MATH1225 Introduction to Geometry, 2017/2018

Tutorial Sheet 1

For discussion in the tutorial on Wednesday 11/Thursday 12 October.

1. Consider the statement "Let T be a triangle. If T has an acute angle then T has a right angle." Explain why this statement is not true.

Write down the converse to the above statement, and explain why the converse is true.
2. Give an example of a statement and its converse (not the same as in Question 1).
3. Determine, with reasons, which of the following triangles are congruent, given the sides and angles shown. (Note that the triangles are not drawn to scale).

$2 \sqrt{2}$

4

(c)
(b)

2

(d)
4. Consider the following statement, which is similar (but different) to the statements (SSS) and (SAS) from the lectures.
(SSA=Side-Side-Angle).
Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be triangles. Assume that $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}$ and $\angle B C A=\angle B^{\prime} C^{\prime} A^{\prime}$. Then the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are congruent.

By considering the triangles $A B C$ and $A^{\prime} B C$ in the following diagram, or otherwise, determine whether or not (SSA) is true, giving a careful proof for your answer.

5. Given an angle $\angle A B C$, the bisector of the angle is a ray starting at B which cuts the angle $\angle A B C$ into two equal parts.

Let $A B C$ be a triangle with $A C=B C$ (recall that a triangle with two sides the same length is called an isosceles triangle). Prove that the angles $\angle B A C$ and $\angle C B A$ are equal. (Hint: Consider the bisector of the angle $\angle A C B$).

What can you say if all three sides of $A B C$ have the same length? Prove your statement.
6. In the situation in Question 5, show that $A P=B P$ and that the angles $\angle C P A$ and $\angle B P C$ are both right angles.
7. Consider the following figure, and suppose that $A B=A C$ and $A X=A Y$. Show that $X C=Y B$.

R. J. Marsh, School of Mathematics, University of Leeds.

