CODING THEORY: PROBLEMS 2

Recall that $\Sigma_3 = \{0, 1, 2\}$ and so on.

- (1) Suppose $C \in \Sigma_3^6$. Write down the weights of the following codewords $x_i \in C$, i = 1, ..., 4.
 - (a) $x_1 = 000000$
 - (b) $x_2 = 000100$
 - (c) $x_3 = 002120$
 - (d) $x_4 = 212121$
- (2) In the field $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ calculate:
 - (a) $4^{44} + 3^{23}$,
 - (b) $4^{44} 3^{23}$,
 - (c) $4^{88} \times 3^{46}$.
 - (d) $4^{45} \div 3^{26}$.
- (3) Construct a table of multiplicative inverses for \mathbb{Z}_7 , and for \mathbb{Z}_{17} .
- (4) Do there exist finite fields of the following orders?
 - (a) 19?
 - (b) 200?
 - (c) 625?
 - (d) 1026?
- (5) A polynomial (in variable x, say) over a field F is a polynomial with coefficients taken from the field F. Let p(x) be a polynomial over F. A root of p(x) is an element $a \in F$ such that p(a) = 0. A quadratic (or cubic) polynomial over F is said to be *irreducible* if it has no roots in F.
 - (a) Write down all degree 2 polynomials over the field \mathbb{Z}_2 .
 - (b) Which if any of these polynomials is irreducible?
- (6) Although \mathbb{Z}_4 is not a field, we can still find a field of order 4. Construct addition and multiplication tables for a set $F_4 = \{0, 1, a, b\}$ (say), such that F_4 becomes a field, where 0 is the additive identity and 1 is the multiplicative identity.