## Integer Partitions

## Paul Martin

An integer partition  $\lambda$  of integer  $n \in \mathbb{N}$  is a sequence  $\lambda = (\lambda_1, \lambda_2, \lambda_3, ...)$  with terms  $\lambda_i \in \mathbb{N}_0$ , such that  $\lambda_i \geq \lambda_{i+1}$ , and the sum of all terms  $\Sigma_i \lambda_i = n$ .

For example (3, 2, 1, 1) is a partition of 7. It can be represented pictorially as

$$(3,2,1,1) = \begin{pmatrix} \star & \star & \star \\ \star & \star \\ \star & \star \end{pmatrix}$$

Let us write  $\Lambda$  for the set of all integer partitions. For  $\lambda \in \Lambda$  we write  $\lambda \vdash n$  or  $|\lambda| = n$  if  $\lambda$  a partition of n. For example  $(4,2,1,1) \vdash 8$ . Two partitions  $\lambda, \mu$  are 'adjacent' in  $\Lambda$  if  $\lambda_i = \mu_i$  for all i except one term, where  $\lambda_i = \mu_i \pm 1$ . For example (4,2,1,1) and (3,2,1,1) are adjacent. We write  $Y_{\Lambda}$  for the infinite graph with vertex set  $\Lambda$  and edges given by adjacency (we can direct these edges from the smaller to the larger partition):



This project aims to explore, understand and explain some of the many interesting properties of the set  $\Lambda$  and its adjacency graph  $Y_{\Lambda}$ .

The set  $\Lambda$  has some very interesting connections, for example:

- to physics and geometry through various routes for example questions about the expected shape of the corner of a crystal;
- to algebra and groups through the symmetric groups; and
- to combinatorics through various routes for example properties of directed walks on the graph  $Y_{\Lambda}$  (that is, sequences of partitions where the successor  $\lambda'$  to  $\lambda$  is adjacent but bigger).

Your project would focus on one of these aspects, with the aim of explaining this open world and understanding some part of it; and the objective of explaining to an interested non-expert.

(This project can have a small; medium; or big computational component, as suits you. There are no prerequisites outside the core modules.)