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1 Linear Equations

We all know how to solve the linear homogeneous equation in two real variables

3z +4y =0.
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Each solution is a pair (z,y) € R x R (for example (—2,3/2) is a solution). We also know that
such pairs may be represented as ‘vectors’ in the Cartesian plane. The set of all solutions forms
a straight line in the plane, passing through the origin (0,0). This means that if we add any two
solutions together (using vector addition) we get another solution!
More generally, consider a system of m linear equations in n variables (z1, ..., z,, say), of the
form

n
Zaj,-xi =0 (] = ].,2, ,m)
i=1

(1)



where the a;; are constants. Note that each solution of (1) is an n—tuple of numbers (21, Z2, ..., Zp),
or an ‘n—component vector’, and hence may be regarded as an element of R". The set of solutions
is therefore a subset of R™. As in our first example, we have a notion of ‘addition’ of solutions
here. In this case ‘addition’ means the addition of real n—component vectors, i.e. objects of the
form x = (z1,%2, ..., L) with z; € R. Namely, for x = (21,22, ...,Z0n), ¥ = (Y1,Y2,--,Yn) define
z +y by

T+y= (21 + Y1, T2 + Y2, Tn + Yn)-

Is it still true, as in the case m = 1, n = 2 above, that adding two solutions together gives us
another solution?

To try to answer the question, suppose for example that m = 1,n = 3 in equation (1). Then
the solution set, call it S, consists of triples (z1,z2,x3), or (z,y,2) say, such that

a1z + a12z2 + a3z = 0.

Obviously we can’t solve this without knowing the {a;;}, but just suppose v = (z,y,2) is one
solution, and v' = (z',y’, 2') another. What about v + v'? We require

a1 (z +2') + a1a(y +y') + ar3(2 +2') = 0. (2)
IS THIS TRUE? Well,...
(@112 + a12y + a132) + (@112’ + a2y’ +a132') =04+0=0 (3)

so it IS true! In fact it is true, by a similar argument, for any m and n.
EXERCISE: Verify this by using the matrix notation for systems of simultaneous equations, and
the rules of matrix algebra (from last year — see also section 2).

Since solving simultaneous linear equations is such a common problem in Mathematics it is a
good idea to look at this generalised linearity property (cf. m = 1,n = 2) a bit more closely.

It has long been known how to add complex numbers together, and even how to add n—tuples
of complex numbers together. This is a natural generalisation of the addition of real n—component
vectors above. Recall from [Martin1998] (or elsewhere) that

Definition 1 (ABELIAN GROUP) An abelian group (G,+) is a non—empty set, G, with a
closed associative commutative binary operation +, such that

(1) there exists an element 0 € G, such that 0+a=a+0=a for alla € G;

(2) for each a € G there exists (—a) € G such that a + (—a) = 0.

Thus (C, +) is an abelian group, and so is (C*, +) for any n € N (in this case the ‘zero element’ is
0= (0,0,,0))
For x € R™ we define scalar multiplication of = by a real number a by

or = aZ1, T2,y Tn) = (A1, AT, ..ce, ATy). 4)
This generalises the familiar n = 2 case. For example
2% (1,3) = (2,6). ()

Note that if z is a solution to (1) then so is ax for any a (exercise!). This suggests that some kind
of ‘scalar multiplication’ is useful, together with addition, in solving linear equations.
Recall from [Martin1998] that

Definition 2 (FIELD) A field (G, +, %) is an abelian group (G, +) together with a second closed
associative commutative binary operation x such that

(1) ax(b+c)=axb+axc forall a,b,c € G;

(2) there exists 1 € G, 1xa = a for all a € G;

(3) for each a € G \ {0} there exists a=' € G such that a x a=! = 1 (that is to say, every
non—zero element of G has an inverse).



Thus (C, +, x) is afield, and so are Q and R. However there is no suitable ‘multiplication’ operation
to make (C",+) into a field. The scalar multiplication is not suitable here since it multiplies a
scalar with a vector, rather than two vectors.

There are other sets we know of with two binary operations acting on them. For example the
set M5(C) of complex 2 x 2 matrices — we ‘know’ how to add and multiply these. However M5 (C)
is not a field. Not every matrix a € M>(C) \ {0} has an inverse (here 0 denotes the zero matrix),
so matrix multiplication does not fulfill the requirements for the second operation in a field.

Note that for any m,n € N and field K the set M,,,(K) of m x n matrices with entries in
K forms an abelian group under matrix addition (for a review see §2). In the case m = 1 such
a set M1, (K) reduces to n—component vectors. In all these cases we know how to add, but not
multiply (i.e. we have an abelian group, but not a field). However, we DO know how to multiply a
vector in M;2(R) by a scalar (a real number) — e.g. 2x(1,3) = (2,6) again. Indeed this works for
multiplying v € M, (K) (any m,n, K) by a scalar (an element of K) —e.g. ax(b,c) = (a*b,ax*c),
a,b,ce K.

We know scalar multiplication is a useful idea wherever we use vectors (which is almost every-
where!). Thus it is natural to introduce the notion of VECTOR SPACE, which captures the two
useful operations on vectors of addition and scalar multiplication in a formal way. Then we can
recognise them wherever they occur.

1.1 Vector Spaces

Up to now we have seen examples of ‘vectors’. The idea now is to capture the essence of vectors
with an abstract definition:

Definition 3 (VECTOR SPACE) A vector space V over a field K (e.g. R or C) is an abelian
group (V,+) (with elements called ‘vectors’) with a further operation of Multiplication by an el-
ement of K (called a ‘scalar’) such that a € K and v € V implies av € V, and satisfying the
following azioms:

Bi: a€ K and u,v € V implies a(u +v) = au + av;

By: for all a,f € K and v € V then (a+ f)v = av + fu;

Bs: for all o, € K and v € V then (af)v = a(Bv);

By: for oll v € V if 1 is the multiplicative identity of K then lv = v.

Exercise 1 Let 0 denote the zero vector of V. Using these axioms prove

Theorem 1 (i) for all @ € K then a0 = 0;
(i) for allv € V and 0 the ‘zero’ of K then Qv = 0;
(#i) av = 0 implies either o =0 or v =0 (or both);
() for all @ € K and v € V then (—a)v = —(aw) = a(-v).

Example 1 Let V' be the set of n-tuples of real numbers. Define a scalar multiplication with
K =R by equation (4). This makes V a vector space over R (i.e. with K = R).

Exercise 2 Verify the axioms in this case.

Note that there is a geometrical interpretation of this vector space in the case n = 2 in terms
of vectors in the Cartesian plane (as discussed in lectures). That is, the vector space of pairs of
real numbers is R2. Similarly, for n = 3 the space is R?,.... and so on (note that for n > 3 the
Cartesian coordinate version becomes increasingly difficult to picture!).

Example 2 The set C* may similarly form a vector space of n-tuples, this time of complex num-
bers. The natural field to choose is C.

Exercise 3 Verify this example, and try to draw a geometric picture as above for the casesn =1
and n = 2. What happens? What other choices of field would be possible?

Example 3 Let V be the set of all polynomials of degree n with real coefficients. This is a vector
space under the usual addition and scalar multiplication. (Verify!).



Example 4 For any set X the set of functions
f:X—->R
is a vector space over R, with addition

(f +9)(@) = f(z) + g(x)

and scalar multiplication

(af)(z) = af(z).

Definition 4 (SUBSPACE) A subspace W of a vector space V is a subset of V which is itself
a vector space with respect to the operations of V.

If W is a subspace of V we write W < V.
Examples:
Note that the solutions of systems of linear inhomogeneous equations of the form

Zajiwi = b; (j=12,...,m) (6)
-1

may again be regarded as elements of R™. The solution set is again therefore a subset of R”. Now
R™ may be equipped with the properties of a vector space, so is the solution set also a vector space,
i.e. is it a subspace of R"?
Suppose again that m = 1,n = 3. Then the solution set, call it S, consists of triples (z1, z2, T3),
or (z,y,z) say, such that
a1171 + 1272 + a3z = by.

Suppose v = (z,y, ) is one solution, and v' = (z',y’, 2") another. If S is a vector space it is closed
under addition, that is v + v’ € S, in other words (v + v') must be another solution. So for S to
be a vector space

au(;L' + Ilfl) + a12(y + y') + (113(2 + 2:,) = . (7)

IS THIS TRUE? Well....
a117 + a12y + @132 + a2’ + a2y’ + a3z’ = by + by = 2by (8)

so we require 2b; = b; (comparing equation 7 with 8). In other words S < R® only if b; = 0 (i.e.
the equation is HOMOGENEOUS).

Exercise 4 Generalize to all n.

1.2 Linear Combinations and Linear (In)Dependence

Let V be a real (i.e. K = R) vector space. Let vy,vs,...,v, € V. (N.B. Here v; is being defined
to be vector, not the i** component of a vector. You may prefer to write v; to denote a vector in
such cases. I will just be careful instead.) Then

Z Q;V; (Oéi S R)
i=1

is called a LINEAR COMBINATION of vy, v, ..., Upn.

Definition 5 (LINEAR DEPENDENCE) A finite set {v; | i = 1,2,...,n} is called linearly
dependent if there exists a set {a; |i =1,2,...,n} of scalars (a; € R) NOT all zero, such that

Z ;V; = Q
i



Conversely, if no such set {o;} exists then the set {v;} is LINEARLY INDEPENDENT.

Proposition 1 The set {v;} is linearly independent iff

Zaivi =0 = ala;=0.
i

We will discuss an extended example in the lectures.

Definition 6 (SPANNING) Let {v;} be a set of vectors in V and let W be the set of all linear
combinations of the set {v;}. Then W is a subspace of V, and W is called the subspace spanned
by {v;} (or GENERATED by {v;}).

Geometrically: In R3 the space spanned by a single vector consists of all scalar multiples of it
(hence a straight line through the origin). The space spanned by 2 linearly independent vectors in
R? is the PLANE through the origin containing them (exercise: prove that this plane is unique).

1.3 Basis

Definition 7 (BASIS) A basis for a vector space V is a set of linearly independent vectors which
spans V.

It turns out that although a space V may have many different bases, if one of these has finite
degree n, say, then they all have the same degree. The DIMENSION of a vector space is the
number of vectors in a basis.

Theorem 2 If {e;} is a basis for V then every vector v € V has a UNIQUE representation
v = Z ;€;
i

(i.e. the scalars a;, called coefficients or components of v w.r.t. this basis, are uniquely determined).

Proof: Let

v=> aiei=) PBie;
i [

then

D (@i —Biei = 0.

i

But the {e;} are linearly independent, so by the definition of basis, for all
a; — B; = 0.

QED.
Conversely, the basis is not unique.
Examples: - see lectures.

In R™ the set of n vectors
€1 = (1,0,0, ,0)

e = (0,1,0,0,...,0)

then similarly so that
e; = (0,0,0,...,0,1,0,0,...,0)

where the 1 is in the i*" position, and finally
en = (0,0,0,...,0,0,1)

is the STANDARD ORDERED BASIS.



Theorem 3 (Exchange Theorem) Let {v; | i = 1,2,...,n} span vector space V, and {w; | i =
1,2,...,m} be a linearly independent set in V.
Then m <n and a set

{11)1,11]2, ceny Wipy Uiy 5 Vg "'Jvin—m}

(i.e. with last n —m elements some subset of {v;}) spans V.

Proof:
Let S = {wm,v1,v2,...,0n}. Then S spans V and is linearly dependent. Therefore one of the
v; is a linear combination of the preceding vectors (as written in S above), that is there exists j
such that
S" = {wpm, V1,02, -0y Vj_1,Vj41, -, Un }
spans V. Now let S” = {w,, _1}US’. Then S” is linearly dependent and spans V. Thus one of its
vectors is a linear combination of the preceding ones, when written in the order

"
S = {wm,l,wm,vl,vz, ey V51, V541, ...,’Un}.

This vector cannot be w,, or w,,_1 as these are linearly independent of each other by construction,
so let it be v, say. Then S” — {v;} spans V.

Now ITERATE this process until all the {w;} are included, and m of the {v;} are excluded.
QED.

Corollary 3.1 In a finite dim. vector space V' the number of vectors in a basis is unique.

Proof:
Let {v;} and {w;} be bases. Then m < n and n < m so m =n. QED.
Note that Dim(R™) = n. Also, more surprisingly, Dim(C") = n .... think about it!
Now let Dim(V) = n, then

Corollary 3.2 Any set of (n + 1) vectors in V is linearly dependent.

Proof:
Let S ={v; | =1,2,....,n}span V,and let S’ = {w; |i = 1,2, ...,n+1} be linearly independent.
Then (n + 1) < n - a contradiction! QED.

Corollary 3.3 If W <V then Dim(W) < Dim(V).

Proof:
Let Dim(W) = m and suppose m > n, then a basis for W is a set of more than n elements of
V', but then they are linearly dependent by corollary 3.2 - a contradiction! QED.

Corollary 3.4 Conversely, no set of (n — 1) vectors can span V.

Proof:
let S = {v1,v2,..,0n_1} span V and let S' = {wy, w2, ...,w, } be a basis for V. Then (n—1) > n
- a contradiction! QED.

Corollary 3.5 n vectors of V' form a basis iff linearly independent.

Proof:
Let S = {v1,v2,..,vn} be alinearly independent set. Let S" = {wy,ws, ..., w,} be a basis. Then
w;’s may be completely replaced by v;’s without affecting spanning, so S is a basis. QED.

Corollary 3.6 If a set S of m > n vectors spans V then there exists a subset of S which forms a
basis for V.



Proof:

Let S = {v1,v,..,v }. Either S is a basis (m = n) or it is linearly dependent. In that case
there exists a vector in S linearly dependent on the preceding ones. Discard it and iterate until
linearly independent. QED.

Corollary 3.7 Any l.i. set of vectors is part of a basis for V.

Proof: Exercise!
Summary
1. Number of vectors in a basis is unique.
Let Dim(V) = n then
. A set of more than n vectors in V' is necessarily linearly dependent.
. Fewer than n vectors cannot span.
. Any n linearly independent vectors form a basis.
. Any set of m > n vectors which spans CONTAINS a basis as a subset.
. A Li. set of < n vectors can be extended to a basis by adding vectors.

S O W N

We now want to study sets of vectors arising as solution sets for systems of linear equations....
So, what is the usual way of manipulating many vectors at once?

2 Matrices

A matrix is a rectangular array of scalars. For the case of m rows and n columns we call it an
m x n matrix. If we think of a vector as a row of n numbers then such a matrix is a column of m
vectors.

If A is a matrix then a;; is the entry in the i*" row and j** column. For example

ailr a2
A=
a1 a2
is a 2 X 2 matrix.

2.1 Matrix Algebra

If A = B then a;; = b;; for all ¢, 5.
If A =0 then a;; =0 for all 4, 5.
ADDITION: If A, B both m x n then C'= A & B is given by c;; = a;; & b;;.

Exercise 5 The set M>(R) of 2 x 2 matrices with real entries forms an abelian group under
addition. Check it!

MULTIPLICATION: (1) by a scalar k: C = kA is given by ¢;; = ka;;

(2) of two matrices:

Matrices A, B are “conformable” for multiplication to give a product C = AB (order matters!!) if
the number of columns of A = no. of rows of B =p (say). Then C' = AB is given by

P
cij = Y aikbi;.
k=1

_ (46 26
“\12 0 )

For example,

VS
[enll V]
O =~
N O
~—
DD DN =
O = Ot



Definition 8 (IDENTITY MATRIX) A square (i.e. nxn) matriz is called an identity matriz,
denoted I, if

100 0
010 0
L,=|0 01 0
000 .1

Exercise 6 Check AI; = I3A = A for all 3 x 3 matrices A.
Exercise 7 Check that no other matriz B obeys AB = BA = A for all A.

Definition 9 (INVERSE MATRIX) Ann square matriz B is called the inverse of A if AB =
I,.

Proposition 2 (exercise) If AB = I,, then BA=1,
Hence we can write B=A"'or A=B"lif AB=1I,.
Proposition 3 AB =1, and AC = I,, implies B = C.

Proof: Let AB = I, and CA = I,,. Then (CA)B = C(AB) (exercise: prove matrix multiplication
is associative!) so I,B = CI,, and so finally B = C. QED.

Proposition 4 (exercise)
(AB)""=B7'A".

Proposition 5 C' = AB does not imply C = BA.
0 0 01y (00
1 0 00/ \01
01 00y (10
00 10/ \0 0)°

Similarly, AB = 0 does not imply that either A = 0 or B = 0, and AB = AC does not imply
that B = C (but A0 = 0A = 0 still holds).

Proof: By counterexample

Definition 10 (TRANSPOSE) The transpose At of matriz A is obtained by interchanging rows
and columns.

e.g.
2 4 6\ 2 0
(0 0 2) =( 40
6 2
Proposition 6
(AB)! = Bt A!.

Exercise 8 Prove this for n x n matrices.

Proposition 7 (exercise) For A square, if A~ exists then

(A7 =



2.2 DMatrices and Linear Equations

The system
n
Zajz’wz' = b; (J=12,..,m) (9)
i=1
is equivalent to the matrix equation
X1 b1
Io b2
A =
Tn bm

or, with = denoting the transposed n-tuple, just
Az =b.

Example 5 The system
T1 4+ 222 + 323 =1

T+ 23 =2

12 3 Y
101 T2 1 =\2 )"
X

3

is equivalent to

The matrix A = (a;;) is called the COEFFICIENT MATRIX of the system. The m x (n + 1)
matrix A’ given by adding the column B to the right hand side of A is called the AUGMENTED
MATRIX of the system. It contains all the information to completely define the system.

2.3 Elementary Row Operations

In fact it is usually simpler to use the language of matrices throughout when studying linear
equations. Then the way we solve systems of linear equations is by using the fact that the solution
set is unchanged under certain transformations of the system. For example:

changing the order in which we write the equations;

multiplying an equation through by an overall scalar constant; or

adding one equation to another,
does not affect the solution set (exercise: check it!).
These are the ‘moves’ we use to simplify the set of equations in the Gauss elimination method of
solution. We use up some of the equations in eliminating some of the variables:

Example 6
3r+2y+z2=4 (10)
6r+3y+52=9 (11)
Taking (11) - 2.(10), as it were, we get
—-y+3z=1

soy=3z—1,3x+ 7z =06 and thus z = (6 — 3z)/7. Finally, then, the solution set is the LINE of
points in R® given by

{(=,3((6 — 32)/7) — 1,(6 — 3z)/7) for all z € R}.



There must be a corresponding set of moves on the matrix side, therefore, which also do not
change the solution.

Note that each linear equation is embodied in a particular ROW of A’. A matrix A is said to be
ROW EQUIVALENT to a matrix B if A is mapped to B by a finite sequence of ELEMENTARY
ROW OPERATIONS:

1. Interchanging i** and jt* rows

RY:Aw— HYA

where H% is a square matrix with the same no. of rows as A, of the form

1
1
0 1
HY = 1
1
1 0
1
2. Multiply i** row by a scalar k # 0
Ri(k): A~ Hi(k)A
where
1
1
1
Hi(k) = k
1
1
1
3. Add j** row to it* row - -
PY:A— MYA
where
1
1
1 1
M = 1
1
1
1

Exercise 9 Check that these matrices act on an arbitrary matriz A in the way described.

Now our Gaussian elimination process for solving systems of linear equations becomes “Trans-
formation by elementary row operations to ECHELON FORM” where

Definition 11 (ECHELON FORM) A matriz A = (ai;) is in Echelon form if the number of
zeros preceding the first non-zero entry in each row increases row by row until only zero rows
remain.

e.g.
2 4 6 8 27

019 0 2

A=10 0 0 1 1

0000 O

0000 O

We call the first non-zero element of each row the DISTINGUISHED ELEMENT of that row.

10



Definition 12 An echelon matriz is said to be ROW REDUCED if distinguished elements are
(i) the only non-zero elements in their columns;
(i) equal to 1.

e.g.
27

b

Il
S o oo~
S oo =O
jev i en B e BiNo I
SO =OO

2
1
0
0
Theorem 4 The row reduced echelon form (RREF) of a matriz is unique.

Exercise 10 Prove that a RREF always exists (hint: develop an algorithm to construct an echelon
form using elementary row operations).

We are trying to find the ESSENTIAL properties of systems of linear equations (resp. matrices)
which DO have a bearing on their solutions. Clearly RREF is one of these. What else? ....

2.4 Row space of a matrix

Let A be an arbitrary m X n matrix (over R). The rows of A, viewed as vectors in R”, span a
subspace of R”. This is the ROW SPACE of A, L(A).

Suppose we apply an elementary row operation to A and hence obtain B. Each row of B is a
linear combination of rows of A so L(B) < L(A). On the other hand if GA = B is the matrix version
of the elementary row operation then we can invert G (exercise) to obtain G 'B = G 'GA = A,
so L(A) < L(B) and altogether L(A) = L(B). Thus row equivalent matrices have the same row
space.

Definition 13 Dim(L(A)) is called the RANK of A.

Thus RANK is the number of independent rows - closely related to the solution space of any
associated system of linear equations.

Example 7 Suppose

1 2 3 4
A= 2 0 -2 2
34 5 9
then
1 2 3 4 1 2 3 4 1 2 3 4
A1 0 4 -8 6]—-10 -2 -4 -3 ]—->]10 -2 —4 -3
0 -2 -4 -3 0 -4 -8 —6 0 0 0 0

then rank(A) = 2.
Hence:

Theorem 5 The dimension of the solution space W of the homogeneous system
AX =0
is n — rank(A), where n is the number of unknowns.

Theorem 6 The system AX = B has a solution iff rank(A) = rank((A, B)) (where (A, B) is the
augmented matriz), whereupon, if v is a solution then

{u+v : ueW}
is the general solution, or solution set.

Proof: see later.

11



3 Linear Functions

We now provide one more way to look at systems of simultaneous linear equations (a way which
will lead us into a number of other important applications of linear algebra).

Recall that for any two sets A, B a function f : A — B may be thought of as a map which
assigns to each a € A a unique f(a) € B (e.g.

1)
f:R>R
f@) =2
(2)
[R5 R

f(@,y,2) = (0,2 +y)

— this function is illustrated in figure 1). Let V,U be vector spaces over R (say). A function
f:V — U is called a linear function (or linear transformation, or linear mapping, or vector space
homomorphism) if

(i) for all v,w € V we have f(v+w) = f(v) + f(w);

(ii) for all k € R, v € V we have f(kv) = kf(v).
That is, f is linear if it preserves the two basic operations (+,.).
Examples: f(z) = 3z is linear; (1) above is not linear; (2) is linear. (Exercise: Explicitly demon-
strate the truth of these assertions.)

Exercise 11 Verify that if f is linear then f(0) =0.

Answer: By linearity f(0v) = 0f(v), but Ov = 0. Note that this shows that f(z) = = + 1 is not
linear by our definition, even though y = x + 1 is a linear equation. We will see later that this
restriction is not as limiting as it may seem.

3.1 Isomorphism

If the linear function f : V — U is an isomorphism (one—to—one and onto) then V, U are isomorphic
vector spaces, and we write V = U.

Exercise 12 Compare R® over R and the real vector space of polynomials of degree at most 2
with real coefficients. Construct o linear function from one to the other. Is your function an
isomorphism?

Exercise 13 Prove that isomorphic vector spaces have the same dimension. (Hints: Ask yourself
if the linear function in example (2) above is an isomorphism? Would it be possible to construct
another linear function between R® and R2 which was an isomorphism?)

Exercise 14 The set of all real polynomials in x form a real vector space, call it V', just as do the
subset consisting of those polynomials of degree at most 2 (although V is not a finite dimensional
space). Let f € V, and define D(f) = %. Show that D is a linear map from V to itself. Show
that D is not one—to—one.

Let f: V — U be a linear function, then

Definition 14 The Image of f is
Imf ={ueU : f(v)=u for somev € V}.

(NB, this is the same as the image, or range, of any function. However, we will see that Image
has some useful extra properties when the function is linear.) In our example, the image of f is
{(0,9) | y € R}, that is, the y—axis in R?.

Definition 15 The KERNEL of f is

Ker f = {veV : f(v) =0}

12



Figure 1: The function f(z,y,2) = (0,2 +y). The upper diagram illustrates the map on the lines
z=y=0and z—y =2 =0in R®. The lower diagram illustrates the map on the plane z +y = 3
in R3.

13



In our example the kernel of f is the x + y = 0 plane.
Theorem 7 Im f <U and Ker f <V.

Proof: Exercise!
Example 8 Suppose f : R? — R3 is given by
fi(@y,2) = (2,9,0)

(called a "projection mapping”), then

Im f ={(a,b,0) : a,be R}

Ker f ={(0,0,¢) : c€R}.
Theorem 8 For V a finite dimensional vector space and f :V — U a linear function then

dimV = dim(Ker f) + dim(Im f).

Proof: Let dim V = n. Then dim(Ker f) <, call it r. Let {v1,v2,...,v,} be a basis for Ker f.
Extend to a basis for V' ({v1,v2, ..., Up, Ups1, ..., Un}) then we just need:

Proposition 8 A basis for Im f is {f(vr41), f (ry2), -, f(vn)}.

Proof of proposition: We must check span and linear independence.
Span: For each w € Im f there exists a v € V such that f(v) = w. Put

n
v = E ;U5
i=1

say, but then by linearity

n

w=fv)= Z a; f (v;).

i=r+1
Linear independence (by contradiction): Suppose

n

Z a;f(v;) =0

i=r+1
with not all coeficients zero. By linearity this implies
n
f ( Z aivi> =0
i=r+1

so the argument lies in the kernel of f, and may be expressed as a linear combination of kernel

basis elements:
n T
> =) B
i=r+1 i=1
But these vectors are linearly independent, since they are a basis for V', so we have a contradiction.
QED (proposition).
Hence dim(Im f) =n —r. QED (theorem).

Definition 16
rank(f) = dim(Im f)

nullity(f) = dim(Ker f).

14



Our definition of linearity does not depend on any coordinatisation of (choosing of bases for)
the vector spaces involved. However, linearity interacts very usefully with the theory of bases. For
example, a linear function is completely determined by its action on a basis of the domain. (See
below.) Indeed, we will see shortly that

Theorem 9 For K a field (as usual we will only be concerned here with R and C), any K—vector
space of dimension n is isomorphic to K™.

Example: Let V be an arbitrary R—vector space with basis {ey, ..., e, }, and for v € V put
v = Z Q;€;.
i

Recall from our Theorem 2 that the coefficients «a; are unique. Thus there is a well defined map
from V to R™ which takes v to the (column) vector of its coefficients «;. This is clearly linear, and
using our Theorem 2 again we can show that it is an isomorphism. The image of v here is called
the coordinate vector of v with respect to the given basis.

In particular, a new choice of basis gives rise to an isomorphism from R™ to itself in this way.
For example, with basis {(1, 1), (1,0)} we have (z,y) = y.(1,1)+(z—y)(1,0), so (z,y) — (y,z—y).
(Readers attaching more structure to such spaces than we have yet covered in this course — such
as angles between vectors — will note that isomorphism does not have to preserve angles.)

For each m x n (real) matrix A we may define a function

fa:R* - R"

by giving the vectors in each space their natural realisation as column vectors (vertically oriented
tuples) and using matrix multiplication

f4(X) = AX.

This function is LINEAR. (Exercise.) In these terms the system of simultaneous equations AX =Y
gives a linear transformation A and a target vector Y and asks what set of vectors are transformed
to that target by A (in particular, the solution of the homogeneous form AX = 0 is the kernel of
the transformation).

3.2 Matrix representation

More generally, an m x n matrix (with elements in field K) can be viewed as a (representation of
a) linear mapping T : K™ — K™ in the following way:

Pick bases for K™, K™ (e.g. the SOB in each case, say {e;}, {€;} respectively). Then certainly
T(e1) = > it aje; for some set of coeficients af, and similarly T'(e;) = 1, ale; for j = 2,...,n.
(NB, fixing T, the coefficients still depend on the choice of bases.) Thus by linearity an arbitrary
element v = Y}, ke, transforms as T(Y p_; kker) = D opey Kk 2orey aFe;. The coefficient of ¢;
in T(v) is Y p_, kral.

Now consider the matrix multiplication AX =Y

aii a2 A1n 1 Y1
: x

asy . 2 _ Y2

Aml1 Qm2 ... (OOmn Tn Ym

giving, by definition,
n
Yi = Z QikTh-
k=1

If we represent v as a column vector K = (k1, ..., k5 )¢ of coefficients for the given basis (note that
this is the defining representation in our case, using SOBs — more generally it is the coordinate

15



vector of v with respect to the given basis) then the corresponding column vector of coefficients for
T (v) may be determined by matrix multiplication AKX, where the matrix A€ is given by a;; = o.
For example T : R® — R® specified by

i

T(z,y,2) =Bz +y,z+y+z,x+22)

has
T(e;) =T((1,0,0)) =(3,1,1) = 3.(1,0,0) + 1.(0,1,0) + 1.(0,0,1) = 3e1 + €2 + €3
T(es) =T((0,1,0)) = (1,1,0) = 1.(1,0,0) + 1.(0,1,0) + 0.(0,0,1) = €1 + €2
T(e3) =T((0,0,1)) =(0,1,2) = 0.(1,0,0) + 1.(0,1,0) + 2.(0,0,1) = €3 + 2¢3
so letting
310
AS = 1 11
1 0 2
then
T
€ t
Ae Y = (T((m,y,z))) .
z

We will see later that it is often useful to change the bases we use to describe transformations (for
now this may seem perverse, but it really can be useful). Suppose we want to use the (ordered)
basis {(1,1,1),(1,1,0),(1,0,0)} for the codomain (leaving the domain basis alone). Then our
calculation above becomes

T(e1) =T((1,0,0)) =(3,1,1) = 1.(1,1,1) + 0.(1,1,0) + 2.(1,0,0) = €] + 2¢;
T(ez) = T((0,1,0)) = (1,1,0) = 0.(1,1,1) + 1.(1,1,0) + 0.(1,0,0) = €,

T(e3) = T((0,0,1)) = (0,1,2) = 2.(1,1,1) — 1.(1,1,0) — 1.(1,0,0) = 2€} — €5 — €}

so letting
1 0 2
Ac=101 -1
2 0 -1
then
x T+ 2z
A y | = y—z
z 2r — 2

The right hand side is the coordinate vector for the transformed vector with respect to the new
basis. Check:

1 1 1 TH+224+y—z+2x—2 3z +y
(4+22) | 1 |+@w-2) 1 |+(22z—2)| 0 | = z+22+y—z =| z4+z+y
1 0 0 T+ 2z T+ 2z
Note that
1 11
1 1 0 |AS =A.
1 0 0

There is an analogous change on changing the domain basis. We will return to this shortly.
Note that rank(A) = rank(T) always (hence we use the same name).

16



Definition 17 (Hom) Let V,U be vector spaces over K, then Hom(V,U) is a vector space over
K where the set is all linear maps f : V — U and f + g is defined by

(f+9): VU

(f+9):ve f(v) +9(v)

and af is

(af) v+ af(v).
Exercise 15 Check closure and the other azioms.
Definition 18 End(V) = Hom(V,V).

Definition 19 A linear map f:V — U is SINGULAR if there exists v € V such that v # 0 but
fw) =0.

Otherwise, i.e. if Ker f = {0}, then NON-SINGULAR.

4 Linear functions and systems of linear equations
The matrix equation Az = B of a systems of linear equations may be seen as a linear map
A: K" > K™
(K = R). Note in particular that the solution space to Az = 0 is ker A. We then have
dim(ker A) = dim(K™) — dim(Im A) = n — rank(A)

as required.

4.1 Invertible functions

A linear function T : V — V is invertible if there exists T~! : V — V such that TT~! =TT =1
(I is the identity map).

Recall that T is invertible iff a bijection. The 1-to-1 property ensures that ker(T) = {0}, so
then T is non-singular. Conversely if T is non-singular then it is 1-to-1 (exercise), and furthermore

dim(V) = dim(Im T) + dim(ker T') = dim(Im T) + 0
80 it is also onto. Thus we have

Theorem 10 A linear map T : V — V is invertible iff non-singular.

Now consider the matrix equation Az = 0 for A an n x n matrix. If A non-singular then A~!
exists and this implies z = 0, and Az = B has a unique solution (A~!B) for each B.

If A is singular Az = 0 has other solutions as well as z = 0, thus A4 is not onto and there exist
B’s such that Az = B has NO solution; and if a solution exists it is not unique.

4.2 Determinants

Recall that a bijection from a finite set to itself is called a permutation.

Proposition 9 The set X, of all possible bijections of a set S of order n, has order n!.

17



Proof: Exercise!

The set ¥, forms a group under composition of functions (exercise), called the SYMMETRIC
GROUP.

Any permutation p € ¥, can be written as a product of permutations of the form

(1 3 4 o i i+l o j on

j i+l .. i ..on
that is as a product of permutations in each of which exactly 2 elements are changed.

For example
123\ [ 123 123
312 / — \ 321 J°\ 213

123 \ [ 123 123
123 )\ 321 )"\ 321
Obviously this expansion is not unique, but the number of factors required in the product is unique

mod.2 (exercise).
If this number is odd (even) the perm. is called “odd” (“even”).

NN

and

Definition 20 (Parity Function)
S:X, = {+1,-1}

. +1 p even
S.p»—){ -1  podd

Let A be an n-square matrix with entries a”. Then

det A= |A| = Z (S(f) Haif(i)>'
=1

PSS

For example,
a1l ai2
as1 Qa2

‘ = a11G22 — 012021 -

Then again, for n = 4 there will be 24 terms in the sum, like aj3as1assaq2. This is the term for

- ()

(compare the first and second index on each a;; with the top and bottom row of this perm.). In
this case S(f) = —1, because f is “odd”.

Exercise 16 Find a product of three pair interchange perms which gives this f.

4.3 Properties of determinants

(1) |A] = |AY| (exercise);
(2) Interchanging any 2 rows or columns of A changes the sign of every term in the determinant
(i.e. changes the determinant by an overall factor -1.

Exercise 17 Check an example.

Note that B
det(HY A) = —det(A)

and that det(HY = —1.

18



(3) Multiplying a row or column of A by a € R multiplies det(A) by a. That is
det(H'(a) A) = aA

note that det(H'(a)) = a).

4) If matrix A has 2 rows or columns equal then det(A) = 0.

5) The sum of two matrices A and B which are identical in all but one row or one column vector
a

(
(
(
(a; # b;, say) then

det(A) + det(B) = det(C)

where C' is also identical but for ¢; = a; + b;.
(6) Properties 3,4 and 5 imply that

det(M% A) = det(A)

(note that det(M¥) = 1).
Theorem 11 (A) For A an n-square matriz the following are equivalent:

i) A is invertible;

(i) A is non-singular;

(#i) det(A) # 0.
Theorem 12 (B)

det(AB) = det(A)det(B).

Exercise 18 Prove theorem B for n = 3.

4.4 Determinants, minors and cofactors

Consider A an n-square matrix. Let A;; be the (n — 1)-square matrix obtained from A be deleting
the " row and j** column. Then det(A;;) is called the MINOR of a;; and aj; = (=1)"*det(A;;)
is called the COFACTOR of a;;, and for any ¢

n
Al =" aijal;
=1
and
n
Al = aijaj
=1

for any j. This is the “Laplace expansion” for |A|, and comes directly from the above definitions.
For example

5 4 2 1 1 4 2 1
2 3 1 -2 | -1 3 1 -2
-5 -7 -3 9 | | 2 -7 -3 9
1 -2 -1 4 3 -2 -1 4

since subtracting the second column from the first does not change the determinant. Then after
subtracting appropriate multiples of the first column from the second, third and fourth columns
this becomes (again with no change - exercise: check it!)

1 0 0 0
-1 7 3 -1
-2 =15 -7 7
3 -14 -7 1
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At this point we can use the Laplace expansion to good effect, expanding with respect to the first
row. We get

73 -1 0 0 -1
=|-15 -7 7 |=|34 14 7 :—‘ » 1211‘:34.4—14.7:136—98:38
14 -7 1 7 41

(we added some copies of the last column to other columns at one point here, and then used
“Laplace” again) therefore A~! exists!

Definition 21 (CLASSICAL ADJOINT) The (classical) adjoint of A (written adj(A)) is the
transpose of the matriz formed by replacing each a;; with its cofactor.

Proposition 10

A.adj(A) = |A|L.
Note that this proves that theorem A part (iii) implies part (i). Also note that hence, provided
|A| # 0, then

AT = Ladj(A).

The proof is slightly messy, but well illustrated by examples.

Exercise 19 Verify the theorem for the case

2 3 4
A= 4 3 1 (12)
1 2 4
by obtaining
1 10 -4 -9
Al = = -15 4 14 (13)
N 5 -1 -6
and then checking that AA=' =1.
5 Applications
In linear equations:
Ar =B
implies
A'Ax = A"'B
S0
r=A"'B

and theorem A (i) implies (ii); and (iii) implies (ii).
Here is a concrete example: The system

20 +3y+4z=1

dr+3y+2=3
r+2y+42=0

has coefficient matrix A as in equation 12 above, and

B=1{ 3
0
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so the solution is

x 1 2/5
y | =474 3 | = 3/5
z 0 -2/5

using A~! from equation 13 (exercise). This may be directly verified by substitution into the
original system.

Example 2:
2 4+3y+4z=1
dr+3y+2=3
6z +6y+52=0
has

2 3 4
A= 4 3 1 (14)
6 6 5

for which |A| = 0, so either there are many or NO solutions. The homogeneous system Az = 0
has many solutions (rank A is 2), but this particular inhomogeneous system has no solution, so
the solution set is EMPTY!

5.1 Another way to invert non-singular matrices

If we perform elementary row operations (by the matrix premultiplications we defined above) on A
until we reach I (which is always possible for a non-singular A - exercise), then the matrix product
of these operations is A~ L.

Example: — see lectures. See also [Schaum — Linear Algebra] §§3.36, 3.38.

5.2 Review - solution of n equations in n variables

Ax =B

(1) If |A| # 0 then z = A~!B is unique solution, so find A~1;
(2) If |A| = 0 then either we will have inconsistency (hence no solutions) or an infinite number of
solutions.

Geometrically, n = 2 i.e. 2 equations in two unknowns, may be thought of as two lines in the
plane. Either

a) they intersect at a unique point;

b) they coincide (infinite no. of solutions);

c) they are parallel (no solutions).
There is a similar picture for equations viewed as planes in R®, and so on.

5.3 Solution of m equations in n variables

Az =B
Firstly |A| is not defined unless m = n. Let us think of
A:R* - R™

We have solutions only if B € Im(A), then find any u such that Au = B, whereupon the general
solution is
{u+v : veker A}
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Why? - well, Au = B and Av = 0, so linearity gives
Alu+v)=Au+Av=B+0=B

so any such (u + v) is a solution.

Example:
6 4 2 TN (2
139 A
z
has rank A = 2, and the same rank for the augmented matrix (exercise!). Thus there are solutions,
and the dimension of the solution space of the associated homogeneous problem Az = 0 is 3-2=1.

Geometrically
6z +4y+ 22 =2

is a plane in R3, as is
z+3y+9z="1.

These two planes are neither parallel nor coincident, so they intersect in a LINE:
Ty + 262 =20
y = (20 —262)/7
Tx =152 —11
thus one way to represent the solution set is

152 —11 20—-2
(R B2 emy

6 Eigenvalues and Eigenvectors
Let T : V — V be a linear function on a vector space V (over K).

Definition 22 A scalar A € K is called an EIGENVALUE of T if there exists v € V — {0} such
that
Tv=Av.

The vector v is called an EIGENVECTOR of T'.
Proposition 11
{veV : To=Av} <V

This subspace, written St (), is called the eigenspace of \.
Proof: (of closure):
For all u,v € Sp(\)

T(au + pv) = aTu + BTv = adu + Biv = A(au + [v).

QED.
Example: Find the eigenvalues and eigenvectors of A = (

such that

1 2

3 2),i.e. find A € R and v € R?

This is the same thing as



in other words
1-A 2 T\ _op
3 2—A y )

Recall that such a homogeneous system has non-zero solution iff
1—A 2
det ( 3 9\ > =0

A=) +1)=0

i.e.

therefore the only possible eigenvalues are 4, —1. Putting these into the equation we can solve for

v in each case:
Try A = 4:
-3 2 T
(3 2)(5)-0
1 2 2 2
(52)(5)-+(5):

is an eigenvector then kv is an eigenvector for any k € K, so we don’t

implies 3z = 2y so, for example,

Obviously if v = ( g

usually explicitly mention all the other constant multiples of v.
For A = —1 we have

giving £ = —y, so

This leads us to
Theorem 13

St(A\) = ker(AI = T).
(Note that the kernel only exists if |\ —T'| = 0.)

Theorem 14 (Independence theorem) If u € St(a) and v € S (b) and a # b then u and v
are linearly independent.

Proof: suppose au + fv =0, then aau + Bbv =T.0 =0 so
ab—a)u+pb-bv=0

which implies a = 0, and hence 8 = 0. QED.
Note, on the other hand, that u, v lin.indep. does not imply a # b.

6.1 Similar matrices and matrix diagonalisation

Definition 23 Matrices A and C are SIMILAR if there exists a non-singular matrix B such that
C=B"'AB

Remarks:
(1) We have

Proposition 12 Similar matrices have the same eigenvalues.
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Proof:
|C — M| =|B™*AB - \|=|B"'AB — \IB™'B|

= |B~Y (A= AD)B| = |B~Y|.JA = AI)|.|B] = |A — AI|.

Definition 24 The polynomial of order n in A given by |A — M| is called the Characteristic
Polynomial of A, and
|[A—XI|=0

is the characteristic equation.

Theorem 15 (Cayley-Hamilton) Let P(A\) = |A — M|. Then P(A) = 0 (which is to say that
if we substitute A in for X in the polynomial P it evaluates to the zero matriz).

The roots of |A — AI| = 0 are the eigenvalues of A. QED.
(2) A, A? have the same eigenvalues (exercise);
(3) Av = Mo implies (kA)v = (kX)v for any k € K.
(4) Av = Ao implies
A%y = A(Av) = Al = MAv = A%
and similarly for A";
(5) A non-singular and Av = A\v implies

(AAYw=Iv=v=(A"1A)v=A4"")
so that finally A=1v = A~ lw.

It is a corollary of the independence theorem that if dim V =n and T : V — V has all n
eigenvalues distinct then the n corresponding eigenvectors are linearly independent and hence form
a basis for V. Let’s call then {v1,va, ..., v, } then the matrix representation of T in this basis comes
from

T('Ul) = \vy (+0.'l)2 + 0.v3 + )

T(v2) = Agvy  (+0.v1 + 003 +....)
T(v3) = Az3vz  (+0.v1 + 009 + ....)

T(vn) = Anvn  (+0.01 + 002 + ....)

so then the matrix for T' is diagonal:

At O 0 0
0 X O 0
0 0 X
0 0 0 A

(all other entries zero) and the corresponding eigenvectors are the standard ordered basis!

Theorem 16 (Diagonalisation theorem) Ifdim V = n and matriz A : V. — V has n lin.indep.
eigenvectors {vy, v, ...,un} corresponding to (not necessarily distinct) eigenvalues A1, A2, ..M\, and
if P is a matriz with columns {v1,va,...,v,} then |P| # 0 and



Proof: (i) P has n lin.indep. rows by construction, thus |P!| # 0, but |P| = |P!| so P is non-
singular;
(ii) Note that (vivs...v,) is an n X n matrix, then

AP = A(Ul’l)z...’l)n) = ()\11}1 )\2’1}2 /\nvn)

AN O ... 0 O A 0O ... 0 O
0 X 0 .. 0 X O
= (U11)2...vn) R =P .
0 0 : 0 O :
0 0o -+ 0 A, o 0 -+ 0 A,

thus P~' AP gives the required diagonal matrix. QED.

Corollary: Every matrix with all distinct eigenvalues is similar to a diagonal matrix with
diagonal entries given by the eigenvalues.

For example, suppose T : R? — R® in some basis is given by

1 0 0
A=| -8 4 -6
8 1 9

Then
[A—=M|=(1-X)A —-13X1+42) =0

gives A = 1,6,7 (all different).
Then for A\ = 1 we have

1 0 0 T
-8 4 -6 y | =0
8 1 9 z
giving
—8r+3y—62=0
and
8z+y+8=0
15
SO we can use eigenvector 8 (for example).
—16
0
For A = 6 we get eigenvector | —3 | by similar means.
1
0
Finally A =7 gives | —2 | and altogether we have
1
15 0 0
P= 8§ -3 -2
-16 1 1
giving
1 -1 0 0
—1 -
P = b 24 15 30
—40 -15 —45

Finally PAP~! takes the required form (diag(1,6,7)) - exercise!
More generally, if A and B are matrix representations of the same transformation 7 : V — V
obtained by working with different bases then there exists a matrix @ such that Q1 AQ = B.
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Exercise 20 Find two eigenvalues and eigenvectors of

Il
— =
—
— =
—

Definition 25 A real matriz is ORTHOGONAL if A = A=1 (i.e. its rows are ‘orthonormal’).

For example consider the vectors v = (1,1) and u = (1,—1). Then v.v = 0, u.u = v.v = 2 (the

usual dot product), so
1 v 1 1 1
M= =
Aln)-m(h)

obeys MM? =1, s0 M* = M~ (= M in this case).
Definition 26 At = (Af)*.
Definition 27 A matriz A is HERMITIAN if A = At.

Proposition 13 If A is Hermitian then the roots of its characteristic polynomial are all real, and
there exists a matriz P such that PAP™! is diagonal.

Proof: Exercise.

Exercise 21 Read [Schaum — Linear Algebra] Chapters 9 and 10.

6.2 n xn Matrices with less than n eigenvalues

It is a consequence of the diagonalisation theorem that a matrix cannot have more than n distinct
eigenvalues (or more than n linearly independent eigenvectors). What about less?

Strictly speaking, a matrix may not have any eigenvalues (just as an equation may have no
solutions). Consider T : R2 — R? represented by

0 1
A= ( ol ) .
This has |[A— M| = A2 —1 =00 A = %i, but these are NOT in R (but rather in C). This is, then,
just the same as to say that not all polynomials are completely factorizable over R, (although they
ARE over C).
More importantly, what about, for example,

01
= ?
+=(4)
Then the characteristic equation is A2 = 0, i.e. the root is degenerate. Putting A = 0 we can only
find one linearly independent eigenvector (exercise).
Then again, suppose that I, is the n x n unit matrix, and U, is the n x n matrix with all
entries zero except on the diagonal immediately above the main diagonal, where all the entries are

1. Then the matrix J,(A) = AI, + U, is called the Jordan block matriz with eigenvalue A. (For
example, from above, A = J5(0).)

Exercise 22 How many independent eigenvectors does this matrix have in general?

In fact every matrix is similar to a block diagonal matrix whose blocks are Jordan block matrices.
Up to the order in which these blocks appear this is a canonical form for the matrix, called the
Jordan Canonical (or Jordan Normal) Form.
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6.3 The Trace of a matrix
Recall:

Definition 28 (Trace) For a square matriz A we define Trace(A) as the sum of the diagonal
entries, that is

Trace(A) = Z Qij-
i=1

Proposition 14
Trace(AB) = Trace(BA).
Exercise 23 Check this for all 2 x 2 matrices!

...therefore Trace(B~1AB) = Trace(A), which implies that if A has n distinct eigenvalues A, Az, ....
then

Trace(A) = Z Ai-

=1
For example, with
1 3
(5 %)
we know immediately that Ay = —Ay. Now noting that

o (10 O
A= ( 0 10
that is, with eigenvalue 10, we deduce that A\; = /10, and so on.

Exercise 24 Find the 2 indep. eigenvectors here.

7 Inner product spaces

(7.1) For V a real (complex) vector space, assign to each pair u,v € V a scalar < u,v >. This is
an inner product if

(i) it is linear as a function of u;

(il) < u,v >=<v,u >

(i) < u,u >> 0 and < u,u >= 0 if and only if u = 0.
The space V with inner product is called an inner product space.

Define ||u|| = /< u,u >, called the norm of u.

A real inner product space is a Euclidean space.
(7.2) Examples:

(i) The usual dot product on R™ makes it a Euclidean space. Further, norms give distances in
the usual way, making it a metric space.

(ii) For the vector space of m x n matrices over R

< A, B >:= trace(B' A)

is an inner product.
(iii) For V the space of real continuous functions on interval [a, b]

b
<fg>= / F(Hg(t)dt
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is an inner product.
(7.8) Cauchy-Schwarz inequality. For any u,v € V

| <u,v > | < full ]l

(7.4) For V an inner product space we say u,v orthogonal if < u,v >= 0 (cf. the angle between
vectors in R™). A set {v;} of vectors in V' is orthogonal if they are pairwise orthogonal. If a set is
orthogonal and each ||u;|| = 1 then the set is orthonormal.

Note that an orthonormal set {v;} is linearly independent, and for any u € V' the vector

w(u) :=u — Z < u,v; > v; (15)

[

is orthogonal to each v; (although not necessarily non-zero!).

7.1 Gram—-Schmidt Process

(7.5) Gram—Schmidt Orthogonalization. For {v;} a basis of V' there exists a corresponding or-
thonormal basis {u;}, with
i
U; = Z a,-jvj
=1

for some coefficients a;;.
Proof. Exercise. Hint: consider equation 15!
(7.6) An Orthogonal matrix is a real matrix A such that A® = A=1.
Exercises.
(i) Obtain an orthonormal basis for R® from

{(1,1,1),(0,1,1),(0,0,1)}

(ii) Show that the rows of an orthogonal matrix form an orthonormal set.
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