MATH 203301

ANSWERS: MATH 2033 (May/June 2010)

Rings, Polynomials and Fields

Non-bookwork questions are similar to seen unless otherwise stated.

1. (i) Let $a, b \in \mathbb{Z}$ be such that $\alpha = a + b\sqrt{d}$. Then $N(\alpha) = |a^2 - db^2|$.

(3 Marks)

(ii)
$$(a + b\sqrt{d})(e + f\sqrt{d}) = (ae + dbf) + (af + be)\sqrt{d}$$

$$N((ae+dbf)+(af+be)\sqrt{d}) = |(ae+dbf)^2 - d(af+be)^2| = |a^2e^2 + d^2b^2f^2 - d(a^2f^2 + b^2e^2)|$$

(5 Marks)

(iii)
$$\frac{20+4\sqrt{3}}{1+3\sqrt{3}} = \frac{(20+4\sqrt{3})(1-3\sqrt{3})}{(1+3\sqrt{3})(1-3\sqrt{3})} = \frac{-16-56\sqrt{3}}{-26}$$

so $q = 1 + 2\sqrt{3}$ and

$$r = -(1+2\sqrt{3})(1+3\sqrt{3}) + 20 + 4\sqrt{3} = 1 - \sqrt{3}$$

(Optional check: $N(r) = 1 + 12 < N(1 + 3\sqrt{3}) = |1 - 27|$.)

(9 Marks)

(iv)

(a) ANSWER: 1 + 1 = 2 even, so not closed under addition, so NO.

(2 Marks)

(b) ANSWER: $\frac{1}{6} \in T$ but $(\frac{1}{6})^2 = \frac{1}{36} \not\in T$ so NO.

(2 Marks)

(c) ANSWER: Sum of diagonal matrices is diagonal; product of diagonal matrices is diagonal; identity matrices are diagonal; additive inverse of diagonal matrix is diagonal. Thus U is a subring.

(4 Marks)

2. See paper version for now.

3. (i) Let R and S be rings. A (ring) homomorphism $\theta: R \to S$ is a map such that for all $r, r' \in R$,

$$\theta(rr') = \theta(r)\theta(r')$$

and $\theta(r+r') = \theta(r) + \theta(r')$ and $\theta(1) = 1$ (where we denote the multiplicative identity of any ring by 1).

(6 Marks)

(ii) a + 0 = a implies $\theta(a) + \theta(0) = \theta(a)$.

(3 Marks)

(iii)

(1) $\theta: \mathbb{Z}[\sqrt{23}] \to \mathbb{Z}[\sqrt{23}]$ defined by $\theta(a+b\sqrt{23}) = a-b\sqrt{23}$ for $a,b \in \mathbb{Z}$.

ANSWER: YES. (Arithmetic on either side requires $\sqrt{23}^2 = 23$ but only an internally consistent choice of sign for $\sqrt{23}$, so operations are preserved by the map.)

(2) $\psi : \mathbb{Z} \to \mathbb{Z}[\sqrt{2}]$ defined by $\phi(a) = a\sqrt{2}$ for $a \in \mathbb{Z}$.

ANSWER: NO. $(1.1 = 1, \psi(1).\psi(1) = 2 \neq \psi(1).)$

(3) $\phi: \mathbb{Z}[\sqrt{2}] \to M_2(\mathbb{Z}[\sqrt{2}])$ defined by $\phi(a+b\sqrt{2}) = (b+a\sqrt{2})1_2$ for $a, b \in \mathbb{Z}$ (recall that $M_2(R)$ is the ring of 2×2 matrices over a ring R, and

$$1_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

is the unit matrix).

ANSWER: NO. (As above, essentially.)

(6 Marks)

(iv) Let I be an ideal in a ring R. Explain what is meant by the factor ring R/I.

For r in R define $[r] = \{r + i \mid i \in I\}$. The ring R/I has these as elements, and operations induced from those on representatives in R:

$$[r] + [r'] = [r + r']$$

and [r].[r'] = [rr']. (Noting that such rules turn out to be well-defined.)

(6 Marks)

(v) Give the multiplication table for the ring $\mathbb{Z}/2\mathbb{Z}.$

Setting $[0] = \{even \ numbers\}; [1] = \{odd \ numbers\}$:

$$\begin{array}{c|cccc}
 & [0] & [1] \\
\hline
 [0] & [0] & [0] \\
 [1] & [0] & [1]
\end{array}$$

(4 Marks)

4. See paper version for now.

5

(i)
$$\omega^2 = \sqrt{7} - 1$$
 so $\omega^4 = (\sqrt{7} - 1)(\sqrt{7} - 1) = 8 - 2\sqrt{7}$ so $\omega^4 + 2\omega^2 = 6$ (2 Marks)

(ii) $\tau^2 = 5 - \sqrt{5}$. Now for $a, b \in \mathbb{Q}$, $a + b\sqrt{5} = a - (\tau^2 - 5)b \in \mathbb{Q}(\tau)$

(4 Marks)

- (iii) $\alpha \in K$ is said to be algebraic over F if there exists $f \in F[x]$ such that $f(\alpha) = 0$ in K.

 (4 Marks)
- (iv) $\sqrt{2}$ (or other), algebraic with polynomial $x^2 2$ and irrational (else there exist p, q coprime with $p/q = \sqrt{2}$, giving $p^2 = 2q^2$ whereupon primeness of 2 contradicts coprimality).

(2 Marks)

(v) Let $m = \sum_{i=0}^{n} m_i x^i$ with degree n minimal among those polynomials with root α . Then m/m_n monic. So consider m monic WLOG. If m' is another such, m-m' has root α and lower degree, hence must vanish. Finally, m cannot factorise, else again one factor has lower degree and root α . \square

(5 Marks)

(vi) $\tau^2 = 5 - \sqrt{5}$, $5 - \tau^2 = \sqrt{5}$, $(5 - \tau^2)^2 = 5$ so $\tau^4 - 10\tau^2 + 20 = 0$ monic, and irreducible (e.g. by Eisenstein).

(4 Marks)

(vii) $\{1, \tau, \tau^2, \tau^3\}$ a basis of $\mathbb{Q}(\tau)$ over \mathbb{Q} by the last result, so $[\mathbb{Q}(\tau):\mathbb{Q}]=4$. Clearly $[\mathbb{Q}(\sqrt{5}):\mathbb{Q}]=2$. Thus $[\mathbb{Q}(\tau):\mathbb{Q}(\sqrt{5})]=2$ by the Tower Theorem.

(6 Marks)

END