus have a

plethora of representations. Our next job is to bring

some order to this situation.

Until further notice we will concern ourselves with

complex representations (i.e. where the field of the ma-

trix entries is C).

(6.4.8) Suppose M is a representation of a group G.

Then conjugating every representation matrix by a fixed

(complex) matrix gives another representation isomor-

phic to the first. For example

M(x)M(y) = M(xy) ⇒ (A−1M(x)A)(A−1M(y)A) = (A−1M(xy)A).

Isomophism is an equivalence relation. The set of rep-

resentations isomorphic to a given representation is its

equivalence class.
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(6.4.9) Suppose M1 and M2 are two representations of

G. For each g ∈ G construct the matrix direct sum of

M1(g) and M2(g). This set of matrices forms a new

representation of G.

If a representation is isomorphic to a representation

formed in this way then it is said to be REDUCIBLE,

otherwise it is IRREDUCIBLE.

(6.4.10) Since every representation can be built up sim-

ply from irreducible representations, the most important

aspect of the study of a group (at least from the point

of view of modelling) is the study of its IRREDUCIBLE

representations.
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(6.4.11) A handy indicator is:

6.4. Proposition. If any matrix A which is not a mul-

tiple of the identity matrix obeys AM(g) = M(g)A for

every M(g) in a representation then the representation

is reducible.

Exercise: Prove it. Hints:

1. Note that every matrix which is the image of

a group element in some representation is necessarily

invertible. Thus it has maximal rank, and so a maximal

number of eigenvectors. Thus it is diagonalisable.

2. Start by proving that: Two diagonalisable ma-

trices can be simultaneously transformed into diagonal

form (i.e. by the same transformation) iff they commute.

Exercise: Prove that every irreducible representation of

an abelian group is 1–dimensional.
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(6.4.12) Let g be any element of G. Then the set of

elements of G which commute with g (such as e and g)

form a subgroup of G (called the normaliser of g).

Let [g] denote the class of g.

6.5. Proposition. For g ∈ G, {gh | h ∈ G} = G.

Proof: Let f ∈ G be arbitrary. Then f ∈ {gh} since

f = g(g−1f). Done.

(6.4.13) Consider the K–vector space with basis G. The

group multiplication may be extended K–linearly to a

multiplication on this space, whereupon it is called the

K–group algebra of G, denoted KG. A subalgebra is a

subset closed as a space and under this multiplication.

A K–representation of G gives rise to a representation

of KG (and any subalgebra) by the obvious K–linear

extension.
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6.6. Proposition. The number of equivalence classes

of irreducible representations of a group G is equal to

the number of classes of G.

We will prove this fundamental result shortly. First

we need to do some preparatory work.

(6.4.14) Write G = {gi | i = 1, 2, . . . , N} and |[g]| =

N[g]. Consider the elements gjgg−1
j ∈ [g] as gj runs over

G. If gj is in the normaliser Gg of g then gjgg−1
j = g.

Indeed elements gj ∈ G in the same coset of Gg give the

same conjugate of g; and elements gj ∈ G in different

cosets of Gg give different conjugates of g. Altogether,

then, as we run over all possible choices of gj in gjgg−1
j ,

we visit each member of [g] precisely N
N[g]

times. There-

fore, in the group algebra

N
∑

j=1

gjgg−1
j =

N

N[g]

∑

g′∈[g]

g′.

Indeed, let us use [g] in the group algebra to denote

the sum of all the elements in the class, and say that

an element of the group algebra is a linear function of

classes if it is a linear combination of such basic class

sums. We have
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6.7. Proposition. x ∈ CG commutes with all g ∈ G

iff x is a linear function of classes.

Proof: (if) It is enough to show that g commutes

with every basic class sum. We have

g





∑

g′∈[h]

g′



 g−1 =
N[h]

N
g

(

∑

gjhg−1
j

)

g−1 =
N[h]

N

(

∑

ggjh(ggj)
−1

)

=
g

by proposition 6.5.

(only if) If x =
∑

i ki[gi] commutes with all g ∈ G

then

x =
1

N

∑

j

gjxg−1
j =

1

N

∑

i

ki

∑

j

gjgig
−1
j

which is a linear function of classes. Done.
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(6.4.15) Proof of proposition 6.6 A matrix representa-

tion R of G is also a representation of the subalgebra

generated by the basic class sums. Since this latter is

commutative every element can simultaneously be writ-

ten in diagonal form. If R is reducible then it is isomor-

phic to a representation in which the matrices for all

elements of G have the same block diagonal structure

(exhibiting the irreducible content). In this representa-

tion the block components for matrices representing el-

ements of the class sum subalgebra are scalar multiples

of the (block) unit matrix (by proposition 6.4). That is,

different diagonal terms in these matrices correspond to

different irreducible representations.

Since a class function depends on the choice of a free

parameter for each class, the representation matrix can

depend on at most this many parameters (depending

on whether the representation is faithful or not). Thus

there can be up to this many different diagonal terms

(precisely this many if R is faithful), and thus there are

this many inequivalent irreducible representations of G.

Done.
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(6.4.16) For example, there are seven irreducible repre-

sentations of S5, corresponding to the seven classes (cor-

responding in turn to the seven partitions of 5, which are

{(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}).

(6.4.17) EXERCISES.

Write down the two irreducible representations of S2

(corresponding to the partitions of 2, which are {(2), (1, 1)}).
Now try to figure out the three irreducible representa-

tions of S3!

Prove proposition 6.2. Hint: . . .
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6.4.2 Sorting

(6.4.18) A group G is GENERATED by a subset S if

every element of the group is expressible as a ‘product’

of one or more of these elements.

(6.4.19) Examples. Let us write σi for the ‘elementary

transposition’ (i i+1) ∈ Sn. That is, as a diagram:

1 2 i

σi =

We have

σiσi = 1 (6.1)

σiσi±1σi = σi±1σiσi±1 (6.2)

σiσj = σjσi j 6= i ± 1 (6.3)

and {σi | i = 1, 2, ..., n − 1} generates Sn. (Exercise:

Verify this by considering diagrams. More surprisingly,

the equations 6.1–6.3 are sufficient for abstract objects

{σi | i = 1, 2, ..., n − 1} to generate a group isomorphic

to Sn even if we don’t know anything else about them!)
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Let tn = (12...n), i.e. tn == σn−1σn−2...σ1 =

(12...n) =

Then {(12), (12...n)} generates Sn. (To see this note

(tn)n = 1 so t−1
n = (tn)n−1 and

t−1
n σ1tn = σ2

and so on. Thus we reduce to the previous problem.

(6.4.20) If S ⊂ G generates G then the matrices R(S)

completely determine a representation R of G.
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(6.4.21) We can now consider how many elementary

transpositions are required to sort an arbitrary permu-

tation. Since each σi = σ−1
i the number required is equal

to the minimum number of σis required to be multi-

plied together to achieve that permutation (starting, as

it were, from the ‘trivial’ permutation). It will be ev-

ident that the number of σis required to build g ∈ Sn

is not unique (e.g. 1 = σiσi = σiσiσjσj etc.). How-

ever, there is a well defined minimum number required,

which we will call len(g) (pronounced ‘length g’) — we

normally say len(1) = 0; then len((23)) = 1 and so on.

The length of g is equal to the number of crossings of

lines in the diagram of g, provided all the lines are drawn

straight (and the rows of vertices are slightly agitated

randomly so that no more than two lines ever intersect

at the same point). Alternatively, the minimum number

can be read off from the permutation in a way directly

analogous to the “bubble” sort of the permutation (a

kind of exchange sort — see Knuth).



6.4. THE SYMMETRIC GROUP 275

σ5σ6σ7

Figure 6.2: An act of permutation as a product of ele-

mentary transpositions, organised following the ‘bubble’

sorting algorithm.

For an example let us consider the permutation




12345678

32658714



 = (458)(1367).

How can this be expressed minimally as a product of

elementary transpositions? One (non–unique) way is il-

lustrated in figure 6.2. We first locate the object which

should be permed into ‘last place’, and move it into last

place by a sequence of elementary transpositions. Then

repeat for the object which should be in next to last
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place, and so on. (nominal bubble sort pictures some

of the elementary transpositions occuring in parallel, if

they commute, but this does not change the number

of elementary transpositions required). Note that this

construction ensures that no two lines cross each other

more than once, and hence, provided the required ‘perm’

is achieved (!), that the number of elementary transpo-

sitions is minimal.
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We can see from this that the maximum number of

factors which could be required is

(n − 1) + (n − 2) + ... + 1 =
n(n − 1)

2

and that this is only achieved by, for example,





12345678

87654321



 =: w0.

6.4.3 Exercises

1. Determine the mean and a median for the length

of elements of Sn. That is, determine the average

number of elementary transpositions required to

sort an arbitrary permutation of n objects into a

specific total order. (Hint: If you are stuck you

should try to determine the lengths of all elements

of Sn for n = 1, 2, 3, 4 and then consider how to

generalise your findings.)

2. (Non–compulsory, for 10 bonus points) Determine

the modal length(s) of elements of Sn.

3. Determine all one–dimensional representations of

Sn. Give a non–trivial relationship between one of

these representations and the len function.
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4. Determine if the following gives a representation

of S3

σ1 =





1 0

0 −1





σ2 =





0 1

1 0





and if so, determine if that representation is irre-

ducible.

5. Show that the set L of all elements of the form

(i j) (i < j, i, j ∈ {1, 2, ..., n}) generates Sn. De-

scribe an algorithm to sort a permutation of n

objects using this set. Discuss the practical dif-

ferences between using this set to sort books (in

the library at Alexandria) and using the set of el-

ementary transpositions. Define a length function

on Sn appropriate for the set L, and relate this to

the normal length function.
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Hardware

This component of the course is lab based. We will

attempt to separate and identify within an arbitrary

PC the following components: Motherboard; Processor

(CPU); BIOS chip; RAM; Hard disk; Floppy disk; IO

ports; Network capability; Video subsystem; HCI de-

vices (keyboard, mouse etc.). We will discuss the role

of these components and their relationship with the op-

erating system and other software. We will attempt to

reassemble the system and, if functional (!), to install an

operating system. If this can be done we will attempt

to create a LAN (local area network) with another such

PC, by installing appropriate Network Interface Cards,

cables, and hubs, and configuring these devices in soft-

279
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ware (both at the driver level and at the Internet Pro-

tocol level).

Exercise 41 Make sure you can physically identify the

core modular components (as listed above) of a generic

PC.

Exercise 42 Draw a graph encoding the modular struc-

ture of a typical PC.

Exercise 43 Draw a graph encoding the structure of a

typical small LAN.

Exercise 44 Under what circumstances might a single

PC contain two NICs?


