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ANSWERS: MATH 2033

( 2011)

Rings, Polynomials and Fields

Non-bookwork questions are similar to seen unless otherwise stated.

1. (i) Z[
√

2] = {a+ b
√

2 | a, b ∈ Z}
This is a subset of R and arithmetic is taken from there, so need to check closure and

identities and additive inverses.

(4 Marks)

(ii) Suppose a + b
√

2 = a′ + b′
√

2. Then (a− a′) = (b′ − b)
√

2. Thus either a− a′ = 0 and

b− b′ = 0 or
√

2 is rational — a contradiction.

(4 Marks)

(iii) Let a, b ∈ Z be such that α = a + b
√
d. Then N(α) = |a2 − db2|.

(3 Marks)

(iv) A unit in a ring is an element with a multiplicative inverse.

(1 Marks)

(v) For Z[
√
−2] we have N(a+ b

√
−2) = a2 +2b2. A unit has norm 1, so b = 0 and a = ±1.

For Z[
√

2] we have N(a + b
√

2) = a2 − 2b2. A unit has norm 1, so require solutions to

a2 = 1 + 2b2. For example a = 3, b = 2 gives a unit u1 = 3 + 2
√

2. Evidently this has

magnitude greater than 1, so all positive powers of u1 are distinct. But if u is a unit

then so is u2. DONE.

(3 Marks)

(vi)

(a) ANSWER: 1 + 1 = 2, so not closed under addition, so NO.

(2 Marks)

(b) ANSWER: 1

6
∈ T but (1

6
)2 = 1

36
6∈ T so NO.

(2 Marks)

(c) ANSWER: Closed under addition. Closed under multiplication. Indentity ma-

trices are of this form. Additive inverses are of this form. Thus U is a subring.

(4 Marks)

(d) ANSWER: Not closed under multiplication, so NO.

(2 Marks)

(continued. . . )
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2. (i) Answer: Let H,H ′ ⊆ G be groups. If g, f ∈ H ∩H ′ then g, f ∈ H,H ′ so gf ∈ H,H ′,

so gf ∈ H ∩H ′. Thus multiplication closes in H ∩H ′. Evidently the identity element

e of G lies in H and H ′ and hence in H ∩H ′. Finally if g ∈ H,H ′ then g−1 ∈ H,H ′ so

H ∩H ′ also has inverses. DONE.

(4 Marks)

(ii) 2Z is even numbers; 3Z is numbers congruent to 0 mod. 3.

Check closure; identity (0 in both cases); inverses (negations in both cases).

2Z ∩ 3Z = 6Z.

(4 Marks)

(iii) Write {Gi}i for the set of subgroups containing S.

(a) the indentity element is in every subgroup, so it is in the intersection.

(b) since S is a subset of every subgroup concerned, and these are groups, they also

each contain the inverses.

(c) suppose for a contradiction that some sum x is not in. Then it is not in some

Gi. But then Gi is not closed under addition — a contradiction. (Other formulations are

acceptable.)

(3 Marks)

(iv) Let I, I ′ be ideals. Note from above that I ∩ I ′ is an abelian group. So RTS x ∈ I, I ′

implies rxr′ ∈ I, I ′. But this is true for I and I ′ separately. DONE.

(3 Marks)

(v) First note that (S) contains the abelian group closure of any subset. Next note that

every ideal containing S contains the argument of the closure on the right by the

definition of ideal, hence this is a subset of the intersection (S). Thus the RHS is

contained in the left. Finally note that the RHS is an ideal, by considering the action

of r ∈ R on the right (resp. left) on a representative element. (Or otherwise.)

(4 Marks)

(vi) ar + ar′ = a(r + r′) ∈ aR; (ar)s = a(rs) ∈ aR.

(2 Marks)

(vii) (1) d ∈ I implies dn ∈ I by closure under repeated addition (say).

(2) suppose there is such an element. Then there is a positive one WLOG. Then d′ − d

is smaller positive in I \ dZ. Iterating this subtraction eventually results in an element

in [1, d− 1] and hence contradiction of ‘smallest’.

Every proper ideal I in Z has a smallest positive element. If this element is a, say, then

we have shown I = aZ. DONE.

(5 Marks)

(continued. . . )
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3. (i) Let R and S be rings. A (ring) homomorphism θ : R → S is a map such that for all

r, r′ ∈ R,

θ(rr′) = θ(r)θ(r′)

and θ(r + r′) = θ(r) + θ(r′) and θ(1) = 1 (where we denote the multiplicative identity

of any ring by 1).

(6 Marks)

(ii) −a is additive inverse of a, i.e. a+ (−a) = 0. −θ(a) is additive inverse of θ(a). Apply

θ: θ(a) + θ(−a) = 0, so θ(−a) = −θ(a).
(3 Marks)

(iii)

(1) θ : Z[
√

3] → Z[
√

3] defined by θ(a + b
√

3) = a− b
√

3 for a, b ∈ Z.

ANSWER: YES. (Arithmetic on either side requires
√

3
2

= 3 but only an internally

consistent choice of sign for
√

3, so operations are preserved by the map.)

(2) ψ : Z → Z[
√

7] defined by φ(a) = a
√

7 for a ∈ Z.

ANSWER: NO. (1.1 = 1, ψ(1).ψ(1) = 7 6= ψ(1).)

(3) φ : Z[
√

2] → M2(Z[
√

2]) defined by φ(a+ b
√

2) = (b+ a
√

2)T for a, b ∈ Z (recall

that M2(R) is the ring of 2× 2 matrices over a ring R, and 12 =

(

1 0

0 1

)

is the

unit matrix).

ANSWER: NO (since, for example, the identity is not taken to the identity).

(6 Marks)

(iv) REFLEXIVE: r − r = 0 ∈ I

SYMMETRIC: r − r′ = −(r′ − r)

TRANSITIVE: r − s, s− t ∈ I implies (r − s) + (s− t) = r − t ∈ I.

For r in R define [r] = {r + i | i ∈ I}. The ring R/I has these as elements, and

operations induced from those on representatives in R:

[r] + [r′] = [r + r′]

and [r].[r′] = [rr′]. (Noting that such rules turn out to be well-defined.)

(6 Marks)

(v) Give the multiplication table for the ring Z/3Z.

Setting [0] = {0, 3, 6, ...}; [1] = {1, 4, 7, ...} and so on:

[0] [1] [2]

[0] [0] [0] [0]

[1] [0] [1] [2]

[2] [0] [2] [1]

(4 Marks)

(continued. . . )
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4. (i) A = {f ∈ Q[x] : f(3) = 1} is an ideal in Q[x] if

(I) (A,+) is a subgroup;

(II) ar, ra ∈ A for all a ∈ A, r ∈ R.

Check: (I) (f + g)(3) = f(3) + g(3) = 1 + 1 = 2 so we do NOT have closure. DONE.

(5 Marks)

(ii) There is more than one way to do this. One strategy is to answer the last part first.

Let a be the primitive fourth root of 5, and note that a ∈ R, but not in Q (by a

Theorem, say). Then

x4 − 5 = (x− a)(x+ a)(x− ia)(x+ ia)

as a product of irreducible polynomials in C[x].

Since R ⊂ C the factorisation as a product of irreducibles in R[x] is given by taking

suitable products from these factors, when they do not lie in R[x]. By inspection we

thus have

x4 − 5 = (x− a)(x+ a)(x2 + a2)

as a product of irreducible polynomials in R[x].

Similarly in Q[x] we see that there is no stopping point in the combination of factors,

so x4 − 5 is irreducible over Q.

(5 Marks)

(iii) Determine, giving reasons, which of the following polynomials are irreducible over Q.

There is more than one way to do these.

(a) Any rational root r/s obeys r|4 and s|1. Possibilities are r/s ∈ {±1,±2,±4}.
Substitution eliminates all of them. Thus irreducible.

(b) Any rational root r/s obeys r|7 and s|1. Possibilities are r/s ∈ {±1,±7}. Sub-

stitution eliminates all of them. Thus irreducible.

(Alternatively note that this is irreducible over R since it is everywhere positive!)

(c) 6x4 + 10x3 + 30x2 + 10x+ 25.

Irreducible by reverse Eisenstein with p = 2.

(d) x6 + x5 + x4 + x3 + x2 + x+ 1.

Compute f(x+ 1). Then irreducible by Eisenstein’s criterion with p = 7.

(Or could use the rational root test directly.)

(8 Marks)

(iv) BOOKWORK: Definition: A primitive polynomial is a polynomial in Z[x] such that

the GCD of the coefficients is 1.

(3 Marks)

(v) Suppose for a contradiction that pp′ + 1 = pq. Then pq − pp′ = 1 so p(q − p′) = 1 so p

a unit. This contradicts the irreducibility of p. The same argument works for p′.

(continued. . . )
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(3 Marks)

(vi) The Maclaurin series has unboundedly many terms, but polynomials have only finitely

many terms.

(1 Marks)

(continued. . . )
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5.

(i) Q(
√
d) is smallest subfield of R containing Q ∪ {

√
d}.

(1 Marks)

(ii) α ∈ K is said to be algebraic over F if there exists f ∈ F [x] such that f(α) = 0 in K.

(2 Marks)

(iii)
√

2 (or other), algebraic with polynomial x2 − 2 and irrational (else there exist p, q

coprime with p/q =
√

2, giving p2 = 2q2 whereupon primeness of 2 contradicts copri-

mality).

(2 Marks)

(iv) Let m =
∑

n

i=0
mix

i with degree n minimal among those polynomials with root α. Then

m/mn monic. So consider m monic WLOG. If m′ is another such, m −m′ has root α

and lower degree, hence must vanish. Finally, m cannot factorise, else again one factor

has lower degree and root α. 2

(5 Marks)

(v) A basis is a linearly independent spanning set.

(2 Marks)

(vi) Since the minimal polynomial of τ is τ 4 − 10τ 2 + 20 = 0 — monic, and irreducible (e.g.

by Eisenstein) — {1, τ, τ 2, τ 3} a basis of Q(τ) over Q.

(4 Marks)

(vii) Consider K as a vector space over F . Then [K : F ] is the dimension.

(2 Marks)

(viii) Since the minimal polynomial of τ is τ 4 − 10τ 2 + 20 = 0, {1, τ, τ 2, τ 3} is a basis of Q(τ)

over Q, so [Q(τ) : Q] = 4. Clearly [Q(
√

5) : Q] = 2. Thus [Q(τ) : Q(
√

5)] = 2 by the

Tower Theorem (assuming, or checking, that Q(τ) ⊃ Q(
√

5)).

(5 Marks)

(ix) Since the polynomial is quadratic it is enough to evaluate at 0 and 1 and check neither

is a root.

(2 Marks)

END
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