CODING THEORY: PROBLEMS 1

Here we may write Σ_m for the set of m symbols $\{0,1,2,\ldots\}$. For example $\Sigma_3 = \{0,1,2\}$.

- (1) Write out all the elements of the set $\{1,2\}^3$, explaining any notation you use.
- (2) For each of the following codes $C_i \subset \Sigma_3^3$, i = 1, 2, ..., 5, calculate the minimum distance $d(C_i)$.
 - (a) $C_1 = \{000, 111\},\$
 - (b) $C_2 = C_1 \cup \{222\},\$
 - (c) $C_3 = C_2 \cup \{012\},\$
 - (d) $C_4 = C_3 \cup \{011\},\$
 - (e) $C_5 = C_4 \cup \{210\}.$
- (3) For each of the following codes $C_i \subset \Sigma_2^4$, i = 1, 2, 3, calculate $d(C_i)$.
 - (a) $C_1 = \{0000, 0111\},\$
 - (b) $C_2 = \{0000, 0111, 1110\},\$
 - (c) $C_3 = \{0000, 0111, 1110, 0101\}.$
- (4) Given a code $C \subset \Sigma_q^n$ what is the smallest possible value of d(C) if:
 - (a) C is 7 error correcting,
 - (b) C is 11 error detecting,
 - (c) C is 11 error correcting,
 - (d) C is 21 error detecting.
- (5) Let C be a binary (9,6,5) code transmitted over a binary symmetric channel with symbol error probability p = 0.01. Find a good upper bound on the word error probability for any codeword (i.e. find a good upper bound on the probability that a sent code word will be incorrectly decoded).
- (6) If possible, construct a binary (n, M, d)-code with each of the following parameters:

$$(9,2,9), (3,8,1), (4,8,2), (5,3,4), (8,41,3)$$

In each case if no such code exists, prove it.

(7) In the table of known values for $A_2(n,d)$ in the notes (page 42) there are four pairs (n,d) where $max(M) = A_2(n,d)$ is the same as the BP-bound (marked with a * in the table). Which, if any of these pairs correspond to perfect codes?