CODING THEORY: PROBLEMS 5

(1) The 26 letters of the alphabet may be represented in \mathbb{Z}_3^3 by $A \mapsto 001$, $B \mapsto 002$, $C \mapsto 010$, ..., $Z \mapsto 222$. Let us also represent space by 000. We are given the parity check matrix,

$$H = \begin{pmatrix} 1 & 0 & 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

of a 3-ary [6,3,d]-code C, i.e. $w \in C$ if and only if $H.w^t = 0$.

(a) Note that H is not in standard form. Confirm that

$$G = \begin{pmatrix} 2 & 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 & 2 & 1 \end{pmatrix}$$

is a generator matrix for C.

- (b) G may be used to encode elements $u = (u_1, u_2, u_3)$ of \mathbb{Z}_3^3 by $u \mapsto x = uG$. It may therefore be used to encode letters of the alphabet, via the above representation. Compute the encoded form of the letter P.
- (c) You are now told that d(C) = 3. Compute the syndromes for all the coset leaders of weight 1.
- (d) Decode as much as possible of the following received message, given that the transmitted message was encoded using C with generator matrix G, assuming nearest neighbour decoding.

Message:

- (2) Determine which of the following codes C_i , i = 1, ..., 4 are cyclic, explaining your answer.
 - (a) The binary code $C_1 = \{00000, 10110, 01101, 11011\},\$
 - (b) The ternary code $C_2 = \{0000, 1212, 2121\},\$
 - (c) The binary code $C_3 = \{000, 010, 100, 001\},\$
 - (d) The binary code $C_4 = \{0000, 1010, 0101, 1111\}.$
- (3) Write out the parity check and generator matrices for the following hamming codes.

1

- (a) $Ham(\mathbb{Z}_2^4)$
- (b) $Ham(\mathbb{Z}_7^2)$