
Coding Theory

Paul Martin

September 28, 2019

School of Maths

Coding theory

Hello, everyone!

1

Contents

Coding Theory

Coding

Transmission

Hamming distance

Optimisation

Finite fields

Linear codes

Encoding

Coset decoding

Probability of error correction/detection

Dual codes

Syndrome decoding

More Exercises

Hamming codes

Hamming codes over non-binary fields

Cyclic codes

Golay codes

Yet More Exercises

2

Coding Theory

Preamble

What? Why?

The aim of this chapter is to study coding theory. We begin with a

few general words about what coding theory is, and why we want

to study it (i.e. what is it good for?). 1

1Warning: This preamble is mildly philosophical in nature. It might be best to

skip it for now, and come back after you have studied a few chapters of coding

practice.

3

Coding

Coding is the act of preparing information for transmission.2

2For example, from Dictionary.com:

http://dictionary.reference.com/browse/coding we have:

11. Linguistics. a. the system of rules shared by the participants in an act of

communication, making possible the transmission and interpretation of

messages.

4

There are many subtleties to this definition. For example, in order

to verify that information exists it has to be transmitted, so coding

is effectively part of the creation of information. Anyway, from the

pseudo-definition above it will already be clear that coding is

‘important’. It also contains language as a substructure, which

further emphasises its importance.3

3See for example

http://leoalmanac.org/journal/Vol 14/lea v14 n05-06/lglazier.asp

5

All transmission carries the risk of corruption. The Science (or

Theory) of coding is concerned with minimising this risk (in some,

usually quantitatively probabilistic, sense).

Example: suppose we need to be certain a message has got

through exactly as sent (e.g. a ‘zipped tar’ file). 4 What can we

do?

4What does ‘certain’ mean here?! This is another

Statistics-meets-Physics/Philosophy question...

6

.

As you can see, intrinsic to this chapter are notions of

communication, data, risk, and information. These are not trivial

notions, and we won’t be able to define them up-front. In

mathematics we try to keep the number of terms that are used

without definition to a minimum. This is because every term used

without definition is a possible source of confusion between person

A (the propagator, perhaps, of an idea) and person B (the

recipient). Person A simply has to trust that person B is

understanding the same thing by her term. If not, then any idea

built on it will be flawed. Unfortunately it is never possible to

define all terms. In mathematics, for example, we generally take on

trust that others understand the same thing by the term ‘set’ as

we do.

7

.

In the applications of mathematics, however, this ‘define

everything’ discipline can conflict with progress. Our strategy will

be to use some terms, where necessary, without an initial

definition; but to try to come back to them later and find a way to

check that we really do agree on their meaning.

8

.

To begin with, then, we may consider communication as the

process whereby some ‘data’ held in one ‘machine’ is passed so

that a copy is held in some other machine. This is somewhat

analogous to the process whereby an idea held in your mind might

be communicated to me, so that I then hold that same idea. 5

The extent to which this analogy works (or, if failing, we still want

to treat both processes) is a matter for discussion. It is probably

true to say that we can work more comfortably with the first

process than the second, but the second is ultimately perhaps more

interesting?

5Descartes doubts even that other people exist, so communicating with them

is something not to be taken lightly, if we are being really careful! We simply

can’t afford to be this careful here — we have concrete applications to address.

9

.

I thank Martin Speight for lending me his own beautiful notes on

Coding Theory, which have been invaluable in the preparation of

this Chapter.

Some recommended reading:

R Hill, ”First Course in Coding Theory”, Clarendon Press, 1986.

G A Jones and J M Jones, “Information and Coding Theory”,

Springer, 2000.

10

...In a single picture

Figure 1: A coding theory class.
11

.

Figure 2: A noisy channel.

12

Figure 3: Transmitting data through a noisy channel.

13

.

First you need to look at figure 1. But then... See figure 3. Here

person A tries to communicate the result of a football match (Win,

Lose or Draw). This is done by: (1) setting up an ‘encoding’ of the

set of possible messages (W,L,D) — in this case by associating

them with different points on the whiteboard; (2) transmitting the

match result down a noisy channel — in this case by pointing at it.

(This communication method might not be a very good practical

communication method under the circumstances, but it contains

nice analogies of many of the key points of coding theory.) All

these ideas will be explained as we go along.

14

Coding

Definitions

A coding is a representation of data. (What is data?...)

Let S be a set. A sequence of elements of S of length l is an

element of

S l = S × S × ...× S

For example, if S = Salph is the usual 26 element alphabet then

(w , i , l , l , y , o, u,m, a, r , r , y ,m, e)

is a sequence of length 14. (Where no ambiguity arises we might

drop the brackets and commas.)

A finite sequence is a sequence of finite length.

15

Definitions

Define S0 to be (the set containing) the empty sequence, and

S∗ = ∪l≥0S l and S+ = ∪l>0S
l

Define a product on S∗ by

◦ : S∗ × S∗ → S∗

(x , y) 7→ x ◦ y = xy

where xy is the concatenation of x and y .

0.1. Example. If x = 01010110 and y = 1 then

xy = x1 = 010101101.

16

Wisdom

A significant percentage of all human wisdom (?!), and all human

communication, has been encoded as sequences using a mild

generalisation of the alphabet Salph. 6

6On the other hand there is no system which will enable us to encode even a

single ‘generic’ element of the set (0, 1) (the unit open real interval).

Some elements in this interval can be communicated by more abstract means.

For example π, e and
√

2. Such abstractions are presently among the features

distinguishing humans from computers... but that is another story.

17

Data

‘Data’, for our present purposes, takes the form of some finite

sequence. We assume that this sequence has value to us for some

reason (determining the humanistic value of a given sequence is

beyond the scope of this section, but it might contain, for example,

a list of transactions in your bank account for the last year). The

challenge we face is to transmit this data to a new location.
For example, perhaps a person in England wants to communicate

the question implied by the sequence

(w , i , l , l , y , o, u,m, a, r , r , y ,m, e) to a friend in Australia. In this

case obviously shouting it out, or writing it onto a sheet of paper

and throwing this in a southerly direction, is not going to get the

job done, even if the recipient knows to expect a message (audible

or written, respectively) in some given time-window. Phoning or

sending an email might work better. But all these efforts can be

considered as involving the same basic process: 18

The basics

1. Source (person A) has a message to communicate (I want to

offer marriage to person B). We shall assume that the source has

this message expressed as a finite sequence in some source

alphabet T .

2. Source message is encoded in some way suitable for travel to B

(for example by vocalising in spoken English — whatever that is).

We shall assume that the encoding passes the message to a

sequence in a not necessarily distinct coding alphabet S .

3. Encoded version travels somehow to B, degrading gradually for

various reasons as it travels;

19

.

4. Degraded encoded version reaches target’s decoder (nominally

in our example it is a sound, so the decoder is an ear/brain system;

but obviously the sound heard by B at the appropriate point in

time will have only a negligible amount of correlation with the

original encoding). An attempt is made to decode this version.

5. Some approximation to the original message arrives for use at

the target.

20

A code

0.2. A code C for a source alphabet T is a function f : T → S+

to sequences in code alphabet S . The properties of codes that we

shall focus on depend on the image set f (T) rather than the

details of the map itself, so one often regards a code simply as this

set of words.

The extension of C to T ∗ is obtained simply by using f to encode

each symbol in succession.

0.3. Example. (i) If f (a) = 001 and f (b) = 010 then

f (abba) = 001010010001.

(ii) If f (a) = 1 and f (b) = 010 then f (abba) = 10100101.

21

.

We shall be interested in fixed-length codes (a discussion of

variable length codes can be found for example in Jones and Jones

(Springer SUMS, 2000)):

0.4. Definition. A block code

C = {(x1, x2, ..., xn), (y1, y2, ..., yn), ...}

of length n over set S is a subset of Sn. Code C is q-ary if

|S | = q.

22

Encoding

An encoding is a recasting of one code as another (or the encoding

of a message, but no usable message is really entirely unencoded).

0.5. Example. Let S ,T be sets and

f : T → S l

Then a code C ⊂ T n can be coded over S by applying f to each

element of each sequence x in turn as before. This time:

f : T n → Snl

where f (x)(i−1)l+(j−1)+1 = f (xi)j for j − 1 < l .

23

.

In particular (1) if T = {N,S ,E ,W } and S = {0, 1} and

f1(N) = (0, 0) = 00, ..., f1(W) = (1, 1) = 11 then

f1(EESW) = f ((E ,E , S ,W)) = 10100111

(2) if T , S as above and f2(N) = 000, f2(S) = 011, f2(E) = 101,

f2(W) = 110, then

f2(EESW) = 101101011110

24

Transmission

Transmit

Now suppose we transmit the message EESW — in any invertible

encoding.

We assume that the recipient knows (1) that the original message

was some sequence in {N, S ,E ,W }, and (2) how we encoded it (if

at all).

Thus, if the encoded message arrives intact, she can invert the

encoding to recover the original message.

BUT We want to consider the realistic scenario in which, with

some probability, part of the encoded message is corrupted in

transmission.

We want to ask: What can be done about that? And what can

‘best’ be done?

25

.

For example, suppose that there is a 1% chance that recipient B

will mishear any term in the sequence in the original encoding.

Then there is a roughly 4% chance that the message will arrive

with a corrupted element.

Note that there is no way for the recipient to tell whether the

message has been corrupted or not, in the original encoding or in

f1 (from Example 0.5).
In f2, however, not every binary code of length 3 is the image of an

element of T , so if 101 was corrupted to 001, say, we would know

at least that there had been an error in transmission. Indeed with

this encoding every single element transmission error would show

up. However double errors could still appear to be OK.

26

.

Now consider

(3): T ,S as in Example 0.5 above and f3(N) = 00000,

f3(S) = 01101, f3(E) = 10110, f3(W) = 11011.

0.6. Exercise. Verify that if any two errors occur then the received

message is not the image of any sent message, signaling an error.

Further, if a single error occurs the sent message is recoverable

anyway. For example suppose E 7→ 10110→ 10010 after

transmission. We cannot decode this, but considering the following

table of number of places differing from the encoding of each

element of T :

27

.

encoding places differing

00000 2

01101 5

10110 1

11011 2

we guess correctly that the intended element was E .

We say that (3) is 2 error detecting; or single error correcting.

Note that the cost of these improvements was higher block length,

which introduced some redundancy. That is, we have a trade-off

between efficiency and reliability.

28

Hamming distance

Metric

Let us try to be more precise about this error-correcting facility.

Recall

0.7. Definition. Let S be a set. A map d : S × S → R is a metric

on S if it satisfies: (i) d(x , y) = 0 ⇐⇒ x = y

(ii) d(x , y) = d(y , x)∀x , y ∈ S

(iii) d(x , y) ≤ d(x , z) + d(z , y)∀x , y , z ∈ S (triangle inequality).

Note that the usual distance in Euclidean space Rn is a metric.

29

.

We don’t have numbers (necessarily) in our ‘alphabets’, so our

basic distance function is cruder:

0.8. Definition. Given x , y ∈ Sn the (Hamming) distance between

them is d(x , y) = number of positions in which x , y differ.

0.9. Proposition. The Hamming distance is a metric.

Prove it!

30

Minimum distance

0.10. Definition. The minimum distance of a code C ⊂ Sn is

d(C) = min{d(x , y)|x , y ∈ C , x 6= y}

Examples:

C1 00 01 10 11

00 1 1 2

01 2 1

10 1

11

so that d(C) = 1 in case (1). Similarly in case (2) above the min

distance is 2; and in case (3) it is 3. (Exercises!)

31

.

0.11. Proposition. (a) If d(C) ≥ t + 1 then C can detect up to

t errors;

(b) If d(C) ≥ 2t + 1 then C can correct up to t errors by the ‘pick

the closest’ strategy.

Proof: Exercise, or see below.

32

Balls and spheres

0.12. Definition. For any x ∈ Sn and r ∈ N the ball of radius r

(or r -ball) centred on x is

Br (x) := {y ∈ Sn|d(x , y) ≤ r}

That is, the set of sequences that differ from x in no more than r

places.

An r -sphere is

Sr (x) := {y ∈ Sn|d(x , y) = r}

That is, the ‘outer shell’ of an r -ball.

33

0.13. Let C ⊂ Sn. Consider the collection of t-balls centred on all

x ∈ C . This is a ‘fuzzy picture’ of the elements x . Each is

surrounded by the area of uncertainty in it, in a neighbourhood of

S , caused by up to t transmission errors.

Figure 4: Ball packing heuristic (using Euclidean metric).

This gives us a kind of picture for the proof of (0.11) (see

Figure 4):

34

(a) If d(C) ≥ t + 1 then no x lies in another’s ball. Thus if 1 up to

t errors occur then the received message is not in C and we know

we have an error.

(b) If d(C) ≥ 2t + 1 then even the balls are disjoint (this is

perhaps not so obvious with the Hamming distance, cf. say the

usual Euclidean metric, but the triangle inequality is what we need

to confirm it), and if 1 up to t errors occur then the received

message is closer to x than any other y ∈ C . �

35

Optimisation

Code choice affects transmission error probability

We are making a case, superficially, that code f3 is more reliable

than f1 when transmitting over a channel with errors. But in

replacing by sequences 2.5 times as long we are giving it far more

digits to get wrong! Is f3 really more reliable? Less reliable? Does

it really make any difference?

36

.

To settle this we need to compute a probability for a message

being wrongly decoded in each case.

In order to do this it is simplest to make some assumptions about

error probabilities in the transmission ‘channel’:

(a) Each transmitted digit is equally likely to be corrupted, with

probability p.

(b) If a digit is corrupted, any of the q − 1 other letters in S are

equally likely to occur.

This is a q-ary symmetric channel, with symbol error probability p.

37

.

Sending symbol S in the f1 code we send 01. It will be decoded

correctly only if no errors occur:

Pcorr (01) = (1− p)2

so the error probability is

Perr (01) = 1− (1− p)2 (1)

In f3 we send 01101. This will decode correctly if 0 or 1 errors

occur (possibly more) so

Pcorr (01101) ≥ (1− p)5 + 5p(1− p)4

so

Perr (01101) = 1− (1− p)5 − 5p(1− p)4 (2)

38

.

If p is small then (2) is much smaller than (1). E.g. if p = 0.01

then Perr (01) = .0199 while Perr (01101) ≤ .0009801496. So

increasing word length by 2.5 times reduced error probability

20-fold!

If p is bigger then f1 doesn’t look so bad (for example at around

p = .4 and above it is better than f3).

Anyway, the point is it makes a difference. So the science of

coding theory is non-trivial. The game is ON!

39

0.14. Definition. A q-ary (n,M, d)-code is a block length n code

with M codewords and minimum distance d .

For S a set let P(S) denote the power set of S . Thus P(Sn) is the

set of length-n |S |-ary codes; and a q-ary (n,M, d)-code C is an

element of P(Sn) (some S of degree q) such that |C | = M and

d(C) = d .

As a convention, by default we assume that if |S | = q then

S = {0, 1, ..., q − 1}

Write (n,M, d)-codq for the set of q-ary (n,M, d)-codes (or just

(n,M, d)-cod if q is fixed). Thus:

P(Sn) = tM,d(n,M, d)-cod

40

The A-function

Define

Aq(n, d) = max M, for fixed q, n, d

that is, the size of the largest possible q-ary (n,M, d)-code. Since

q, n determine the size of the ‘space’ in the picture we considered

earlier, and d the size of the ‘exclusion zone’ around each point —

a ball in that space, it is reasonable that only so many such balls

can be fitted in the space without overlap.

41

The following gives an upper bound on Aq(n, d):

Theorem 0.15. (Singelton bound) For any q-ary (n,M, d)-code,

M ≤ qn−(d−1). Hence Aq(n, d) ≤ qn−(d−1).

Proof: Let C be such a code, with code alphabet S , and

π : C → Sn−(d−1) be the map

π : (x1, x2, .., xn) = (x1, x2, .., xn−(d−1))

Take x 6= y ∈ C . If π(x) = π(y) then x , y agree in n − (d − 1)

places and hence differ in at most d − 1. But then

d(x , y) ≤ d − 1. Hence π is one-to-one. Hence its domain is no

larger than its codomain:

M = |C | ≤ |Sn−(d−1)| = qn−(d−1)

�

42

Example

This singleton bound is not usually a very good bound, but is

saturated in some circumstances.

0.16. Example. What is A2(3, 2)? By the singleton bound

A2(3, 2) ≤ 23−(2−1) = 22 = 4

But our example (2) is a 2-ary (3,4,2)-code, so A2(3, 2) ≥ 4.

Hence A2(3, 2) = 4.

43

A much better upper bound is generally given by the ‘ball packing

argument’. This is built on a consideration of the amount of

‘space’ occupied by the ‘error ball’ around a codeword transmitted

with a given number of errors:

0.17. Lemma. If x ∈ Sn then

|Bt(x)| =
t∑

r=0

(
n

r

)
(q − 1)r

Proof: |Sr (x)| is the number of strings in Sn differing from x in

precisely r places. This is product of the number of ways to pick

the r differing places with the number of ways to assign a differing

digit in each place:

|Sr (x)| =

(
n

r

)
(q − 1)r

�

44

Theorem 0.18. (Ball packing bound) Let C be a q-ary

(n,M, d)-code with d ≥ 2t + 1. Then

M
t∑

r=0

(
n

r

)
(q − 1)r ≤ qn

Proof: Since d ≥ 2t + 1, the t-balls centred on codewords are all

disjoint. Hence

| ∪x∈C Bt(x)| =
∑
x∈C
|Bt(x)| = M

t∑
r=0

(
n

r

)
(q − 1)r

by Lemma 0.17. But

(∪x∈CBt(x)) ⊂ Sn ⇒ | ∪x∈C Bt(x)| ≤ |Sn| = qn

�

45

Using the BP bound

We can use this bound to rule out the existence of codes with

certain properties. For example, there is no 3-ary (6,10,5)-code,

since, with t = 2 (d = 2× 2 + 1)

M
t∑

r=0

(
n

r

)
(q − 1)r = 730

while qn = 36 = 729.

46

.

However, even if q, (n,M, d) passes the BP bound it does not

follow that a code exists. For example, there is no 2-ary

(6,9,4)-code, even though

M
t∑

r=0

(
n

r

)
(q − 1)r = 9(1 + 6) = 63 < 64 = qn

In this case we can actually rule out a code using the singleton

bound:

qn−(d−1) = 26−3 = 8

while M = 9. But even if q, (n,M, d) passes both bounds it does

not follow that such a code exists. (See table 1 for example.)

47

n d = 3 d = 5

actual singleton ball− actual singleton bp

packing

5 4 8 5 2∗ 2 2∗
6 8 16 9 2∗ 4 2∗
7 16∗ 32 16∗ 2 8 4

8 20 64 28 4 16 6

9 40 128 51 6 32 11

10 72− 79 256 93 12 64 18

11 144 512

12 256 1024

13 512 2048

14 1024 4096 1092 128 1024 154

15 2048∗ 8192 2048∗ 256 2048 270

16 2560− 3276 16384 3855 256− 340 4096 478

17 ≥ 83 ∗ 26

...

47 ≥ 9 ∗ 248

...

163 ≥ 19 ∗ 2151

Table 1: Table of known values for A2(n, d), and some bounds. (See R

Hill, A First Course in Coding Theory; or N Sloane’s online page:

http://www.research.att.com/∼njas/codes/And/. The most recently

discovered of the entries given here is from around 1995.).

48

.

Which value of t do we use in the BP bound? The largest t such

that 2t + 1 ≤ d , that is, t ≤ (d − 1)/2.

The largest integer not exceeding z ∈ R is written bzc (‘Floor

function’). So use

t = b1

2
(d − 1)c

So the BP theorem implies

Aq(n, d) ≤ b qn∑b(d−1)/2c
r=0

(n
r

)
(q − 1)r

c

since Aq(n, d) is an integer by definition. (These are the values

tabulated under ball-packing.)

49

Perfect codes

Note that the collection of t-balls is disjoint. If they completely

cover Sn this is obviously the best use of the ‘space’ we can make,

and the code is said to be perfect.

0.19. Definition. A q-ary (n,M, d)-code is perfect if the

collection of t-balls centred on codewords, t = b(d − 1)/2c, is a

partition of Sn.

Note that this happens if and only if equality occurs in

Theorem 0.18.

Note also that this cannot happen if d is even (exercise).

50

Example

0.20. Example.For our existing examples:

(1) is trivially perfect.

(2) d = 2 is even, so not perfect.

(3) is a 2-ary (5,4,3)-code:

M
∑
r

(
n

r

)
(q − 1)r = 4(1 +

(
5

1

)
1) = 24

while |S5| = 25 = 32, so not perfect.

51

Repetition code

0.21. Another kind of error-robust code, favoured by deaf people

such as the author (!)7, is a repetition code. A binary repetition

code of length n = 2t + 1 is

C = {00...0, 11...1}

Clearly this is a (2t + 1, 2, 2t + 1)-code.

Every string y ∈ S2t+1 either has more 0s than 1s, implying

y ∈ Bt(00...0);

or more 1s than 0s, implying y ∈ Bt(11...1).

Hence S2t+1 = Bt(00...0) t Bt(11...1).

7and roadies

52

0.22. Now, why did we only include the d odd cases in our table

of A2(n, d)?

For A2(n, d) we can deduce the even d cases from the odd.

0.23. Definition. The weight of a string x ∈ Sn is

w(x) = #non-zero entries in x

E.g. w(011) = 2 = w(10010).

52

0.24. Lemma. Suppose S = {0, 1} and x , y ∈ Sn both have

even weight. Then d(x , y) is even.

Proof: Let n = {1, 2, ..., n} and, fixing x , y ,

nij = nij(x , y) = {k ∈ n | xk = i and yk = j}

For example if x = 01101, y = 10110 then n00 = ∅ and

n01 = {1, 4}.

(We will give the proof in the binary case as stated.

Generalisations of the result are possible. Formulation of a suitable

statement is left as an exercise (but will not be needed here).)

Now w(x) = |n10|+ |n11| = 2l for some l , since w(x) is even; and

w(y) = |n01|+ |n11| = 2m for some m similarly. Thus

d(x , y) = |n10|+ |n01| = 2l + 2m − 2|n11|

�

52

0.25. Definition. An q-ary (n,M, d)-code is optimal if

M = Aq(n, d).

For k ∈ {1, 2, ..., n} define ‘projection’

πk : Sn → Sn−1

by x 7→ πk(x) = x1x2...xk−1xk+1...xn (deleting the k-th digit).

This also acts, by restriction, on any subset of Sn, and hence on

any code C ∈ P(Sn), to produce a new code πk(C) ∈ P(Sn−1).

For i ∈ S define ‘projection onto xk = i-hyperplane’ (abusing

notation as if Sn were Rn)

πik : Sn → Sn

by x 7→ πk(x) = x1x2...xk−1ixk+1...xn (replacing the k-th digit by

i).

52

Using πk

Note that if D ∈ (n,M, d)-cod with d > 1 then |πk(D)| = M,

since the maximum reduction in distance between distinct points

caused by deleting one letter is 1 (so distinct points are still

distinct after projection). That is

πk : (n,M, d + 1)-cod→ td ′∈{d ,d+1}(n − 1,M, d ′)-cod

53

Theorem 0.26. Suppose d odd. A 2-ary (n,M, d)-code exists iff a

2-ary (n + 1,M, d + 1)-code exists.

Proof: (i) (Only if part): Let C ∈ (n,M, d)-cod. We construct

C ′ ∈ (n + 1,M, d ′)-cod (some d ′) as follows.

For each x ∈ C let x ′ = x0 if w(x) even and x ′ = x1 if w(x) odd.

Note that d ≤ d ′ ≤ d + 1. But every x ′ has even weight by

construction so d ′ is even by Lemma 0.24. Hence d ′ = d + 1.

(ii) (If part): Let D ∈ (n + 1,M, d + 1)-cod2. Take x , y ∈ D such

that d(x , y) = d + 1. Find a digit, the k-th say, where they differ.

Construct D ′ ∈ (n,M, d ′)-cod2 by D ′ = πk(D). Note that

d ≤ d ′ ≤ d + 1. But d(x ′, y ′) = d(x , y)− 1 = d . Hence

D ′ ∈ (n,M, d)-cod2. �

Corollary: If d odd then A2(n + 1, d + 1) = A2(n, d).

53

0.27. Lemma. Aq(n, d + 1) ≤ Aq(n, d).

Proof: Let C be an optimal (n,M, d + 1)-code, so

M = Aq(n, d + 1). Choose x , y ∈ C with d(x , y) = d + 1. Assume

x , y differ in k-th digit. Remove x from C and replace it with x ′:

x ′ = πykk (x)

New code C ′ contains x ′ and y and d(x ′, y) = d by construction,

so d(C ′) ≤ d . Let z ,w ∈ C ′. If neither is x ′ then z ,w ∈ C so

d(z ,w) ≥ d + 1 > d . If z = x ′ (say) then

d + 1 ≤ d(x ,w) ≤ d(x , x ′) + d(x ′,w) = 1 + d(z ,w)

so d(z ,w) ≥ d . Thus d(C ′) ≥ d , so C ′ ∈ (n,M, d)-cod, so

Aq(n, d) ≥ M. �

This gives us one last bound on Aq(n, d):

53

Theorem 0.28. Aq(n + 1, d) ≤ qAq(n, d)

Proof: Let C be an optimal q-ary (n + 1,M, d)-code. Define

Ci = C ∩ πin+1(C). Clearly C = ti∈SCi so M = |C | =
∑

i∈S |Ci |.
Thus at least one of the Ci s has order at least M/q. Choose such

a Ci (i = k, say) and construct C ′ from it by deleting the last digit

of each codeword:

C ′ = πn+1(Ck)

Since Ck ⊂ C we have d(Ck) ≥ d(C) = d . But d(C ′) = d(Ck)

since all codewords in Ck agree in the last digit. Hence C ′ is a

q-ary (n,M ′, d ′)-code with M ′ ≥ M/q and d ′ ≥ d , so

Aq(n, d ′) ≥ M/q. But d ′ ≥ d so by (iterated use of) the Lemma

above

Aq(n, d) ≥ Aq(n, d ′) ≥ M/q = Aq(n + 1, d)/q

�

53

Examples and exercises

0.29. Example. Given A2(10, 3) ≤ 79 it follows that

A2(11, 3) ≤ 2× 79 = 158.

0.30. Exercise. Use the above theorem to give an alternative

proof of the singleton bound.

54

0.31. Exercise. For each of the following triples (n,M, d)

construct, if possible, a binary (n,M, d) code:

(6, 2, 6) (3, 8, 1) (4, 8, 2) (8, 40, 3)

If no such code exists, prove it.

Answer:

A q-ary repetition code has M = q and d = n for any q, n. Our

first case is an example of this: {000000, 111111} is a (6,2,6) code.

As we have set things up, all codewords are necessarily distinct.

This means that d is necessarily at least 1. To make a d = 1 code,

then, all we have to do is make any code at all. The biggest q-ary

length n code has M = qn (just include every possible codeword).

For binary n = 3, therefore, this biggest code has M = 8.

55

That is, for (3,8,1):

{000, 001, 010, 011, 100, 101, 110, 111}

is the unique such code.

For our third case we can use the parity idea (proof of

Theorem 0.26) to increase the distance by 1 from our (3,8,1) code:

{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}

For our fourth case it is no longer obvious how to construct a code.

Under the circumstances it is prudent to check if such a code is

impossible, by checking the BP and singleton bounds. In this case

one finds that the BP bound fails, so there is no such code.

55

Graphs and codes

An (undirected) graph G is a set VG of vertices together with a set

EG of edges between them (for a more careful definition see the

Chapter on Graphs online).

A complete graph is a graph in which every pair of vertices is

connected by one edge.

A graph morphism φ : G → G ′ is a map φ : VG → VG ′ such that

(v1, v2) ∈ EG implies (φ(v1), φ(v2)) ∈ EG ′ .

56

0.32. Exercise. Consider the graph G (n, k) each of whose

vertices is a 2-ary sequence of length n; with an edge (x , y)

whenever d(x , y) ≥ k. A 2-ary length n code C is any subset of

the vertex set of G (n, k). If G (n, k) restricts to the complete

graph on C then d(C) ≥ k .

(a) Prove it!

(b) Write down a maximal complete subgraph of each of the

following: G (3, 3), G (4, 3), G (5, 3).

(c) If there is a complete graph of order l in G (n, k) (l vertices)

then there is a complete graph of order l including the vertex

000...0. Prove it.

(d) Let Ψ : Zn
2 → Zn

2 denote swapping the first two entries in the

sequence (e.g. Ψ(10111) = 01111). Then Ψ defines a graph

homomorphism from G (n, k) to itself. Prove it. (Can we say

more?)

56

ANSWERS: (a) Try this yourself. Note that it says that A2(n, k) is

the size of a maximal complete subgraph in G (n, k).

(b) We give our complete graph as a list of vertices in each case:

G (3, 3): {000, 111} (equally good would be {001, 110}, but it will

be clear than neither subgraph can be enlarged without losing the

completeness property);

G (4, 3): {0000, 1110};
G (5, 3): {00000, 11100, 10011, 01111}.
(c) If we change the first entry in every vertex sequence in G (n, k)

(from 0 to 1 or from 1 to 0) then the Hamming distances between

vertices are not changed. The same applies if we change any given

entry in every sequence simultaneously. In this way we may take

any vertex (in a complete subgraph, say) and change it to 000...0

without changing the edges in the subgraph (so it remains as the

complete graph). �

56

(d) For every pair of vertices d(x , y) = d(Ψx ,Ψy), since the first

two entries are interchanged in both. In fact Ψ gives a graph

isomorphism of G (n, k) with itself. But of course Ψ would not fix

some arbitrary subset C in general.

56

Finite fields

We have repeatedly thought of Sn as if it were something like Rn,

that is, as if it were a vector space, and C ⊂ Sn a vector subspace.

Now we want to go further and think of strings

x = x1x2...xn = (x1, x2, ..., xn)

as vectors, so that we can add them, and multiply by scalars.

In its simplest form this means that we want S itself to be like R,

in the sense of having addition and multiplication defined (perhaps

even subtraction, and division by ‘non-zero’ elements). But S

cannot be R, since it is finite.

The composition requirements are summarised by saying that we

want S to be a field. We should recall the definition of field; and

then see if we can think of any finite fields that we could use for

our alphabet.

57

The definition of field is quite long. We can break it up a little into

stages:

57

0.33. Definition. A commutative ring is a set F equipped with 2

closed associative and commutative operations

+ : F × F → F , × : F × F → F

(we will write ab for ×(a, b) = a× b), such that:

(1) × is distributive over +:

a(b + c) = (ab) + (ac)

(2) there is an additive identity element 0 ∈ F , so that

a + 0 = 0 + a = a ∀a

(3) there is a multiplicative identity element 1 ∈ F , so that

a1 = 1a = a ∀a

(4) Every a ∈ F has an additive inverse −a such that

a + (−a) = 0.

0.34. Example. The integers form a commutative ring.

57

Fields

0.35. Definition. A field is a commutative ring such that

(5) Every a ∈ F \ {0} has a multiplicative inverse a−1 such that

a(a−1) = 1.

0.36. Example. The obvious example is the real numbers. The

rational numbers also work. As do the complex numbers.

The integers do not work, since 2 has no integer multiplicative

inverse.

58

0.37. The challenge is to find finite sets F that can have all these

properties. A great source of such examples comes from thinking

about modular arithmetic:

Define a relation of congruence modulo 5 on Z by a ∼= b if

a− b = 5n for some integer n.

It is easy to see that this is an equivalence relation. The

equivalence classes are:

[0] = ...,−10,−5, 0, 5, 10, ...

[1] = ...,−10 + 1,−5 + 1, 0 + 1, 5 + 1, 10 + 1, ...

and indeed for r = 0, 1, 2, 3, 4:

[r] = ...,−10 + r ,−5 + r , 0 + r , 5 + r , 10 + r , ...

And miraculously ...

58

Miraculously, when we do ordinary integer arithmetic we find that it

respects these classes. That is, if a + b = c and a, b are congruent

to a′, b′ respectively then a′ + b′ is congruent to c . Example:

1 + 2 = 3 21 + (−98) = −77

In this sense we can define arithmetic on the classes mod.p (where

at this stage p is any natural number). The resultant structure of

integer arithmetic mod.p is denoted Zp. Thus Zp is a set with +

and × which are commutative and associative, distributive...

0.38. Exercise. Check this!

...with additive and multiplicative identity; and additive inverse.

Example: For p = 5 the additive inverses of [0], [1], ... are given by

[0] + [0] = [0] [1] + [4] = [0] [2] + [3] = [0]

so that [0]=-[0]; [4]=-[1] and [3]=-[2].

58

What about multiplicative inverses? Is there an [x] such that

[2][x] = [1]?

If we are working in Z5 then: Yes! [2][3] = [6] = [1]. And

[4][4] = [16] = [1].

Thus

Theorem 0.39. Z5 is a field.

On the other hand Z4 is a commutative ring, but not a field. The

complete row of the multiplication table for [2] is

[2][0] = [0] [2][1] = [2] [2][2] = [0] [2][3] = [6] = [2]

Since none of the right hand sides is [1] we see that [2] does not

have a multiplicative inverse.

58

In fact

Theorem 0.40. (i) Zp is a field iff p is prime.

(ii) there is a field of order q iff q = pe where p is prime and e ∈ N.

(iii) two fields of the same order are isomorphic.

Part (i) can be proved as an exercise.

Part (ii) is standard in algebra textbooks, but for now we will

content ourselves with understanding the statement.

Part (iii) just says that when we have understood part (ii) we will

have a handle on all finite fields!

So, what about part (ii)? Part (i) tells us how to construct the

fields of prime order; and that the fields of order p2 and so on are

not Zp2 and so on.

...so what are they?

58

Fields and field extensions

One way to address this question is to think about how the

rational field sits inside the real field; and the real field inside the

complex field. We can ask ourselves what happens when we adjoin

i =
√
−1 to R and try to make a field containing these objects.

Since a field is closed under addition we see immediately that the

smallest field containing R and i is C. On the other hand if we

adjoin i to Q we can construct a ‘complex rational field’ bigger

than Q but smaller than C.

59

One way of thinking of this is that we have added to Q a new

number v , which number obeys v2 + 1 = 0. We don’t really need

to know too much else about this number! We can already check

the axioms:

A general element of the field can be written in the form a + bv

where a, b ∈ Q. Adding obviously works:

(a1 + b1v) + (a2 + b2v) = (a1 + a2) + (b1 + b2)v

and multiplying (using v2 = −1):

(a1 + b1v)(a2 + b2v) = (a1a2) + (a1b2 + a2b1)v + (b1b2)v2

= ((a1a2)− (b1b2)) + (a1b2 + a2b1)v

59

The multiplicative inverse is given by v−1 = −v , since

v(−v) = −v2 = 1

and more generally by:

Exercise!

0.41. Example. What happens if we further extend this field by

adding in an object w obeying w2 − 2 = 0?

59

0.42. The idea for finite fields is to make such extensions to the

prime fields Zp (p prime). Let us consider the prime p = 2, and try

to extend the field Z2. We start by adding in an element that

obeys a polynomial equation. We might as well start with a

quadratic. Since we want to end up with ‘coefficients’ in Z2 the

coefficients in the polynomial need to be in Z2. There is then only

one irreducible polynomial available: f (x) = 1 + x + x2. Adjoining

a root of f to Z2 we get a number system consisting of

{0, 1, x , 1 + x}, and that’s it! The inverse of x is 1 + x , since

x(1 + x) = x + x2 = −1 = 1 (mod .p)

This field is called F4.

59

More generally we can adjoin a root of an irreducible polynomial of

degree e and get F2e . More generally still, Fpe .

Note that the polynomial f (x) we should use should have the

property that it does not have a root in the original field (so the

root is a ‘new element’). In general we also require that there is no

lower-order polynomial having the same root (i.e. f (x) does not

factorise). This is what we mean by ‘irreducible polynomial’.

59

We said some time ago that coding is interested in the way the

code C sits as a subset in the set of all possible received words (i.e.

it is interested in the minimum distance d(C) and so on). From

this point of view, the precise choice of symbols used in codewords

is not directly relevant. However, realistically, the message itself is

quite likely to take the form of strings of letter from some human

alphabet — and the recovery of the correct letters at the end of

the process is the essential aim. In practice, then, since we are

about to start using elements of finite fields to create codes, the

question arises: How can we use finite fields to represent our

familiar alphabet?

59

This is the same question as to ask how we can use any random

set of symbols to represent our alphabet. Doing this is a vital step,

if we are going to use new symbol sets. But it is, of itself,

essentially trivial. Here we are not trying to maximise Hamming

distance or anything like that, so any surjective map from the

alphabet to some set of strings of symbols from the new symbol

set will do. Thus if we have an alphabet with 26 letters in it (say!),

we can represent it with some other symbol set, so long as there

are at least 26 codewords available.

0.43. Example. The 26 letters of the alphabet {A,B,C , ...,Z}
may be represented in Z3

3 by A 7→ 001, B 7→ 002, C 7→ 010,

D 7→ 011, E 7→ 012, ..., Z 7→ 222. This uses up 26 of the 33 = 27

elements of Z3
3, so we may also represent ‘space’ by 000.

59

Linear codes

Our original idea was to be able to think of Sn as a set of vectors,

by making S a field. The analogy was with the case Rn, which is a

set of n-component vectors forming a vector space.

If F is a field then F n is an n-dimensional vector space over F .

Addition is component-wise, as usual.

We say that code C ⊂ F n is a linear code if it is a linear subspace

of F n.

0.44. Example. Let

V = Z3
2 = {000, 001, 010, 011, 100, 101, 110, 111}. Then

C = {000, 001, 010, 011} is a subspace.

This is analogous to the fact that {(0, y , z) | y , z ∈ R} is a

subspace of the infinite space R3. A basis of R3 is

{(0, 0, 1), (0, 1, 0), (1, 0, 0)}, and a basis of the subspace is

{(0, 0, 1), (0, 1, 0)}.

59

A basis of V is {(0, 0, 1), (0, 1, 0), (1, 0, 0)} = {001, 010, 100}, and

a basis of C is {001, 010}.

59

Examples/Exercises

0.45. Example. Show that if C ,C ′ ⊂ F n are linear codes then

C ∩ C ′ and C + C ′ := {u + u′ | u ∈ C , u′ ∈ C ′} are also linear

codes. When is the code C ∪ C ′ also linear?

60

0.46. Picking a code at random from P(F n), it is likely to be

non-linear. However “most of the codes currently studied and used

are linear” (Jones and Jones, 2000). We will now see why.

When C ⊂ F n is linear, and of dimension k as a vector space, then

M = |C | = |F |k . We call C a linear [n, k]-code.

0.47. The rate of a code is

R = R(C) =
logq M

n

so for a linear code

R = k/n

Thus the bigger k is, the more information we transmit; the bigger

n is, the longer it takes to transmit. But of course the bigger n− k

is the more checking we are doing, so the better we can confirm or

protect the information.

60

Examples

Let us now examine some examples of linear codes. In particular,

which of the codes we already looked at are linear?

If S = F is a field then the repetition code Rn ⊂ F n is linear of

dimension 1. Example: 11...1 + 11...1 = 22...2.

61

Parity check codes

The parity-check code Pn ⊂ F n consists of all vectors u such that∑
i

ui = 0

We can consider the first n − 1 digits as information, and un as a

check digit, simply defined as

un = −
n−1∑
i=1

ui .

Since it is defined by a linear equation this code is linear. It is a

[n, n − 1]-code, so M = qn−1 and R = n − 1/n.

62

B C

7

5

1

2

4

3

6

A

Figure 5:

62

0.48. Example. Consider the Venn diagram for sets A,B,C in

Figure 5. Suppose we want to encode an element a of {0, 1}4 as a

codeword u ∈ S7. We will assign the 7 digits to the 7 regions in

the figure as numbered. We set u3 = a1, u5 = a2, u6 = a3, and

u7 = a4. We now want to set u1, u2, u4 for collateral (checking)

information. We set u4 so that the sum of digits assigned in set A

(i.e. u4, u5, u6, u7) is zero in binary. We set u1, u2 similarly

considering C and B.

The code H7 consists of all codewords u ∈ F 7
2 written in this way.

Since H7 is determined by linear equations between variables ui it

is a linear code. There are 24 choices for a, and these fix u, so

M = 16. Indeed H7 has basis v1 = 1110000, v2 = 1001100,

v3 = 0101010, v4 = 1101001. Thus the dimension is 4.

We will come back to this example later.

62

Linear algebra/linear combinations

Here are some quick reminders on linear algebra:

A linear combination of a set of vectors V = {vi} is a form like

v =
∑
i

aivi

Obviously we have

0 =
∑
i

0.vi

(on the left we mean the zero vector; on the right the ‘scalar/field

element/number’ 0).

The set of all vectors expressible as linear combinations of V is

called the span of V .

63

Linear independence

0.49. Definition. A set of vectors is linearly independent if the

only way to linearly combine them to get 0 is with all coefficients

0.

A linearly independent spanning set for a vector space is called a

basis.

64

Basis Theorem

Theorem 0.50. Let C be a non-trivial (i.e. non-zero) subspace of

V , a vector space over Fq. Then

(1) C has a basis.

Let B = {v1, v2, ..., vk} be a basis for C . Then

(2i) every vector in C can be uniquely expressed as a linear

combination in B.

(2ii) |C | = qk .

Proof: Exercise.

Note that any two bases for C have the same order, k. Call this

number dimC .

65

Examples

0.51. Example. (i) F n
q has a basis {100..00, 010..00, ..., 000..01}

consisting of n vectors.

(ii) C = {000, 001, 010, 011} is a subspace of Z3
2 with basis

{001, 010}.
(iii) Is C = {000, 001, 002, 010, 020, 011, 022} a subspace of Z3

3?

No! The dim is not a power of 3.

0.52. Proposition. Let F be a finite field of characteristic p.

Then F is itself a vector space over Zp.

Proof: Exercise.

66

Notation

0.53. Definition. A q-ary [n, k , d]-code is a linear code in F n
q of

dim k and minimum distance d . Write [n, k , d]− cod for the set of

all such (with q understood).

Thus C ∈ [n, k , d]− cod implies C ∈ (n, qk , d)− cod , but the

converse is false.

0.54. Example. Our first three examples are all binary linear

codes: C1 ∈ [2, 2, 1]− cod ; C2 ∈ [3, 2, 2]− cod ;

C3 ∈ [5, 2, 3]− cod . Exercise: check this.

67

Minimum weight/distance

Recall that for a general code we need 1
2 |C |(|C | − 1) calculations

to compute d(C). We can radically reduce this for a linear code.

To see this first note that

d(x , y) = w(x − y)

Thus

Theorem 0.55. For a linear code let

w(C) = min{w(x) | x ∈ C \ {0}}

(here we write 0 for the appropriate 000..0 sequence, for

convenience). Then

w(C) = d(C).

Proof: Exercise.

68

Specifying a linear code

For linear codes we usually just give a basis rather than listing out

the whole thing.

69

Generator matrix

0.56. Definition. A k × n matrix is called a generator matrix for

C if its rows form a basis for C .

0.57. Example. C3 has generator matrix

G =

(
01101

10110

)

However in computing d(C) it is NOT enough to find the

minimum weight among the basis vectors! For example

G =

(
1111

1110

)
has min weight 3, but d(C) = 1.

70

.

Theorem 0.58. Let G generate C. Any matrix obtained from G

by

(R1) permuting rows

(R2) multiplying a row by a non-zero scalar

(R3) adding one row to another

generates the same code.

71

Example

0.59. Example. Show that the 3-ary linear codes generated by

G =

 210222

012101

011112


and

G ′ =

 100201

010120

001022


generate the same code. Deduce d(C).

Clues: start by subtracting row two from row three in G . Then

subtract row 2 from row 1. Then row 3 from row 2. Then multiply

row 1 by the scalar 2. How does it look now?!

Obviously d(C) ≤ 3, since there is a weight 3 row in G ′. But to see

if this bound is saturated (it is) you still have some work to do!
72

Equivalent codes

0.60. Definition. Codes C ,C ′ are equivalent (write C ∼ C ′) if

there is a one-to-one mapping

φ : C → C ′

such that

d(x , y) = d(φ(x), φ(y))

for all x , y . In particular d(C) = d(C ′).

0.61. Exercise. Check C ∼ C ′ is an equivalence relation, i.e. a

reflexive, symmetric, transitive relation.

73

Theorem 0.62. Let C be a linear code generated by G. Let G ′ be

obtained from G by

(C1) permuting columns

(C2) multiplying a column by a non-zero scalar a ∈ Fq.

Then G ′ generates C ′ an equivalent linear code to C.

Proof: Exercise (optional!).

By using all the row and column operations you can always reduce

G to a standard form

G ′ =


100..0 A11A12..A1,n−k

010..0 A21A22..A2,n−k

...

000..1 Ak1Ak2..Ak,n−k

 = [1k |A]

where 1k is the k × k unit matrix and A has entries in Fq.

73

0.63. Example. A binary [5,3,d]-code is generated by

G =

 11111

10011

11001

 ∼
 11111

01100

00110

 ∼
 10011

01010

00110



0.64. Exercise. Let Ci be the 3-ary code generated by Gi , where

G1 =

(
1011

0112

)
, G2 =

(
1011

0111

)

For each of i = 1, 2, list Ci and hence compute d(Ci). Is Ci

perfect?

74

Exercise Answer hints

C1: Let’s call the two row vectors v1 and v2, then we can write out

all linear combinations and hence all elements systematically:

av1 + bv2 a = 0 1 2

b = 0 0000 1011 2022

1 0112 1120 2101

2 0221 1202 2210

Thus d(C1) = w(C1) = min(w(x ∈ C ∗1)) = 3.

Now consider the size of a 1-ball around a codeword x in this case.

(1-ball, since 2t + 1 = 3 gives t = 1.) It includes the codeword

itself, plus the 8 words differing from x in a single position (4

positions; q − 1 = 2 ways to differ in each position). The total

‘space’ occupied by M = 9 such balls is thus 9× 9. So... you now

just have to compare with the total size of the code ‘universe’

here... 74

Hints Contd

C2: We can proceed systematically in the same way as above.

Alternatively,... Consider v1 = 1011 and v2 = 0111 here. And

consider some specific linear combinations av1 + bv2. For example

v1 + 2v2 = 1011 + 0222 = 1200. Thus w(C) is at most 2.

On the other hand both vectors v1, v2 have sum of entries (3-ary

‘parity’) zero. So all combinations also have sum zero. Thus the

only way to get a codeword with form 00*0, say, (w(x) ≤ 1) is

with ∗ = 0. Thus w(C) = 2. Thus d(C) = 2.

... Thus C2 not perfect (since t is smaller than for C1, which has

the same M and ‘universe’) (or on general grounds, since d even).

75

Encoding

.

Given C , a linear code over Fq (i.e. a subset of F n
q for some n)

generated by G , we have a natural identification between C and

F k
q (k = dim C , not the same as n, the length of the code).

Each x ∈ C is uniquely expressible as

x =
k∑

i=1

aivi

(the vi s are the rows of G in the natural order). So

x ↔ (a1, a2, ..., ak) ∈ F k
q

is a one-to-one correspondence.

76

We think of the a = (a1, ..., ak) vectors as the message words of

the code, and the n-tuples x as the codewords representing them.

Note that the encoding map

a→ x

is then simply

x = aG

That is, right multiplication by the generating matrix — a linear

map!

0.65. Example. Let C be 3-ary and generated by

G =

 10010

01010

00102


Encode the messagewords 000, 101 and 122.

76

Clearly 000→ 00000, so we need

101→ (101)G = (10112)

122→ (122)G = (12201)

Note that the first three digits of the codeword are the same as the

messageword. This always happens if G is in the standard form.

The other digits are then ‘check’ digits.

This makes the last part of decoding trivial:

messageword
encode→ codeword

transmit(noise)→ received vector

project→ nearest codeword
interpret→ decoded messageword

The last step is just to drop off the check digits.

76

Coset decoding

Error vector

Our picture above raises a key point. When x ∈ F n
q is transmitted

down a noisy channel y is received. Define the error vector

e = y − x

Then the number of transmission errors is w(e). (Of course no one

knows both x and y for sure...)

We want an algorithm which decides from y which x was

(probably) sent; or equivalently, what e has occurred.

0.66. Definition. Suppose C ∈ [n, k, d]− codq (some d) and

a ∈ F n
q . Then set

a + C = {a + x | x ∈ C}

is called a coset of C in F n
q .

77

.

Theorem 0.67. [Lagrange] (a) The cosets of a linear code

C ⊂ F n
q partition F n

q .

(b) Each coset has size qk .

Proof: (Idea) Think of C as a subspace (such as a plane in R3

through the origin). We can think of a as shifting this subspace

parallel-ly away from the plane; in other words to a new plane not

including the origin.

We dont have R3, but the same idea works. �

78

Example

0.68. Example. Let C be 2-ary generated by

G =

(
1011

0101

)

That is C = {0000, 1011, 0101, 1110}. Cosets:

0000 + C = C

1000 + C = {1000, 0011, 1101, 0110} = 0011 + C (etc)

and so on.

79

Coset leaders

Given any subset U of F n
q (such as a coset), we may partition U

into subsets containing words of equal weight. Among these will

be a subset of words in U of least weight. (For example, if we

consider the whole of F n
q then there is always a fixed-weight subset

containing just the word of weight zero.)

Henceforth we assume that we always have a way of choosing a

single word from any such subset. (If we have totally ordered the

words in F n
q then we could simply take the first one in the order

induced on the subset, say.)

Now suppose that the subset we have in mind is a coset. The

chosen vector of min weight in a coset is called the coset leader

(for that choice). E.g. in {0100, 1111, 0001, 1010} either 0100 or

0001 could be chosen as leader.

80

Standard array

(10.1) We can use the idea of coset leaders to generate an

arrangement of F n
q called a standard array for C . Assuming as

before that we have a way to choose a word from a set (via a total

order, say), then we can do this algorithmically:

(i) make a row list of the codewords of C , with 00..0 on the left.

This row is coset 00..0 + C , with 00..0 as coset leader; arranged in

some chosen order.

(ii) choose any distinct vector a1 of min weight in F n
q \ C and row

list a1 + C in the obvious order (i.e. with a1 + c under codeword

c). This has a1 as coset leader.

(iii) choose any a2 not already listed, of min weight, and row list

a2 + C .

(iv) repeat until all words of F n
q appear.

81

Note that there were two kinds of choices in the construction of

the standard array: (1)the order in which to write out the row C

after 00...0; (2) the choices of coset leaders (the column below

00...0). As we shall see, the first choice has no real bearing on

decoding in what follows. The second choice can affect decoding

(but all such choices are equally ‘good’ in probablistic terms).

In our example 0.68 the standard array (for an obvious set of

choices) is 
0000 1011 0101 1110

1000 0011 1101 0110

0100 1111 0001 1010

0010 1001 0111 1100


(don’t worry — we won’t always need to write out this whole table

— see section 13).

81

(10.2) We are now ready to explain coset decoding.

Note that a given standard array A determines, for each word y in

F n
q , a coset leader eA(y) (the first word in the row of y); and a

codeword cA(y) (the first word in the column of y). For example,

the coset leader associated to 1010 in the array above is 0100.

Thus if we receive y , we may associate two other words to it,

related by

eA(y) = y − cA(y)

Coset decoding:

if we receive y , we decode it as the codeword cA(y) appearing in

the column containing y .

82

.

IS this a good strategy?

In coset decoding we are effectively assuming that the actual error

from the transmitted codeword x

e = y − x

is the coset leader eA(y) of coset y + C .

Suppose the actual error e is a coset leader. Then y = x + e, so y

does lie in the coset with leader e, so eA(y) = e and cA(y) = x .

That is, our decoding is correct.

82

.

On the other hand, if the actual error is not a coset leader, then by

assuming that it is, we are bound to get the decoding wrong.

By choosing coset leaders to have min weight, we always decode y

as the (Hamming) nearest codeword to y (or at least one of the

joint nearest). E.g. y = 0110 decodes as x = 1110 in our example.

That is, we assume the fewest errors possible.

In case of low single-digit error probability it is hopefully already

clear that this is a good assumption — probablistically. (But see

section 11 for details.)

83

Returning to our example code, note that d(C) = w(C) = 2.

Thus it is not even single error correcting, so even single errors

might not be corrected properly. (In fact a single error will be

corrected if it occurs in the 1st, 2nd or 3rd digit, but not the 4th.)

Specific instances:

messageword codeword noisy channel decode truncate

→
01 0101 0111 (say) 0101 01 (correct)

10 1011 1010 1110 11 (incorrect)

This glitch is precisely to do with the fact that we had a choice of

coset leaders in 0100 + C . We could have chosen 0001 instead, in

which case the 4th digit errors would be recovered and the 2nd

digit errors not recovered.

83

Probability of error

correction/detection

As noted before, it is the probabilities of a successful outcome

which really dictate the success of our coding methodology. We

have accumulated a lot of technology since our last probability

calculation, so now it is time to put it all together.

Suppose we transmit a linear code down a symmetric channel with

symbol error probability p, then use coset decoding. Then we get

the decoding of any received word y right if and only if our error

correction is right. This happens in coset decoding if and only if

the actual error e = y − x is a coset leader. Thus for any

transmitted codeword x

Pcorr (x) = Prob(error e = one of the coset leaders)

(Note that this is independent of x!) In our example 0.68, therefore

Pcorr (x) = P(e = 0000)+P(e = 1000)+P(e = 0100)+P(e = 0010)

= (1− p)4 + 3p(1− p)3

83

Perr (x) = 1− Pcorr (x)

Call this Perr (C) since it depends only on C , not on x . It is the

word error rate of the code.

More generally: Let C be any linear code whose coset leaders are

a0 = 00..0, a1, a2, ..., al . We have

Pcorr (C) =
l∑

r=0

P(e = ar) =
l∑

r=0

pw(ar)(1−p)n−w(ar) =
n∑

s=0

γsp
s(1−p)n−s

where γs is the number of coset leaders of weight s.

84

.

How can we compute the γss? In general it is hard, but:

Theorem 0.69. If d(C) ≥ 2t + 1 then every vector of weight ≤ t

is a coset leader for C . Hence

γs =

(
n

s

)
(q − 1)s = |Ss(00..0)|

for 0 ≤ s ≤ t. (Recall Ss(00..0) is the sphere around 00..0.)

84

Proof

Proof: Consider the vectors in Bt(00..0). Every vector lies in some

coset, so if y ∈ Bt(00..0) is not a coset leader then there exists z

with w(z) ≤ w(y) and x ∈ C (x 6= 0) such that

y = x + z

But then

d(C) ≤ w(x) = w(y − z) = d(y , z) ≤ d(y , 0) + d(0, z)

= w(y) + w(z) ≤ 2w(y) ≤ 2t

This contradicts the first hypothesis, so y is a coset leader. �

85

Theorem 0.70. If C is a perfect [n, k , 2t + 1]-code then its coset

leaders are precisely the vectors of weight ≤ t.

85

0.71. Example. Let C be a 3-ary [11, 6, 5]-code. What is

Perr (C)?

By Theorem 0.69, d = 5 implies all vectors of weight ≤ 2 are coset

leaders. Therefore

γ0 = 1 γ1 =

(
11

1

)
21 = 22 γ2 =

(
11

2

)
22 = 220

(For w > 2, what is γw? We don’t know, but let’s press on!)

Therefore

Pcorr (C) =
n∑

w=0

γwp
w (1− p)n−w ≥

2∑
w=0

γwp
w (1− p)n−w

= (1− p)11 + 22p(1− p)10 + 220p2(1− p)9

so

Perr (C) = 1−Pcorr (C) ≤ 1−((1−p)11+22p(1−p)10+220p2(1−p)9)

85

In fact the bound is saturated, because this code is perfect. We

know the weights of 1+22+220=243 of the coset leaders. But the

number of cosets is

|F n
q |
|C |

= qn/qk = 311/36 = 35 = 243

so there are no more cosets!

If we use C for error detection, rather than error correction, the

analogue of Perr (C) is Pundetec(C), that is, the probability that a

word is received with undetected errors.

Again we transmit x ∈ C and receive y ∈ F n
q . The received vector

has undetected errors iff y 6= x but y ∈ C . That is, iff

e ∈ C \ {00..0}.
85

The probability of this is again independent of x :

Pundetec(C) =
n∑

w=1

δwp
w (1− p)n−w

where δw is the number of codewords of weight w .

0.72. Example. C = {0000, 1011, 0101, 1110}. δ1 = 0, δ2 = 1,

δ3 = 2, δw = 0 (w ≥ 4). Thus

Pundetec(C) = 0.p(1− p)3 + 1.p2(1− p)2 + 2.p3(1− p)

= p2(1− p)(1− p + 2p) = p2(1− p2)

= 0.00009999 if p = 0.01

If y is received and y 6∈ C we detect an error and request

retransmission. How likely is this?

Pretrans = 1− P(no error detected)

85

= 1− (P(no errors) + P(error occurs but is not detected))

= 1− (1− p)n − Pundetec(C)

In our example

Pretrans(C) = 0.039394 if p = 0.01

which is about 4%.

85

Dual codes

Notation: Here we use G t (or GT) to denote the matrix transpose.

Recall the inner (or scalar) product u.v of two vectors.

0.73. Example. In Z4
2: 1001.1101=1+0+0+1=0.

0.74. Definition. Given C ⊂ F n
q , its dual code is

C⊥ = {u ∈ F n
q | u.v = 0 ∀ v ∈ C}

0.75. Lemma. If C generated by G then v ∈ C⊥ ⇐⇒ vG t = 0.

If U,V are vector spaces over Fq and

L : U → V

is a linear map, then the range L(U) ⊂ V is a subspace of V . Its

dimension is called the rank of L.

86

Rank-Nullity

The set of vectors

ker L = {u ∈ U | L(u) = 0} ⊂ U

is a subspace of U, called the kernel of U. The dimension of the

kernel is called the nullity of L. We have

rank L + dim(ker L) = dim U

(The Rank-Nullity Theorem from linear algebra.)

86

Let F be a field (such as Fq). Let us explicitly regard vector space

V = F n as the space of n-component row vectors (as has been our

convention throughout), i.e. as 1× n matrices. There is, formally,

another realisation as column vectors — and even given the choice

of row vectors, the explicit matrix representation of individual

vectors v ∈ V depends in principle on a choice of basis. But as

soon as we fix all these choices, then ...

...Each n × k matrix H with entries in F defines a map

LH : F n → F k

by

v 7→ vH

87

Equivalently each k × n matrix G with entries in F defines a map

LG by v → vGT .

Let α, β ∈ F . Since H(αv + βw) = αHv + βHw we see that LH is

a linear map.

If we consider the standard ordered basis for F n then its image

under LH will be the set of row vectors in H. Thus

0.76. Lemma. The dimension of LH(F n) (the rank of LH) is the

same as the rank of H as a matrix.

The same argument holds for LG and the rank of G.8

8One can reconstitute all of this for the case where one regards vectors as

column vectors, simply by ‘transposing everything’:

vT 7→ (vGT)T = (GT)T vT = GvT .

88

Example

0.77. Example. Let’s try a matrix with rank 1:

(
x y

)(1 1

1 1

)
=
(

x + y x + y
)

Clearly the image space has dim=1 (albeit embedded in a 2d

space).

89

Theorem 0.78. If C an [n, k]-code over Fq (i.e. an [n, k, d]-code

for some d), then C⊥ is an [n, n − k]-code over Fq.

Proof: Let G be a generator matrix for C , and consider the map

L : F n
q → F k

q

defined by

L : v 7→ vGT

(note that G has k rows and n columns, so GT has n rows and k

columns). Then C⊥ = ker L by Lemma 0.75. Thus C⊥ is linear.

Now

dim C⊥ = dim(ker L) = dim F n
q − rank L = n − rank L

But rank L = rank(G) = k, since a generator matrix has full

rank by definition.

�

89

0.79. Example. C = {000, 110, 011, 101} over Z2 has dimension

2, so the dimension of C⊥ is 3-2=1. We have

G =

(
110

011

)

and v ∈ C⊥ iff

(v1, v2, v3)G t = (v1 + v2, v2 + v3) = (0, 0)

Over Z2 this holds iff v1 = v2 = v3. Thus C⊥ = {000, 111}.

Theorem 0.80. For all linear codes (C⊥)⊥ = C.

89

0.81. Definition. Any generator matrix H for C⊥ is called a

Parity Check Matrix (PCM) for C .

Theorem 0.80 says x ∈ C iff x ∈ (C⊥)⊥ iff xHt = 0 (via

Lemma 0.75). This says that we can think of C as the kernel of

the linear map from F n
q to F n−k

q given by

x 7→ xHt

This says that the n − k rows of H give the coefficients in n − k

linear equations which x must satisfy to be a codeword:

H11x1 + H12x2 + ...+ H1nxn = 0

and so on. These are parity check equations (hence PCM).

0.82. Definition. The redundancy of a linear code is r = n − k ,

the number of extra digits added compared to the messageword.

89

Usually r < k (fewer check digits than message digits), so H is

smaller than G and the PCM is a more efficient way to define C

than G is.

Given G , can we write down H?...

Theorem 0.83. Let C be a [n, k]-code over Fq generated by

G = [1k |A]

where A is a k × (n − k) matrix (i.e. G is in standard form).

Then H = [−At |1n−k] is PCM for C.

Proof: Exercise.

90

Example

0.84. Example. 3-ary [6,4]-code generated by

G =


1 0 0 0 1 1

0 1 0 0 0 2

0 0 1 0 2 1

0 0 0 1 2 2


has PCM

H =

(
−1 0 −2 −2 1 0

−1 −2 −1 −2 0 1

)
=

(
2 0 1 1 1 0

2 1 2 1 0 1

)

90

.

0.85. Definition. A PCM H is in standard form if H = [B|1n−k]

where B is a (n − k)× k matrix.

(Every linear code is equivalent to one whose PCM is in standard

form.)

91

Syndrome decoding

We can use the PCM idea to make decoding more efficient. The

idea is, if we receive a vector y ∈ F n
q we can compute which coset

of C it lies in by computing its syndrome:

0.86. Definition. Let H be a PCM for a [n, k]-code C over F n
q .

The syndrome map of C is

S : F n
q → F n−k

q

S(y) = yHt

S(y) is the syndrome vector of y . (Note this is a linear map.)

Note that C = ker S . In fact cosets of C are in 1-to-1

correspondence with syndromes.

91

0.87. Lemma. Vectors u, v ∈ F n
q are in the same coset of C iff

S(u) = S(v).

Indeed the number of cosets is qn−k , which is the number of

vectors in F n−k
q , so cosets and syndromes are in bijective

correspondence.

91

0.88. Example. (NB this is Example 0.68 revisited.)

Binary code generated by

G =

(
1 0 1 1

0 1 0 1

)

gives PCM

H =

(
1 0 1 0

1 1 0 1

)
The coset leaders for C are 0000, 1000, 0100, 0010, and the

syndromes: S(0000) = 00,

S(1000) = (1, 0, 0, 0)


1 1

0 1

1 0

0 1

 = 11

91

S(0100) = (0, 1, 0, 0)


1 1

0 1

1 0

0 1

 = 01

S(0010) = (0, 0, 1, 0)


1 1

0 1

1 0

0 1

 = 10

If we receive y = 1010 then

S(y) = (1010)


1 1

0 1

1 0

0 1

 = 01

so y is in the coset 0100 + C . Thus ...

91

...we decode as x = y − 0100 = 1110.

Note that we no longer need most of the standard array; just the

coset leaders and their syndromes: a syndrome look-up table.

Therefore we have a new decoding scheme:

(i) receive y ∈ F n
q , calculate S(y) = z ∈ F n−k

q .

(ii) look up z in table, i.e. find the coset leader l (say) such that

S(l) = S(y) = z .

(iii) decode y as x = y − l .

This is much more efficient for large codes.

So, how do we compute d(C) in all this?

Theorem 0.89. Let C be a [n,k]-code over Fq with PCM H.

Then d(C) = d iff every set of d − 1 columns of H is linearly

independent, but there exists some set of d columns which is

linearly dependent.

91

Proof: Let ci be the i-th column of H. If x ∈ C has weight w then

H has a set of w columns which is linearly dependent: x has w

non-zero digits, xi1 , xi2 , ..., xiw (say), and xHt = 0 so

(0, .., xi1 , .., 0, .., xi2 , ..., xiw , .., 0)


ct1
ct2
...

ctn

 =
∑
i

xici = 0

so the set of w columns {ci1 , ci2 , ..., ciw } is linearly dependent.

Conversely, to each LD set of columns one has a codeword x . If

d(C) = d then C has a codeword of weight w = d , but no

codeword of weight w = d − 1. �

91

Special cases:

d(C) ≥ 2 iff no set of 1 columns is LD ⇐⇒ H has no zero

columns.

d(C) ≥ 3 iff no set of 2 columns is LD ⇐⇒ H has no parallel

columns.

91

0.90. Example. What is d(C) for the binary codes generated by

G1 =

(
1011

0101

)
G2 =

(
10110

01101

)

giving

H1 =

(
1010

1101

)
H2 =

 11100

10010

01001


H1 has no zero column, but has parallel, so d(C1) = 2; while H2

has no zero or parallel columns, so d(C2) ≥ 3. On the other hand

c1 + c3 + c4 = 0 for H2, so d(C2) ≤ 3 (since 10110 ∈ C). Thus

d(C2) = 3.

91

0.91. Example. Consider linear code C over Z11 with PCM

H =

(
1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 X

)

This C has length 10 (number of columns of H), redundancy 2

(number of rows), so dimension 8. There are no parallel columns,

so d(C) ≥ 3. We have c1 − 2c2 + c3 = 0 so 1910000000 ∈ C , so

d(C) ≤ 3. Hence d(C) = 3 — it is a single error correcting code.

This code has a neat partial decoding scheme: ...

91

Since d(C) = 3 every vector of weight ≤ 1 is a coset leader of C

(by our earlier result). There are 100 weight 1 vectors in Z10
11,

namely all non-zero multiples Dei of all ei (standard ordered basis

elements). 9

The syndrome of the coset led by Dei is given by:

S(Dei) = DeiH
t = (0, 0, .., 0,D, 0, .., 0)



11

12
...

1 i
...

1X


= (D,Di)

So from (D,Di) we get the coset leader: Dei .

9There are 1110/118 = 121 cosets altogether.
92

The partial decoding scheme is:

(i) receive y ∈ Z10
11, compute S(y) = (A,B) ∈ Z2

11.

(A,B) = (y1, y2, .., y10)



11

12
...

1 i
...

1X


= (

10∑
i=1

yi ,
10∑
i=1

iyi)

(ii) if (A,B) = (0, 0) then y ∈ C : decode as x = y .

(iii) if A,B both nonzero assume single error occurred since (A,B)

is S(Dei) for some D, i . Decode as x = y − Aei where i = A−1B.

(iv) If only one of A,B is non-zero y is not in a coset led by a

weight 1 or 0 vector.

Therefore at least 2 errors have occured. Request retransmission. ...

93

(This is why it is a partial scheme. We could have searched

through the standard array for weight 2 coset leaders, but they will

not be unique, so our ‘best’ guess will probably have some

arbitrariness. Instead just get a retransmission.)

93

0.92. Example. decode y = 1025234260 ∈ Z10
11:

A =
∑
i

yi = 1 + 2 + 5 + 2 + 3 + 4 + 2 + 6 = 2 + 1 = 3

B =
∑
i

iyi = 1×1+2×0+3×2+4×5+5×2+6×3+7×4+8×2+9×6 = 10

We are in case (iii) so assume error is A = 3 in digit

i = A−1B = 3−1 × 10 = 4× 10 = 7. Thus subtract 3 from y7:

x = 1025231260.

(Exercise: check this is in C !)

On the other hand y = 2610197034 has A = 0 and B 6= 0 (check

it!), so seek retransmission in this case.

94

Remark

0.93. Remark. This partial decoding generalises to d = 2t + 1 —

all vectors of weight ≤ t coset leaders: list their syndromes. If

receive y with S(y) in the list decode it; else seek retransmission.

95

More Exercises

Encoding

Consider linear code C , with generator matrix G . The code is a

certain copy of F k
q ↪→ F n

q (ideally chosen so that points are

Hamming well separated in F n
q).

So far, we took no account of frequency of use of messagewords,

or any other differentiation among messagewords. Thus all points

of C , as encodings of messagewords, are of equal standing. In

particular there is no reason to try to make some further apart

than others. Thus also there is no particular merit in one

embedding of the set of messagewords in C over another.

We encode by

w 7→ wG ∈ C

but there are many G s corresponding to C . Thus for a given

message, while fixing C we still get many different encodings.

95

If G = Gs is in the standard form, we could call the resultant

encoding the standard encoding.

If G is a row perm of Gs we might call this semistandard — the

encoding of a message is already different. (This practical change

should not be forgotten — noting that the ‘code’ as we define it

has not changed; the PCM does not need to change; and the

probablistic effectiveness of the code is not affected.) (An example

follows shortly.)

If it is a row and column perm the code changes, and the PCM

changes (albeit not in a deep way — the encoding is just permuted

by the row perm).

Now read on.

1. The 26 letters of the alphabet may be represented in Z3
3 by

A 7→ 001, B 7→ 002, C 7→ 010, ..., Z 7→ 222. Let us also

represent ‘space’ by 000.

95

We are given the parity check matrix

H =

 101201

011100

000011


of a linear code C . That is, w ∈ C iff Hw t = 0. (As usual we

write simply 0 for the zero vector, where no ambiguity can

arise.)

For example H(100012)t = 0, so 100012 ∈ C .

1.1 Note that H is not in standard form. Confirm that

G =

 221000

120100

200021


is a generator matrix for C .

96

.

ANSWER: This means we have to check that the rows of G are a basis

for C . We check (I) that the rows are linearly independent — so that

they are a basis for something. We confirm this, for example, by noting

how the rows differ in columns 3,4 and 6.

(II) that GH t = 0 (by an explicit calculation) — this checks that the

rows all belong to C .

(III) that the rows span C . Since the dual code has dimension 3 (the

number of rows of H) we know that C itself has dimension 6− 3 = 3, so

G must have 3 rows.

96

1.2 Write down another generator matrix for C .

Compute the encoding of the letter E , both by G and by your

own choice of alternative generator matrix.

ANSWER: For example

G ′ =

 120100

221000

200021


The encoding of E is different by G and by G ′. We have

(012)G = (012)

 221000

120100

200021

 = 220112

(012)G ′ = (012)

 120100

221000

200021

 = 021012

96

ASIDE: Note that we do not in general get the messageword

from the first digits of the encoded form — this only happens

if G is in standard form. Indeed the digits of the messageword

might not appear anywhere in the encoded version! This

emphasises that the practical encoding of a message depends

very much on G , rather than on C .

1.3 What is d(C)?

ANSWER: Clearly d(C) ≤ 3, but no column of H is “parallel”

to another, so d(C) = 3.

96

1.4 How many coset leaders are there? How many coset leaders of

weight 1 are there? What are the syndromes of coset leaders?

ANSWER: |C | = 33 = 27 and |Z 6
3 | = 36 so there are 27 coset

leaders. Since d(C) = 3 all the weight 1 vectors are coset

leaders. There are 12 of these. Their syndromes, and the

syndrome S(000000), are easy to compute:

000000 7→ 000, x00000 7→ x00 (x ∈ {1, 2}), 0x0000 7→ 0x0,

00x000 7→ xx0, 000100 7→ 210, 000200 7→ 120,

0000x0 7→ 00x , 00000x 7→ x0x .

The remaining 27− (12 + 1) = 14 coset leaders are much

harder to find. It is not impossible, since the standard array is

not impossibly large in this case, but it is uncomfortable. In

practice, a good strategy might be to wait and see what

message is received, and hence what syndromes we need coset

leaders for (in order to try to do error correction), rather than

just computing them all up front.

96

Of course there are (6.5/2)22 = 60 weight 2 vectors in the

space. Several, but not all, of these are in cosets led by weight

1 vectors. The syndromes of weight 2 vectors are each easy to

compute by linearity, given the weight 1 syndromes above. For

example:

S(120000) = S(100000) + S(020000) = 100 + 020 = 120 = S(000200)

S(010001) = S(010000) + S(000001) = 010 + 101 = 111 (new !)

S(001010) = S(001000) + S(000010) = 110 + 001 = 111 = S(010001)

But these cases illustrate the problem. The first is not new;

the second is new, and can be taken as a coset leader; but the

third is an equally good choice as leader of the same coset

(which thus confirms that the code is not reliably 2 error

correcting, as we already knew!).

96

To this point we do not even know if all the remaining coset

leaders can be found from among the weight 2 vectors, or

whether higher weights are needed. A couple more new ones at

weight 2 are: S(010010) = 011 and S(100001) = 201 (and we

can multiply through by 2 to get some more from these), but

we would have to keep working through to find the rest.

(Exercise!)

This nicely illustrates one of the problems thrown up by coding

theory. The syndrome map S : Z6
3 → Z3

3 is a surjective linear

map. The set {S(e1),S(e2),S(e5)} is a basis of the image, so

we could choose ‘coset leaders’ of the form

x = α1e1 + α2e2 + α3e5 with (α1, α2, α3) ∈ Z3
3, but this does

not give the lowest possible weights, so for channels with low

single digit error probability this would give highly statistically

non-optimal error correction behaviour.

96

1.5 Given that G above is used for encoding, what messageword

encodes to 212012, if any? What messageword encodes to

012212, if any?

96

ANSWER: encoding is

(x , y , z) 7→ (x , y , z)G = (2x + y + 2z , 2x + 2y , x , y , 2z , z)

so for 212012 we could try to solve 2x + y + 2z = 2,

2x + 2y = 1, x = 2, y = 0, 2z = 1, z = 2. The 3-rd, 4-th and

6-th of these give (x , y , z) = (2, 0, 2) (the codeword for the

letter T). The others are checks, all of which are satisfied.

For 012212 the 3-rd, 4-th and 6-th of these give

(x , y , z) = (2, 2, 2), but two of the checks fail, so 222 is

unlikely to be what was intended!

To make a guess for the intended messageword we could

compute the syndrome:

H(012212)t = (2, 2, 0)t

The coset leader with this syndrome is 002000. Thus the

intended encoding was probably 012212-002000=010212. This

decodes as 022=H.

96

1.6 Decode as much as possible of the following received message,

given that the transmitted message was encoded using C with

generator matrix G , assuming nearest neighbour decoding.

Message:

002112 012212 220112 112100 220112 000000

200021 112000 220112 000000 022022 221000

022200 000000 220112 112000 112000 101200

112000 012020 000000 221000 111112 000000

212012 010212 221000 212021 002000 211121

220112 012021 012021 200021 110221 220112

Hints:

1.6.1 The message digits in 212012 are 202 (why?)

1.6.2 202 is the representation of the 20-th letter: T.

1.6.3 The message digits in 012212 are 222. What is going on here?

97

Answer

ANSWER:

002112H t = 000 so decode as 212 − > W

012212H t = 220 so must correct by

012212→ 012212− 002000 = 010212 so decode as 022 → H

− > E − > R − > E space A R E

000000 → 000 → space

022022H t = 111 so must correct by some choice of weight 2 coset leader

(which is at least as likely to be wrong as right, but it no worse than any

other choice): choosing 010001 we get 022022 - 010001 = 012021 − >
201 − > S (choosing 001010 we get 022022 - 001010=021012 → K here

instead!)

221000H t = 000 so decode as 100 → I

...and so on.

97

Hamming codes

Hamming codes

Recall: A linear [n,k]-code over Fq with PCM H has d(C) = d iff

every set of d − 1 columns of H is LI, but there is a set of d

columns of H that is LD.

For binary codes, no repeated column in H implies d(C) ≥ 3.

Hamming’s idea was to construct the biggest possible binary H

with no zero columns and no repeated columns. Fixing a positive

integer r , then Zr
2 contains 2r − 1 non-zero vectors. We could

simply use them all!:

0.94. Definition. Let H be a r × (2r − 1) matrix whose columns

are the distinct non-zero vectors in Zr
2. Then Ham(Zr

2) is the

binary linear code whose PCM is H.

98

Example

0.95. Example. For r = 3:

H =

 0001111

0110011

1010101


Note columns ordered lexicographically. Really we think of

Ham(Zr
2) as a collection of several different equivalent codes, since

we can order the columns as we like.

99

.

For Ham(Z3
2) we could write

H̃ =

 1110 100

1101 010

1011 001


which is in the standard form. Then the generator matrix is

G̃ =


1000 111

0100 110

0010 101

0001 011



100

.

0.96. Exercise. Connect this formulation to the example

introduced earlier.

101

Theorem

Theorem 0.97. Ham(Zr
2) has minimum distance 3 and is perfect.

Proof: H has no zero or parallel columns by construction, so

d ≥ 3. But it contains columns c1, c2, c3 in lex order obeying

c1 + c2 + c3 = 0, so d = 3. Hence Ham(Zr
2) is perfect iff the

collection of 1-balls centred on codewords exhausts Zn
2, where

n = 2r − 1. But

|B1(x)| = 1 +

(
n

1

)
= 1 + n = 2r

and M = |Ham(Zr
2)| = 2k where k = 2r − 1− r . So

| tx∈Ham(Zr
2)
B1(x)| = 2k × 2r = 2n

�

102

Hence the coset leaders of Ham(Zr
2) are all vectors of weigth ≤ 1.

Note that weight 1 binary vectors are just the ei s. Syndrome:

S(ei) = eiH
t = (0, 0, .., 0, 1, 0, .., 0)


c1

c2

c3
...

cn

 = ci

(here we write ci for the columns written out as rows, for brevity).

If the columns are ordered lexicographically then the i-th column is

just the binary representation of i . So if we receive y ∈ Zn
2 with

one error, its syndrome S(y) is the digit position of the error (in

binary).

102

.

0.98. Example. receive y = 1101101. Then

S(y) = (1, 1, 0, 1, 1, 0, 1)Ht = 101 = S(e5)

Syndrome decoding: x = y − e5 = 1101001.

103

.

Have a look for exampe here:

https://arxiv.org/pdf/0806.2513.pdf

for some nice results about classifying perfect binary codes of block

length 2r − 1.

104

Hamming codes over non-binary

fields

.

0.99. Definition. Let u, v ∈ F r
q \ {0}. u is projectively equivalent

to v , written u ∼ v , if there exists λ ∈ Fq \ {0} such that u = λv .

This says that u, v are parallel. (NB, being parallel is an

equivalence relation.)

We call the set of projective equivalence classes the projective

space of F n
q , denoted P(F n

q).

105

0.100. Example. Z2
5 has the following projective equivalence

classes:

[01] = {01, 02, 03, 04}

[10] = {10, 20, 30, 40}

[11] = {11, 22, 33, 44}

[12] = {12, 24, 31, 43}

...

[14] = {14, 23, 32, 41}

In general there are q − 1 elements in each class, so there are qr−1
q−1

projective equivalence classes.

106

.

0.101. Definition. Let H be a r × qr−1
q−1 matrix (over Fq) each of

whose columns belongs to a different class in P(F r
q). Then the

q-ary linear code whose PCM is H is a q-ary Hamming code,

denoted Ham(F r
q).

0.102. Example. For Ham(F 2
5) we could choose PCM

H =

(
0 1 1 1 1 1

1 0 1 2 3 4

)
or H ′ =

(
0 3 4 1 2 3

2 0 4 2 1 2

)
or ...

Of these, H is best for easy decoding in practice. In H we chose

from each class the unique vector whose first non-zero digit is 1;

and then ordered the vectors lexicographically. (If we refer to the

code Ham(F 2
5), this is the PCM we mean.)

106

Theorem 0.103. Ham(F r
q) has minimum distance 3 and is perfect.

Proof: Exercise (optional).

106

SYNDROME DECODING:

Again we know that coset leaders are vectors of weight ≤ 1, that

is, the zero vector (let’s call it 0); and the vectors of form Aei ,

where A ∈ Fq \ {0} and 1 ≤ i ≤ n.

Syndromes: S(0) = 0

S(Aei) = AeiH
T = A[0, 0, .., 0, 1, 0, .., 0]



c1

c2
...

ci
...

cn


= Aci

NB, if H is our ‘standard’ choice , then

first non-zero digit of ci is 1 implies first non-zero digit of S(Aei) is

A, which implies that we can read off A immediately.

106

SCHEME: (i) receive y ; compute S(y);

(ii) If S(y) = 0 then x = y ;

(iii) any other S(y) ∈ F r
q must lie in one of the classes of P(F r

q),

so S(y) = Aci = S(Aei) for some A ∈ Fq \ {0}, 1 ≤ i ≤ n.

Decode by subtracting A from digit i :

y 7→ x = y − Aei

106

0.104. Example. Ham(F 2
4)

n = |P(F 2
4)| = 42−1

4−1 = 5, r = 2 implies k = 3, so we have a

[5, 3, 3]-code over F4.

H =

(
0 1 1 1 1

1 0 1 a b

)
Suppose we receive y = bab10. We have

S(y) = [b, a, b, 1, 0]HT = [a + b + 1 + 0, b + b + a]

= [1 + 1, a] = [0, a] = a[0, 1] = ac1 = S(ae1)

so

y 7→ x = y − aei = [b − a, a, b, 1, 0] = 1ab10.

In summary, this is very similar to previous examples. The main

change is in the type of arithmetic done.

107

Cyclic codes

Definition

0.105. Definition. A code C is cyclic if it is linear and any cyclic

shift of a codeword is also a codeword.

0.106. Example. 2-ary code C = {000, 101, 011, 110} is cyclic.

We continue this section by introducing the technology we shall

need. The use we shall make of it comes later.
108

Some rings and fields

0.107. Definition. Let F be a field. Then F [x] is the set of all

polynomials in x :

a(x) =
∑
i

aix
i

where ai ∈ F . If a(x) has degree m and am = 1 then a(x) is said

to be monic.

F [x] is a ring, but not a field.

Associated to any polynomial a(x) ∈ F [x] there is a function:

x 7→ a(x) (the evaluation function). In general a polynomial is

more than a function, however, in the following sense.

109

Example

0.108. Example. There are 4 distinct functions from Z2 → Z2.

But there are infinitely many different polynomials in Z2[x]. E.g.

a(x) = x5 + x2 + x + 1, b(x) = x17 + 1, both have the same

function associated to them (exercise!).

110

Remainder Theorem

Theorem 0.109. [The remainder theorem]

For every pair a(x), b(x) ∈ F [x] with b(x) 6= 0, there exists a

unique pair q(x) (the quotient) and r(x) (the remainder) in F [x]

such that deg(r(x)) < deg(b(x)) and a(x) = q(x)b(x) + r(x).

Proof: Can construct q(x), r(x) by usual long-division algorithm,

using appropriate arithmetic. �

0.110. Exercise. Divide a(x) = x3 + 3x2 + 4 by b(x) = 2x2 + 3

in Z5[x]. 10

10Answer:

x3 + 3x2 + 4 = (3x + 4)(2x2 + 3) + (x + 2)

111

0.111. Definition. Choose a fixed polynomial f (x) ∈ F [x]. Then

polynomials a(x), b(x) ∈ F [x] are congruent modulo f (x) (written

a(x) ≡ b(x) mod. f (x)), if a(x)− b(x) is divisible by f (x)

(meaning a(x)− b(x) = q(x)f (x) for some q(x) ∈ F [x], with no

remainder).

This is an equivalence relation on F [x] (check it! This is just like

our modular arithmetic).

111

As usual, denote equivalence (congruence) class of a(x) by

[a(x)] = {b(x) ∈ F [x] | b(x) ≡ a(x) mod .f (x)}

Let F [x]/f (x) denote the set of such classes. We can define

addition and multiplication on F [x]/f (x):

[a(x)] + [b(x)] = [a(x) + b(x)]

[a(x)][b(x)] = [a(x)b(x)]

(These are well defined by a lemma that you should state and

check, analogous to one we had earlier.)

By these operations F [x]/f (x) is a ring.

Any polynomial a(x) ∈ F [x] has a unique remainder r(x) ‘modulo’

f (x), with deg(r(x)) < deg(f (x)) by Theorem 0.109.

111

0.112. Lemma. a(x) ≡ a′(x) mod. f (x) iff their remainders

r(x), r ′(x) are equal.

The upshot of this is that we can identify [a(x)] with r(x), the

remainder of any of its elements. In this way we may identify

F [x]/f (x)↔ {
n−1∑
i=0

aix
i | a0, a1, .., an−1 ∈ F}

the set of polynomials of degree < deg(f (x)) = n. Of course, this

set may then be identified with F n — the list of coefficients.

Altogether this gives us a way to regard the vector space F n as a

ring. That is, we equip it with the extra operation of multiplication

of vectors!

112

.

0.113. Example. R = Z2[x]/(x2 + x + 1) (NB f (x) here has

degree 2), gives R ≡ {0, 1, x , 1 + x} = polynomials of degree < 2.

Compute the addition and multiplication tables.

Can you compute inverses too?

In fact every non-zero element does have an inverse, so R is even a

field in this case!

0.114. Definition. f (x) ∈ F [x] is reducible if there exist

a(x), b(x) ∈ F [x] with degrees less than that of f (x), such that

f (x) = a(x)b(x).

FACT: F [x]/f (x) is a field iff f (x) is not reducible (irreducible).

112

.

0.115. Lemma. (i) f (x) ∈ F [x] has a degree 1 factor (x − a) iff

f (a) = 0.

(ii) If degree f (x) =2 or 3 then f (x) is irreducible iff for all a ∈ F ,

f (a) 6= 0.

(iii) Over any field F , xn − 1 = (x − 1)(xn−1 + xn−2 + ...+ x + 1).

Proof: (i) Use Theorem 0.109. (iii) by induction on n. �

0.116. Example. Completely factorise x4 − 1 ∈ Z5[x]. 11

11Answer: over Z5

x4 − 1 = (x − 1)(x − 2)(x − 3)(x + 1) = (x + 4)(x + 3)(x + 2)(x + 1)

113

.

For cyclic codes the ring of interest is as follows.

0.117. Definition. For given field F , define

Rn = F [x]/(xn − 1)

114

NOTES

NOTES:

(a) (xn − 1) is always reducible, so Rn is never a field.

(b) xn ≡ 1 mod. xn − 1, so xn+m = xm for any m. No need to use

remainder theorem to compute products.

E.g. in R5 = Z3[x]/(x5 − 1)

(x2 +x)(x4 + 2) = x6 + 2x2 +x5 + 2x ≡ x + 2x2 + 1 + 2x = 2x2 + 1

(c) Since deg(xn − 1) = n we can identify Rn with polynomials of

degree less than n, and hence with F n:

a0 + a1x + ...+ an−1x
n−1 ↔ (a0, a1, .., an−1)

addition of polys ↔ vector addition

multiplication by constant ↔ scalar multiplication

multiplication by x ↔ cyclic shift.

115

Back to the codes

We can think of a q-ary code of block-length n as a subset of Rn

(with F = Fq). Then:

Theorem 0.118. A code C ⊂ Rn is a cyclic code iff

(i) a(x), b(x) ∈ C implies a(x) + b(x) ∈ C;

(ii) a(x) ∈ C, r(x) ∈ Rn implies r(x)a(x) ∈ C.

(NB (ii) is more than closure of C under multiplication!)

116

0.119. Definition. Let f (x) ∈ Rn. Then

〈f (x)〉 = {r(x)f (x) | r(x) ∈ Rn}

called “the ring span of f (x)”.

Clearly this satisfies properties (i), (ii) of Theorem 0.118. Hence it

is a cyclic code over Fq — the cyclic code generated by f (x).

0.120. Example. Fq = Z2, C = 〈1 + x2〉 ⊂ R3 = Z2[x]/(x3 − 1)

R3 = {0, 1, x , 1 + x , x2, 1 + x2, x + x2, 1 + x + x2}

C = {0, 1+x2, x+1, x2+x , 1+x , x+x2+x3+x4, 1+x+x2+x2+x3+x4}

= {0, 1 + x2, 1 + x , x + x2} ↔ {000, 101, 110, 011} ⊂ Z3
2

0.121. Exercise. Show that 〈1 + x2〉 = 〈1 + x〉 = 〈x + x2〉 in this

case.

116

That is, more than one polynomial can generate a given cyclic

code. However, there is a canonical choice of generating

polynomial:

Theorem 0.122. Let C be a non-zero cyclic code in Rn. Then

(i) there exists a unique monic polynomial g(x) of least degree in

C;

(ii) C = 〈g(x)〉. In fact every codeword a(x) ∈ C is a strict

multiple of g(x): a(x) = r(x)g(x) (not just congruent mod.

xn − 1).

(iii) g(x) is a factor of xn − 1.

0.123. Definition. The unique minimal degree monic polynomial

g(x) in a cyclic code C is called the generator polynomial of C .

For example, g(x) = 1 + x is the gen. poly. for our last example.

CRUCIAL FACT:

116

Since the gen. poly. is unique, cyclic codes of length n are in

1-to-1 correspondence with monic factors of xn − 1. This

completely characterises all cyclic codes!

0.124. Example. Find all cyclic codes over Z2 of length 3.

C ⊂ R3 = Z2[x]/(x3 − 1). But

x3 − 1 = (x − 1)(x2 + x + 1) = (x + 1)(x2 + x + 1)

so there are four such codes: 〈1〉 = R3 = Z3
2

〈1 + x〉 = {0, 1 + x , 1 + x2, x + x2} = {000, 110, 101, 011}
〈1 + x + x2〉 = {0, 1 + x + x2} = {000, 111}
〈(1 + x)(1 + x + x2)〉 = {0} = {000}

116

0.125. Example. How many cyclic codes of length 4 over Z5 are

there?

Answer: same as number of monic factors of x4 − 1 ∈ Z5[x]. But

we already saw that x4 − 1 = (x + 4)(x + 3)(x + 2)(x + 1) over

Z5, so the general monic factor is

g(x) = (x + 4)p4(x + 3)p3(x + 2)p2(x + 1)p1

where each pi can be either 0 or 1. Since there are 24 choices here,

we have 16 cyclic codes.

For example p1 = p4 = 1, p2 = p3 = 0 gives code

〈(x + 1)(x + 4)〉 = 〈x2 − 1〉

What can we say about this code? What is its dimension?

116

Theorem 0.126. Let g(x) =
∑r

i=0 gix
i be the gen. poly. for

cyclic code C (note gr = 1). Then

G =


g0 g1 g2 .. gr 0 .. 0

0 g0 g1 g2 .. gr .. 0
. . .

0 ... 0 g0 g1 g2 .. gr


is a generator matrix for C .

Note that this G is a (n − r)× n matrix.

0.127. Corollary. A cyclic code C ⊂ Rn whose gen. poly. has

order r has dim. k = n− r and has redundancy r . (Cf. Def.0.82.)

116

0.128. Example. Construct a generator matrix for each 3-ary

cyclic code of length 4.

R4 = Z3[x]/(x4 − 1)

(x4−1) = (x2−1)(x2+1) = (x−1)(x+1)(x2+1) = (x+1)(x+2)(x2+1)

(NB (x2 + 1) is irreducible here) so there are 23 monic factors,

hence 8 cyclic codes generated by

g(x) = (x + 1)p1(x + 2)p2(x2 + 1)p3

with pi ∈ {0, 1}. We have the list given in Table 2.

116

g(x) redundancy dimension G

1 0 4 14

1 + x 1 3

 1 1 0 0

0 1 1 0

0 0 1 1


2 + x 1 3

 2 1 0 0

0 2 1 0

0 0 2 1


1 + x2 2 2

(
1 0 1 0

0 1 0 1

)

(1 + x)(2 + x) 2 2

(
2 0 1 0

0 2 0 1

)
(1 + x)(1 + x2) 3 1

(
1 1 1 1

)
(2 + x)(1 + x2) 3 1

(
2 1 2 1

)
(1 + x)(2 + x)(1 + x2) 4 0 −

Table 2:

117

To find d(C), do syndrome decoding, etc, it is better to have a

PCM than a generator matrix. So how can we construct H here?

Recall H is generator matrix for C⊥.

Theorem 0.129. If C is cyclic so is C⊥.

So C⊥ has a unique generator polyomial, that is also a factor of

xn − 1. If we find it we can use Theorem 0.126 to find a generator

matrix for C⊥ and hence a PCM for C .

0.130. Definition. Let C ⊂ Rn be cyclic with generator

polynomial g(x). Then Theorem 0.122 implies that there exists

another polynomial h(x) such that xn − 1 = g(x)h(x), and h(x) is

unique by Theorem 0.109. We call h(x) the check polynomial of

the code C .

117

0.131. Example. Given that g(x) = x2 + x + 3 is the gen. poly.

of a cyclic 5-ary [4,2]-code C , we have

(x2 + x + 3)(x2 + 4x + 3) ≡ x4 − 1

so h(x) = (x2 + 4x + 3).

Note incidentally that C⊥ 6= 〈h(x)〉.

Theorem 0.132. Let h(x) be the check poly. for code C. Then

a(x) ∈ C iff a(x)h(x) ≡ 0.

It is not true in general that C⊥ = 〈h(x)〉, but we can construct

the gen. poly. for C⊥ from h(x).

117

Define

H =


hk hk−1 hk−2 .. h0 0 .. 0

0 hk hk−1 hk−2 .. h0 .. 0
. . .

0 ... 0 hk hk−1 hk−2 .. h0


We have (

a0 a1 ... an−1

)
HT = 0 (3)

for a(x) ∈ C .

Consider C ′, code generated by H. Since h(x) is monic we have

hk = 1, so leading diagonal is all 1s. Thus H has maximal rank

((n − k)), so dim C ′ = n − k. Also, any w ∈ C ′ is perpendicular

to all a(x) ∈ C by (3). Thus C ′ ⊂ C⊥. But dim C ′ = dim C⊥, so

C ′ = C⊥.

117

Theorem 0.133. Let C ⊂ Rn be a cyclic code with check poly.

h(x). Then H is a PCM for C.

0.134. Example. Recall h(x) = 3 + 4x + x2 is check poly. for

C = 〈x2 + x + 3〉 ⊂ R4 = Z5[x]/(x4 − 1). Hence

H =

(
1 4 3 0

0 1 4 3

)

is a PCM for C .

Exercise: check aHT = 0 for all a ∈ C .

THIS is what we want! A construction for the PCM for C . Armed

with this, we can do our usual routines for coding with C .

It remains to compute a gen poly. for C⊥:

117

Comparing G and H we see that they are of similar form. However

the reversing of the indices means that it is an open question

whether

g⊥(x) = hk + hk−1x + ...+ h0x
k

— the candidate for the gen. poly. for C⊥ on this basis — is

monic.

We can obtain a monic version by dividing by h0... ...unless h0 = 0.

But we need not worry about this: If h0 = 0 then h(0) = 0 and

xn − 1 = g(x)h(x) ⇒ −1 = g(0)h(0) = 0

which cannot happen.

0.135. Definition. Given p(x) = p0 + p1x + ...+ pkx
k ∈ Fq[x]

(pk 6= 0) the reciprocal of p(x) is

p(x) = pk + pk−1x ++ p0x
k ∈ Fq[x]

117

So we have

0.136. Corollary. Let C ⊂ Rn be a cyclic code with check poly.

h(x). Then C⊥ is the cyclic code with gen poly.

g⊥(x) = h(0)−1h(x)

0.137. Example. C = 〈x2 + x + 3〉 ⊂ R4 = Z5[x]/(x4 − 1) has

check poly h(x) = 3 + 4x + x2. Hence gen poly. for C⊥ is

g⊥ = h(0)−1h(x) = 3−1(1+4x+3x2) = 2(1+4x+3x2) = 2+3x+x2

117

0.138. Exercise. Construct a generator matrix for the binary

n = 7 cyclic code with generator polynomial 1 + x + x3. What can

you say about it?


1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1




1 0 1 1 1 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1



117

0.139. Exercise. Let C ,C ′ be cyclic codes. What can you say

about their intersection?

0.140. Exercise. If C is cyclic and C ′ is an equivalent code, is C ′

necessarily cyclic?

118

Golay codes

Golay

0.141. Exercise. Have a go at verifying that

x23−1 = (x−1)(x11+x10+x6+x5+x4+x2+1)(x11+x9+x7+x6+x5+x+1)

is the irreducible factorisation over F2. (This is not easy. But it is

interesting to have a go. See later for some hints.)

The cyclic code generated by either of the big factors is the ‘Golay

code’ G23. (Exercise: Strictly speaking, the ‘Golay code’ refers to

the equivalence class of codes. Show that the two factors give

equivalent but not identical codes. See later for hints.)

The extension of this code by a parity check bit is the ‘extended

Golay code’ G24.

Theorem: a) G24 is self-dual. b) The weight of every codeword in

G24 is a multiple of 4. c) But it has no codeword of weight 4 so

min distance is 8.

119

Proof ideas: a) The easiest thing is to write out a generator matrix

and do some checking. Here we go!... First a generator matrix for

G23:

M1 =



10101110001100000000000

01010111000110000000000

00101011100011000000000

00010101110001100000000

00001010111000110000000

00000101011100011000000

00000010101110001100000

00000001010111000110000

00000000101011100011000

00000000010101110001100

00000000001010111000110

00000000000101011100011


120

Since the row vectors in M1 are all weight 7, those in the extension

to G24 will have weight 8.

Let’s compute r1.r2 = 3 here, so = 4 = 0 for G24. Obviously then

ri .ri+1 = 3 for any i .

What about ri .ri+2?

...And so on. :-)

Having shown that the vectors are pairwise orthogonal it remains

only to show that there are enough of them... Hint: 24− 12 = 12.

b) Let’s stick with G24. All the rows have weight 8. What about

r1 + r2 etc? What is a formula for weight here? Hint: use duality.

c) How could a codeword of weight 4 arise? Something to think

about! :-)

121

Remark: The hope here is to finish the module with some activities

of a more research-like nature. The codes we have studied recently

lend themselves well to this. But the acitivites themselves are

probably best conducted by discussion rather than by formal

lecturing to lecture notes. So,...

122

Golay code experiments

Investigate whether the Golay code G24 has standard form

GA = [112|A] where

A =



011111111111

111011100010

110111000101

101110001011

111100010110

111000101101

110001011011

100010110111

100101101110

101011011100

110110111000

101101110001


Note that H = [A|112]. (Think about it!)

123

Aside on the Icosahedron

— compute the complement of the adjacency matrix.

— this figure has a lot of symmetry. (E.g. rotations order 2,3,5.)

— So what, cf. generator matrices!? LOL. (No order 11.)

124

Back to Theorem

(b): need more clues? Think about

wt(r1+r2)=wt(r1)+wt(r2)-something!

(c): Suppose for a contradiction that G24 contains a codeword

with wt(v) = 4.

Write v as (v1|v2), where v1 is the first 12 bits of v , and v2 is the

last 12 bits of v .

Every codeword is a 2-ary linear combination of rows from a

generator matrix, and hence is a sum of a subset of rows. If we fix

a standard generator matrix (which we know exists, even if it is not

GA above) then wt(v1) gives the number of rows involved in v.

Since wt(v) = wt(v1) + wt(v2), one of the following must hold:

wt(v1) = 0. This cannot happen since the only such word is 0,

which is weight 0.

...

125

...

wt(v1) = 1. Again looking at standard G, v must be one of the

rows of G. Now suppose GA above is indeed a generator matrix. —

no wt(v2)=3 occurs there, so we get a contradiction.

wt(v2) = 2. Then v is the sum of two rows of G. We should

CHECK (see below)

that none of such give wt(v2) = 2.

wt(v1) = 3 and wt(v2) = 1. Since H is a generator matrix,

wt(v2)=1 says that v must be one of the rows of H. This gives a

contradiction.

wt(v1) = 4 and wt(v2) = 0. This is similar to case 1, using H

instead of standard G.

DONE.

126

Completing the CHECK we skipped

Back with establishing a contradiction for wt(v2)=2, we are asking

to check that this can never happen for v a sum of two rows.

Thus we need to inspect ri + rj for all i , j . This is not impossible to

do by brute force, but we can be cleverer. Note that the ‘v2 part’

of the generator matrix is A itself. Note that

A =

(
0 11...1

(11...1)t B

)

where B has the cyclic property.

By this observation it is enough to check the cases r1 + rj and

r2 + rj only.

Since 1 + 1 = 0 then wt(ri + rj) just counts the number of places

where the two rows differ. So we get wt(r1 + r2) = 2 + 6 (splitting

into the v1 and v2 parts).

Since all the other rjs are obtained by cyclic shifting in the last 11

positions, but this does not affect r1, we get wt(r1 + rj) = 2 + 6.

It only remains to check r2 + rj for the other js — 10 easy checks.

For example wt(r2 + r3) = 2 + 6. (DONE.)

127

And finally, what about the generator matrix supposition?

There is a lot of mathematical fun to be had with this. Here we

just make some remarks.

1. Since the Golay code is defined up to equivalence, the

supposition is not necessarily that we can get from M1 to [112|A]

by elementary column operations. We may use elementary row

operations as well.

2. To get warmed up, let’s show that M1 and M2 (the version

obtained from the other big factor in x23 − 1) give equivalent but

not identical codes.

128

Warm up

First the codes are not identical: let’s write EM1 for M1 with the

parity check column; and EM2 similarly. If M1 and M2 give

identical codes, then they have the same parity check extension

code, so it is enough to compare the extended versions.

Now consider r1.ρ1, where ri is the ith row of EM1 and ρi is the

ith row of EM2. The matrices EM1,EM2 start:

101011100011|0000000000001

110001110101|0000000000001

We see that these rows are not orthogonal. But G24 is self-dual.

So ρ1 cannot lie in the code generated by EM1.

But the codes are equivalent: consider reversing all rows and

columns of M2 (noting that the polynomials are ‘reverses’ of each

other) ...

129

For completeness here is

EM1 =



101011100011000000000001

010101110001100000000001

001010111000110000000001

000101011100011000000001

000010101110001100000001

000001010111000110000001

000000101011100011000001

000000010101110001100001

000000001010111000110001

000000000101011100011001

000000000010101110001101

000000000001010111000111



130

Remarks continued

3. Try the same games comparing EM1 (and then EM2) with

[112|A].

Cases: (here ri is row i of EM1 and αi is row i of [112|A])

r1.α1 = 0

r1.α2 = 0

r1.α3 = 0

r1.α4 =?

...

4. Still intrigued? Have a look in Conway and Sloane’s book on

sphere packings.

131

Perfection

Is G23 perfect?

We are asking if

3∑
i=0

(
23

i

)
=

2n

2k
= 211 = 2048

We get 1 + 23 + 23.22
2 + 23.22.21

2.3 = 1 + 23 + 253 + 1771 =

...Now think about this question more generally! (As Golay did.)

A related question: for what values of [n, k, 3] is it ‘numerically

possible’ to have a perfect (binary) code? What do you notice

about the answer?

132

Gauss and irreducible monic polynomials

Gauss has a useful result to help us answer the question at the

start of this section about irreducible polynomials.

Gauss showed that for n = p prime, the product of all irreducible

monic polynomials in F2[x] of order n is given by a simply

expressed (big) polynomial Γ(x):

Γ(x) =
x2

p − x

x2 − x

This means that we can check if a polynomial of order n = p is

irreducible by checking if it divides Γ(x). (See the online references

for more details.)

...

133

Ternary Golay code

The code C12 generated by

G12 =



100000011111

010000101221

001000110122

000100121012

000010122101

000001112210


is the extended ternary (q = 3) Golay [12, 6, 6]-code.

(a) what is ri .rj for G12 here? find a parity-check matrix.

(b) Decode the received vector y = 010000010101, assuming that

at most two errors have occurred.

(c) factorise x11 − 1 over F3. (Hint: it is something to do with this

code!)

(d) what else can you say about this code?

134

Some answers:

(a) r1.r1 = 6 ≡ 0

r1.r2 = 6 ≡ 0

r2.r2 = 12 ≡ 0

and so on. On the other hand 12− 6 = 6, so this is its own PCM.

(b) a syndrome is

Gy t =



0

1

1

1

1

0


We can take the columns of G12 as the syndromes of the coset

leaders. Thus the error is composed of an error bit in position 7

and 2 error bits in position 6. That is, the error vector is

e = 000002100000, so the transmitted vector was

x = y − e = 010001210101.

135

That’s enough new material for now

Figure 6: Cuthberta’s evident self-confidence stemmed from the fact

that, during her semester trapped in The Matrix, she had in fact learned

a considerable amount about ...cyclic codes.

136

Yet More Exercises

0.142. Exercise. Can you describe an ‘alphabet’ Σq of size q, and

give an n such that this entire question is a codeword in some

C ⊂ Σn
q?

Answer:

If we have a Σq consisting of all upper and lower case letters, all

Greek letters, all punctation, some typesetting instructions

(subscript etc), and a ‘space’ symbol, then we can assemble the

question from these. The q is roughly 52+20+20+20 (say). Let’s

add in some math symbols too, and say q = 130.

For n we just count up the number of symbols in the question,

including spaces etc: roughly n = 100.

136

Another construction would be to have a Σq containing highly

complex composite symbols, whose shapes form whole words, or

perhaps even whole sentences. Of course this is much less realistic

(the symbol set would be difficult or impossible to use in most

circumstances), but in the extreme we could have q = 1 (the

element is an image of the whole question) and n = 1!

0.143. Exercise. A code C is known to be 21 error correcting.

State a lower bound on d(C).

Answer:

By our Proposition: If d(C) ≥ 2t + 1 then C can correct up to t

errors by the ‘pick the closest’ strategy.

Thus in our case d(C) ≥ 43.

136

0.144. Exercise. The set En of even weight binary vectors of

length n is a subspace of Zn
2. Hence En is a binary linear code.

What are the parameters [n, k, d] of En? Write down a generator

matrix for En in standard form.

Answer:

k = dim En = n − 1.

d is the minimum weight of non-zero vectors in En , which must

be 2 (all vectors have even weight, so d ≥ 2, and 110...0 ∈ En has

weight 2). Hence En is a binary linear [n, n − 1, 2]-code. Its

generator matrix in standard form is
100...01

010...01

001...01

........

000...11


136

0.145. Exercise. (i) Construct a binary linear [8,4,3]-code.

(ii) How many different matrices in standard form generate such

codes?

Answer:

(i) We are looking for a length 8 code C ⊂ Z8
2, with dimension 4,

thus we are looking for a 4× 8 generator matrix. Putting this in

standard form (without loss of generality) means

G = [14|A]

where A is a 4× 4 binary matrix. There are a grand total of 24×4

such matrices, including the zero matrix; the identity matrix and so

on. Not all of them generate d = 3 codes, however. For example

A = 0 means that each generating vector (in G = [14|0]) has total

weight 1 (so d = 1). Similarly A = 14 means that each generating

vector (in G = [14|14]) has total weight 2.

136

In other words each row of A must have at least two non-zero

entries (so that each row of G has at least three), if we want

d = 3. For example

A =


1 1 0 0

1 0 1 0

1 0 0 1

0 0 1 1


Now for each candidate, such as this, we need to check that the

minimum weight of all nonzero vectors is 3. There are several ways

to do this. One way is to construct the PCM:

H = [−At |14] = [At |14]

Here we just need to check that no column is zero and no two

columns are the same (by Theorem 0.89). This is clearly the same

as checking that no two rows of A are the same (we have

136

stipulated that each row has at least two non-zero entries, so their

transposes cannot be the same as any of the vectors in 14).

This requirement is satisfied in our example, so we are done. The

code in full consists in all linear combinations of the row vectors in

our G . Thus it starts

C = {00000000, 10001100, 01001010, 00101001, 00010011, 11000110, 10100101,

..., 11111100}

(16 elements altogether).

Remark: Another example satisfying the criteria is give by

A =


1 1 0 0

1 1 1 0

1 0 0 1

0 0 1 1


136

Remark: A2(8, 3) = 20, so a binary (8,20,3)-code exists. Of course

no such code can be linear, since |C | = M = qk for some integer

dimension k for a linear code, and no integer k obeys 20 = 2k !

Thus |C | = 24 = 16 is the biggest linear code we can hope for.

(ii) As for the number of such distinct generating matrices

G = [14|A], we can choose the first row of A freely, except not

choosing 0000, or any of the four weight-1 vectors, so there are

24 − 5 possibilities. The second row can be chosen freely except

not 0000, or weight-1, and not the same as the first row, so there

are 24 − 6 possibilities. Continuing similarly, altogether we have
(24−5)!
(24−9)! choices.

0.146. Exercise. (i) Construct standard arrays for the binary

136

linear codes C1,C2 generated by

G1 =

(
101

011

)
G1 =

(
10110

01011

)
(ii) Decode the received vectors 11111 and 11011 and 01011 in C2.

(iii) We receive 00101. What is going on?! Explain with a

ball-packing analogy.

Answer:

(i) C1 = {000, 101, 011, 110}. Evidently this has d(C1) = 2.

As usual, the first row of the array is

000 101 011 110

Since 100 is not in the code, and hence has not appeared in the

array so far, we can use it as the next coset leader (we could have

used 001 instead, say). We get the next row:

100 001 111 010

136

(just vector shift all the code elements by 100).

At this point we see that all eight vectors in Z3
2 are IN, so we stop.

Since the weight 1 vectors are not in distinct rows, this code is not

even 1 error correcting. (Of course we knew that already, since

d(C1) < 3.)

For C2 we start with the code itself in the first row:

00000 10110 01011 11101

Then we construct rows with coset leaders which are (a) not in the

code; (b) of lowest possible weight, i.e. of weight 1. Since 10000

has not appeared in the code we lead with that next:

10000 00110 11011 01101

then

01000 11110 00011 10101

136

In this case none of the weight 1 vectors appear in each other’s

cosets, so we construct a total of 5 rows this way, continuing with

coset leaders 00100, 00010 and 00001. E.g.

00010 10100 01001 11111

Since |Z5
2| = 32 and each row has 4 vectors in it, we need 8 rows

altogether. We have 6 so far. The remainder will have to be led by

vectors of higher weight.

Some weight 2 vectors have already appeared, but 11000, 10001,

00101, 01100 have not. We can make:

11000 01110 10011 00101

and

10001 00111 11010 01100

and then we are done.

136

Of course we could have started with one of the others, which

would have produced a different array! This tells us that our code

is not reliably 2 error correcting.

(ii) 11111 lives in a column below codeword 11101

11011 lives in a column below codeword 01011

01011 is a codeword.

(iii) We decode 00101 as 11101, because we decide that the error

in this case was 11000, based on our array (11000 is the coset

leader). Clearly there is no codeword closer to 00101 than 11101,

but there are codewords equidistant. Indeed 00000 is a codeword

at distance 2 from 00101. Statistically, then, we might just as well

have decoded 00101 as 00000 — and that is what we would have

done if we had made a different arbitrary choice of a weight 2

coset leader.

This just goes to show that our error correction is not perfect. It is

136

just the best we can do.

In ball-packing terms, the ball around 00000 of ‘radius’ 2 intersects

the ball around 11101 of radius 2. They intersect in vectors such

as 10001 and 00101 and 01100. None of these vectors is any closer

to any other codeword, so we know, receiving one of these, that at

least 2 symbol errors have occurred in transmission.

In trying to correct this we’d like to choose the closest codeword,

but there is no unique closest. Thus there is really nothing to

choose between guessing 00000 and 11101. We pick arbitrarily

from these codewords at distance 2 and hope for the best (or

perhaps seek retransmission).

0.147. Exercise. Let C be the 3-ary [4,3]-code generated by

G =

 1 2 2 1

2 1 0 1

0 1 1 1


136

Find a PCM for C . Hence list the codewords of C⊥.

Answer:

First we try to get G in standard form. We subtract two lots of

row 1 from row 2:

G 7→

 1 2 2 1

0 −3 −4 −1

0 1 1 1

 ≡
 1 2 2 1

0 0 2 2

0 1 1 1


Then subtract two lots of row 3 from row 1; then add row 2 to row

3; then swap rows 2 and 3; then mult row 3 by 2:

G 7→

 1 0 0 2

0 0 2 2

0 1 1 1

 7→
 1 0 0 2

0 0 2 2

0 1 0 0

 7→
 1 0 0 2

0 1 0 0

0 0 1 1


Now viewing this as G = [13|A] we put H = [−At |14−3]. Thus

H = (−2, 0,−1, 1) ≡ (1, 0, 2, 1)

136

This generates C⊥ = {0000, 1021, 2012}.

0.148. Exercise. Let C be the [3,2] code over F4 = {0, 1, a, b}
generated by

G =

(
1 0 a

0 1 b

)
Explain the meaning of the symbols a and b in this field; write

down the addition table for it; and hence or otherwise determine

the codewords of C and C⊥.

0.149. Exercise. Let C be the binary [7,4] code generated by

G =


1000111

0100110

0010101

0001011


(a) (i) find a PCM H for C

136

(a) (ii) compute G .Ht

(b) show that d(C) = 3

(c) (i) show that C is perfect

(c) (ii) how many coset leaders have weight 1?

(d) construct a syndrome look-up table for C

(e) decode the received vector 1110100.

0.150. Exercise. Write down a PCM for the binary Hamming

[15,11] code.

Answer:

We need to write down all non-zero vectors in Z4
2 as columns:

H =


000000011111111

000111100001111

011001100110011

101010101010101


136

136

	Coding Theory
	Preamble
	Methodology, caveats and acknowledgements
	Coding theory in a single picture

	Coding
	Transmission
	Hamming distance
	Optimisation
	Code choice affects transmission error probability
	All possible block codes
	Achievable code parameters
	More exercises

	Finite fields
	Practical coding with finite fields

	Linear codes
	Aside on linear algebra
	Linear codes

	Encoding
	Coset decoding
	Probability of error correction/detection
	Dual codes
	Syndrome decoding
	More Exercises
	Hamming codes
	Hamming codes over non-binary fields
	Cyclic codes
	Some rings and fields
	Back to the codes

	Golay codes
	Yet More Exercises

