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Chapter 1

Foreword

Ring theory is generally perceived as a subject in Pure Mathematics. This means that it is a
subject of intrinsic beauty. However, the idea of a ring is so fundamental that it is also vital
in many applications of Mathematics. Indeed it is so fundamental that very many other vital
tools of Applied Mathematics are built from it. For example, the crucial notion of linearity, and
linear algebra, which is a practical necessity in Physics, Chemistry, Biology, Finance, Economics,
Engineering and so on, is built on the notion of a wector space, which is a special kind of ring
module.

At Undergraduate Level Three and beyond, one typically encounters many applications of ring
theory (either explicitly or implicitly). For example, many fundamental notions about information
and information transmission (not to mention information protection) are most naturally described
in the setting of ring theory. In particular, a field is a special kind of ring, and the theory of Coding
— one of the main planks of modern information technology and Computer Science — makes
heavy practical use of the theory of fields, which lives inside the theory of rings.

So, there are countless applications of ring theory ahead (not to mention countless amazing
open problems). But here we shall concentrate, for now, on the first point: ring theory is “a
subject of intrinsic beauty”.

Ring theory appears to have been among the favourite subjects of some of the most influential
Scientists of the twentieth century, such as Emmy Noether (discoverer both of Noether’s Theorem
— one of the most important theorems in modern Physics; and of Noetherian rings'); and Alfred
Goldie (author of Goldie’s Theorem, and founder of the University of Leeds Algebra Group).

But perhaps more important than any of these points is that ring theory is a core part of
the subject of Algebra, which forms the language within which modern Science can be put on its
firmest possible footing.

1 Also someone who helped to defeat the terrible sexism that afflicted European academia in the 20th century.
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Chapter 2

Rings, Polynomials and Fields

This Chapter is based partly on the undergraduate lecture course notes of Bill Crawley-Boevey, and
sections from the textbooks of Serge Lang and Nathan Jacobson. It is intended as an undergraduate
exposition.

2.1 Introduction

As we shall see later, a ring is a set with two binary operations (usually called addition and
multiplication) satisfying certain axioms. The most basic example is the set Z of integers. Another
familiar example is the set Z[z] of polynomials in an indeterminate x, with integer coefficients.

(2.1.1) ExaMPLE. Make sure you can add and multiply polynomials, by trying a few examples.

(2.1.2) EXAMPLE. Suppose n € Z is not a square and define Z[\/n] = {a+by/n | a,b € Z}. Check
that you can add and multiply in this case, and that these operations are closed.

(2.1.3) Let us start by thinking about the integers before we go any further. They are (hopefully)
familiar, and ‘familiarity breeds contempt’.! But what aspects of their behaviour should we not
be contemptuous of 7 What we need to do, for a moment, is forget the familiarity, and consider
the integers as an example of an algebraic structure. What can we say about them in this light?
Addition and multiplication mean that, given a,b € Z we have solutions z,y € Z to the
equations
r=a+b, y=ab

Continuing to regard a, b as given, this does not automatically mean that we have a solution x to
xa=>b (2.1)

It also does not automatically mean that we have a solution = to x +a = b, but of course if a,b € Z
then this problem does have a solution. On the other hand equation (2.1) does not always have a
solution. It depends on a,b. For this reason, we say a divides b if xa = b has a solution x € Z. If
a divides b we may write this as alb.

L According to Charles Dickens.
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Figure 2.1: The start of the ‘divides’ Hasse diagram

(2.1.4) Recall that a poset is a set S together with a transitive, reflexive and antisymmetric relation
on S. If > is such a relation we write a > b if a > b and a # b.

A transitive reduction of a poset (S,>) is a simple directed graph with vertex set S and an
edge (a,b) if @ > b and there does not exist a > ¢ > b.

A lattice is a poset such that for any pair of elements (a, b) there is a least upper bound (LUB)
and a greatest lower bound (GLB).

(2.1.5) We define a relation on N by a ~ b if alb. This is evidently transitive, reflexive and
antisymmetric. Thus it makes N into a poset (different from the obvious but very important total
order (N, >)). Indeed (N, |) is a (complete distributive) lattice. In (N, |) the GLB is the GCD.
(2.1.6) EXAMPLE. The GCD of 6 and 8 is 2. A lower bound of 6 in this case is a number that
divides 6 (thus 6,3,2 or 1). A lower bound of 8 is any of 8,4,2,1. Thus a lower bound of {6,8} is
an element of {1,2}. Since 1|2 but 2 f1 we have the GCD of 2.

(2.1.7) We say that a,b are coprime if their GCD is 1.
(2.1.8) EXERCISE. Draw the begining of the Hasse diagram for (N, |). (See Figure 2.1.)

2.1.1 Some remarks on sets and relations

(This Section contains remarks and reminders only. It can safely be skipped if you are in a hurry
to get on with the ring theory.)
Suppose we have an arbitrary poset (S, p). What does the term ‘lower bound’ mean?

(2.1.9) By convention if a relation (S, p) is a poset then apb can be read as: a is less than or
equal to b. This emphasises that the relation p has a direction, even if the symbol itself does not.
Recalling the inverse (or dual) relation p~!, one could write ap~1b for bpa.
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Some relation symbols come with their own inverse symbol. For example by convention one
could consider a > b as another way of writing b < a in the poset (5, <), even if < does not have
one of its usual meanings (see e.g. Howie ?).

The ‘less than’ convention allows us to make sense of the term ‘lower bound’, as in: c is a lower
bound of {a,b} if cpa and cpb. However the inverse relation to a poset is also a poset, and one
sees that inversion swaps the roles of lower and upper bounds. In this sense there is a symmetry
between them, as concepts. If a relation has both, then its inverse also has both (although it is
not necessarily an isomorphic relation).

Altogether, though, this means that we should be a little careful with notation. If we declare
a poset (S, >), do we really want to read a > b as ‘a is less than b’? Or do we really want to be
careful about our intrinsic reading of the symbol >, and understand (5, <) as the intended poset
to which the convention applies?

Abstractly we are free to choose. But then we should spell out which is upper and which is
lower bound (and our choice might sometimes be counter-intuitive). Our definition of lattice above
has both LUB and GLB, so it works either way. (But for definiteness let us say that we chose the
second alternative!)

Here are some definitions and facts from basic set theory.
(2.1.10) The power set P(S) of a set S is the set of all subsets.
(2.1.11) A relation on S is an element of P(S x S).

(2.1.12) A preorder is a reflexive transitive relation. Thus a poset is an antisymmetric preorder;
and an equivalence is a symmetric preorder.

An ordered set is a poset with every pair of elements comparable. A well-ordered set is an
ordered set such that every subset has a least element.

Example: (R, <) is ordered but not well-ordered; (N, <) is well-ordered but the opposite relation
is only ordered. (Z, <) is ordered but not well-ordered; Z ordered as 0, —1,1,—2,2, -3, ... is well-
ordered; Z ordered as 0,1,2,3,...,—1,—2, —3, ... is well-ordered.

Can R be well-ordered (with a different order)? Good question! In fact the answer requires a
more careful formulation of ‘set theory’ than we have assumed, so we will have to leave it. (This
will not be a problem for us in studying basic ring theory, but problems of Algebra often do drive
the study of problems in Logic!)

(2.1.13) Suppose S, T are preorders. A map f : S — T is order preserving if x < y in S implies
f(x) < f(y) in T. (Note our challenging use of notation here.)

(2.1.14) An interval in an arbitrary poset (5, <) is defined analogously to the case (R, <). That
is, [z,y] := {# €S|z <z<y}. The ‘open interval’ (z,y) is defined similarly. See e.g. [?].
A poset is locally finite if every interval is finite.

(2.1.15) The poset (P(S), Q) is a lattice.
(2.1.16) A topology on a set S is subset T' of P(S) such that (i) S and § are in T (ii) A finite
intersection of sets in 7" is in T' (iii) A union of sets in 7" is in 7.

The open sets of S in the topology T are the elements of T'. A subset of S is closed if it is the
complement of an open set. A topological space is a pair (S,T) as above.

2J M Howie, Fundamentals of semigroup theory, Oxford 1995.
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(2.1.17) An Alezandroff topology is a topology that is closed under intersection. (Thus a finite
topology is necessarily Alexandroff.)

Such a topology on S defines a relation on S: Let N, be the intersection of open sets containing
x. Then z < y if z € N, (that is, if N, C Ny).

(2.1.18) A Ty topology is a topology (S,T) such that for any pair s,t € S there is an X € T
containing precisely one of s, .

(2.1.19) For any set S the trivial topology is T = {0, S}; and the discrete topology is T = P(S).

(2.1.20) EXAMPLE. The trivial topology is not Ty unless |S| = 1.
The topologies on S = {0,1} are {0, S}; {0, S,{0}}; {0, S, {1}}; {0, S,{0},{1}}. All apart from
the trivial topology are Tj.

(2.1.21) A function f : S — S’ between the underlying sets in two topologies is continuous if J
an open set in S’ implies f~*(J) open in S.

(2.1.22) LEMMA. The relation on S defined in (2.1.17) above is a preorder. A function f : S — 5’
between the underlying sets in two Alexandroff topologies is continuous iff it is order preserving
on the induced preorder.

2.2 Factorisation of integers

(2.2.1) A prime number is an integer p > 1 such that p|ab implies p|a or p|b.

(2.2.2) THEOREM. (Fundamental theorem of arithmetic) Any integer n > 1 can be written as a
product of prime numbers:

n =pip2..-Pk

And if n = ¢1¢s...q; is another product of primes then k£ = [ and indeed the factorisations are the
same up to reordering.

Proof. First we show that such a factorisation is always possible (then later we will show the
uniqueness up to reordering).

Suppose, for a contradiction, that there is an n that cannot be factorised into prime numbers.
Then there is a least such n (note that we are using an ordering property of the integers here that
goes beyond just arithmetic — in fact we have already used the > ordering repeatedly!). Of course
any such n cannot itself be prime (else n = n would already be an acceptable prime factorisation).
Since it is not prime, it has a divisor d (say), that is djn and 1 < d < n. So n = dm, with
1 < m < n. But since n was the least integer without a factorisation, both d and m have one. But
then the combination of these is a factorisation of n — a contradiction.

To show uniqueness, we work again for a contradiction. Let n be the lowest integer with distinct
factorisations, and let them be n = p;...px and n = ¢q...q;. If kK = 1 then n is prime, so [ = 1 and
p1 = q1 giving a contradiction, so k > 1. But in this case note that p1|g;...q;. Thus by definition
p1lg; for some i. That is, py = ¢; and n = mp; = mgq; for some m. Cancelling p; from each
factorisation we get two factorisations for m. But 1 < m < n, so m has a unique factorisation —
a contradiction. O

(2.2.3) THEOREM. (Euclid) There are infinitely many prime numbers.
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Proof. Exercise. Hint: Suppose pips...p, is a product of primes. Then pips...p, + 1 is coprime to
them all. Now suppose, for a contradiction, that there are only finitely many primes.

(2.2.4) Perhaps it is strange that the integers contain this special prime structure, whereas the
larger sets such as the rationals Q and the reals R do not (it is too easy to solve za = b in these
cases).

2.3 Rings

(2.8.1) A monoid is a set with a closed associative binary operation, with an identity element.

(2.3.2) EXAMPLE. (Z, X) is a monoid — so this is an even simpler thing than a ring, because we
only use one binary operation.

(2.8.3) A group is a monoid (G, *,1) with the property that every element g € G has an inverse
(i.e. there is an element ¢’ € G such that g * g’ = 1).
A group is abelian if ax b =b*a.

(2.3.4) A ring is a set R with two binary operations, + and x such that (R, +,0) is an abelian
group; (R, x,1) is a monoid; and

ax(b+c)=axb+axec, (b+c)xa=bxa+cxa

for all a, b, c.
(When there is no ambiguity we often write ab for a x b.)
(2.3.5) EXAMPLE. Can a set with one element be a ring? Yes.

(2.3.6) ExamPLE. Fix an integer m. Integers modulo m, written Z,,, form a ring — the ring of
modular arithmetic.

(2.8.7) ExaAMPLE. Let R be a ring. Then the n x n matrices with entries in R, denoted M, (R),
form a ring via the usual matrix algebra rules.

(2.3.8) EXERCISE. For S a set, let P(S) denote the power set. Note that the binary operations of
intersection and union are closed on P(S). Does (P(S),U,N) form a ring? In fact if S is finite,
then (P(S),0,N) is a ring (with N playing the role of x; and o, defined by Ac B=AUB\ AN B,
the role of +). Prove this, in case S = Z.

(2.8.9) Some workers do not require a ring to have an identity of multiplication. Both Lang and
Jacobson consider rings with 1, however.

Special elements in a ring

(2.8.10) The identity of the operation + in a ring is usually written 0 and called zero, even if the
ring does not contain Z.

(2.3.11) A unit in a ring is an invertible element.

(2.8.12) A zero-divisor in a ring is a nonzero element a such that there is another nonzero element
b with ab = 0.
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2.3.1 Ring homomorphisms

(2.3.13) A ring homomorphism is a map
f:R—S

between two rings such that f(ab) = f(a)f(d), f(a+b) = f(a) + f(b) and f(1) = 1.

(2.3.14) EXAMPLE. There is a map f : Z — Q given by f(n) =n.

(2.3.15) EXAMPLE. There is a map g : Z — Ms(C) given by g(n) = nls.

(2.3.16) EXAMPLE. The set map ¢’ : Z — M(C) given by g(n) = diagonal(n,0) is not a ring
homomorphism.

(2.8.17) EXAMPLE. For any ring R there is a trivial homomorphism 1 : R — R given by 1g(r) = r
for all r € R.

(2.3.18) If for a ring homomorphim f : R — S there is also a ring homomorphim f’ : S — R such
that f'o f =1 and fo f' = 1g, then f is a ring isomorphism.

If there is an isomorphism between two rings (f : R — S, say) then the rings are said to be
isomorphic. We write R = S.

(2.3.19) A ring isomorphism from a ring R to itself is called an automorphism.

Note that the set of automorphisms of a ring R forms a group under composition of maps, denoted
Aut(R).

(2.3.20) EXAMPLE. The map —* : C — C given by a + ib — a — b is a ring automorphism.

(2.3.21) REMARK. It is an exercise to construct some simple examples of isomorphisms and auto-
morphisms. We will give some ‘interesting’ examples later, when we have constructed a few more
rings.

(2.3.22) The kernel of a ring homomorphism f: R — S is the set
ker f := {re R| f(r) =0}

(2.3.23) EXAMPLE. The map f : Z — Z,, given by n — n’ = [n] (the class of n) is a ring
homomorphism, and ker f = mZ.

(2.3.24) If a ring homomorphism f : R — S is an inclusion of sets, and the operations are the
same, then R is a subring of S.
(2.3.25) EXAMPLE. For d € Z the subset of M3(Z) given by

a db

wi@={( 5 V) leven)

is a subring.

(2.3.26) A subset R is a subring of ring S iff (i) the operations close in R; (ii) 1 € R; and (iii) R
is closed under additive inverse.
Exercise: check this.

(2.3.27) Let f: R < S be an inclusion of rings and t € S. We write R][t] for the smallest subring
of S containing R and t.
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Note that the intersection of any collection of subrings of S is again a subring of S’ (exercise!).
It follows that RJt] is also the intersection of all the subrings of S containing R and ¢.
For every ordered tuple ug, u1, ...., u, of elements of R (any n) we may form an element of S

by
s = Z u;t!
If S is commutative then the set of all such elements (for all n € Ny) is a subring of S. This subring

is R[t] (since it contains R and t and is contained in R[t]).?

(2.3.28) Note that we do not say that s € R[t] uniquely defines an ordered tuple from R. Indeed
if ¢ is such that Y. ju;t' = 0 for some tuple with u, =1 (consider S =C, R=7Z and t* —2 =0
say) then it clearly does not. On the other hand, in such a case every element of the subring is
expressible as a polynomial of degree at most n — 1 (since t" is).

Note that this setup includes our old friend Z[v/d]. We will return to this again shortly.

Ideals

(2.3.29) REMARK. An interesting way of constructing new rings from old is suggested by our kernel
example. Suppose r € R and consider the set of all finite sums of elements of R of form arb:

RTR = {Z airbi | ai,bi S R}

(This is just ?an extension of our notation mZ.)
Notice that RrR behaves a bit like a ring itself: For xz,y € RrR we have x 4+ y,zy € RrR. But
note that 1 € R may not be in RrR. (In fact if it is, then RrR = R.)

While we are introducing notation, let’s have the following. For r € R define —r as the additive
inverse, i.e. —r € R such that r + (—r) = 0. We then may abbreviate s + (—r) as s — r. Note that
—(s—r)=r—s. (Check: r—s+(s—r)=r+(=s)+s+(-r)=r+(—r)+ s+ (-s)=0.)

(2.3.30) Picking R and r € R we can define an equivalence relation on R by
[z] ={ye R|xz—y € RrR}

We claim that the set of classes (denoted R/RrR) inherits a ring structure from R.

(2.3.31) In other words, for every R and r € R we have another new ring R/RrR. (Although this
might often be the zero ring of course.) We automatically have a ring homomorphism

f:R— R/RrR

given by f(z) = [z]. The kernel of this f is RrR.
(2.3.32) There is a very useful abstraction of this idea RrR as follows.

(2.3.33) An ideal in a ring R is a subset I such that (I,+) is a subgroup; and rx,zr € I for all
z €l andreR.

3See e.g. 1.T.Adamson, Rings, modules and algebras, Oliver and Boyd.
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(2.3.34) EXAMPLE. 3Z is an ideal in Z.
(2.3.35) EXAMPLE. RrR is an ideal in R.

(2.3.36) Let I be an ideal of ring R. Then we define [r] C R as the set of elements of the form
r+4x, where x € I. We define a relation on R by r ~! sif r—s € I. Note that this is an equivalence
relation. Thus each [r] is an equivalence class. (It is sometimes also useful to write r + I for [r].)
We write R/I for the set of equivalence classes.

Note that if rs =t then

(r+z)(s+y)=rs+ry+as+ay=t+1L

where L = ry + xs + xy, so that if z,y € [ then L € I. It follows that we have a well-defined
multiplication on R/I given by [r][s] = [rs].

Also (r+z)+ (s+y) = (r+s)+ (x+y) so [r] +[s] = [r + 5] is a well-defined addition. Thus R/I
is a ring.

(2.3.37) THEOREM. [First ring isomorphism theorem| Let R be a ring. If ¢ : R — S is a ring
homomorphism, then ker(¢) is an ideal of R, ¢(R) is a subring of S, and R/ ker(¢) = ¢(R).
(2.83.38) ExamPLE. Consider the set M7 (Z) of 2 x 2 matrices of the form a11s + azo where a; € Z

and
(10 (01
2=lo 1) 971 o

Does this form a subring of My(Z)?

Is f: M°(Z) — Z given by f : a1ls + a20 — a1 + az a ring homomorphism? If so, what is the
kernel? (...And in the form RrR?)

Is fo given by fa(ails 4+ a20) = a1 — a2 a ring homomorphism?

Can we ‘learn’ anything about M?(Z) from this exercise?!

(2.3.39) We will study ideals further in Section 2.10.

Special kinds of ring

(2.3.40) A ring is an integral domain if it is commutative, has more than one element, and no
zero-divisors.

(2.3.41) EXAMPLE. Z4 is not an integral domain, since 2 x 2 = 0; but Z is an integral domain.
(2.3.42) A field is a commutative ring that has more than one element, and such that every nonzero
element is invertible.

(2.3.43) THEOREM. A finite integral domain is a field.

Proof. Let R = {ry,ra,...,7} be a finite integral domain. For any r; # 0 and j # k we have
ri(r; —ri) # 0, since r; # 11, and there are no zero-divisors. Thus {ryr1,7;r2,...,77} = R and in
particular one of these is 7y7; = 1. O

(2.3.44) THEOREM. Z,, is a field iff n is prime.

Proof. (Ouly if): Suppose n = p1ps. Then p1,p2 pass to zero-divisors in Z,.
(If): See later.
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(2.3.45) A matrix ring over a field is not in general a field. For example, the matrix ring Mz (Zs)

is not a field.

(2.3.46) EXERCISE. (i) The matrix ring M3(Zs) is finite. What is its order? Give an algorithm

for writing out all the elements; then do it.

(ii) Find a subring of Ms(Z2) that is a field, and which properly contains the natural image of Zs.
Hints: Consider the subset

A{( )0 ()8 )

(2.8.47) Suppose n € Z is not a square. Then

Zlvn] = {a+byn|a,beZ}
This is a subring of C; and an integral domain.

(2.3.48) An ordered field (resp. ring) F is a field (resp. commutative ring) together with a total
order (F, <) such that a < b implies a + ¢ < b+ ¢ for all ¢ and a,b > 0 implies ab > 0.

(We will not focus on ordered fields here, but it is worth having the definition handy. In fact
there is another definition in common use — axiomatising a notion of ‘positive’ elements — but it
is straightforward to show that it is equivalent to ours.)

(2.3.49) Examples: Q,R.

Note that an ordered field cannot have finite characteristic. And that the square of every
element is non-negative. Thus neither Z/pZ nor C is ordered.

(In fact every ordered field contains Q up to isomorphism (exercise).)

(2.3.50) Recall that a total order is used in the fundamental theorem of arithmetic (it is also used
in Euclid’s algorithm — see later). We will need some replacement for this order in attempting to
prove such theorems for other rings.

The norm function

(2.3.51) Any element of Z[/n] as in (2.3.47) above can be written in a unique way as v = a+by/n
with a,b € Z.
We define the norm
N() = |a? — nb?|

(2.3.52) LEMMA. (i) N(3) = 0 iff 4 = 0; (i) N(70) = N ()N (3).

Proof. (i) a®> — nb? = 0 implies a? = nb? and hence n = ‘;—j But this requires that n is a square.

(ii): Exercise. (Possible hint: cf. (2.3.25).)
Hereafter, when we omit a proof without comment, it is to be treated as an exercise.

(2.3.53) LEMMA. 7 is a unit in Z[/n] iff N(y) = 1.
(2.3.54) EXAMPLE. In Z[v/3] we have N (7 +4v/3) = 1 so 7+ 4/3 are units.

The remainder of this subsection is an aside about a slightly more general setting for the norm
function, which is interesting but which we shall not need here.
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(2.3.55) Recall that a subset B of a k-vector space V is a basis if every element of V can be
expressed as a unique k-linear combination of elements from B.

Ordering the basis B = {by, b, ...}, a linear transformation ¢ on V' can be encoded as a matrix
m(t): One creates a column vector (by,bo,...)T and m(t) is such that t(b;) = >_;m(t)i;b; that is

bl m(t)u m(t)12 . bl t(bl)
m(t) bo _ m(t)m m(t)gg - bo _ t(bg)

(2.8.56) Since a ring starts life as an abelian group, as does a k-vector space, there is a possibility
of endowing the ring with a ‘scalar multiplication’ by k and hence endowing it with the property
of k-vector space. Indeed if our ring is a field it is already a vector space — it is a vector space
over itself. It would also be a vector space over any subfield (we just have to restrict the ring
multiplication to the subfield).

If we have a vector space that is also a commutative ring along these lines (and specifically in
the sense of the example Q[/n] implicit in (2.3.51)) then ring multiplication by a given element
also looks like a linear transformation (on another element, and hence on the ring regarded as
a vector space). The matrix encoding this transformation depends on the basis. However the
determinant of the matrix does not.

2.4 Factorisation in integral domains

(2.4.1) Suppose R is an integral domain. Once again we define a|b to mean that ac = b has a
solution ¢ € R.

(2.4.2) EXAMPLE. In Z[i] we have (14 i)(2 —i) =3 +1, so 1 4+ i|3 + 1.
(2.4.3) a,b € R are associates if a = ub for u some unit. Association is an equivalence relation.

(2.4.4) p € R is irreducible in R iff (i) p is not zero and not a unit; (ii) p = ab implies a or b a
unit.

(2.4.5) p € R is prime in R iff (i) p is not zero and not a unit; (ii) p|ab implies pla or pl|b.

(2.4.6) EXAMPLE. In Z an element is irreducible iff it is prime iff it is a prime number up to sign.

(2.4.7) REMARK. In light of the case R = Z, we might like to suppose that the notions of primeness
and irreducibility are always interchangeable in an integral domain. In the next few paragraphs,
though, we shall see that this is asking to much, in general. Although they are indeed related...

(2.4.8) LEMMA. In an integral domain R, prime implies irreducible.

Proof. Suppose for a contradiction that some prime p € R obeys p = ab with a,b nonunits in R.
Then by primeness pla or p|b — say pla WLOG. Then a = pc for some ¢ € R, so a = abe, thus
a(l — bc) = 0. Since a # 0 we have bc = 1, which contradicts that b is a nonunit. O

(2.4.9) If a|b in R = Z[/n] then N(a)|N(b) as integers.
If a € Z[y/n] and N(a) is a prime number then a must be irreducible.
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(2.4.10) EXAMPLE. In Z[y/—5] the element v = 1 + /=5 is irreducible but not prime.
To see that v is irreducible, note that N(v) = 6, thus any nonunit factorisation v = af would
have to obey N(a)N(3) = 6. Thus the two norms are 2,3. But it will be clear that a® + 5b% = 2
has no solution for a,b € Z.
Exercise: show y is not prime.
(2.4.11) THEOREM. In Z[/—2] every irreducible element is prime.

Before we prove this, we will need to parallel some more of the machinery we have for Z in this
more general setting.

(2.4.12) A GCD of a,b € R is a common divisor ¢ € R such that if d is another common divisor
then d|c.

(2.4.13) REMARK. It is not clear that GCDs exist in R in general, and indeed they may not.
But if a pair a, b have two GCDs then note that they are associates.

(2.4.14) THEOREM. Suppose R = Z[v/—2]. Then any pair a,b € R has a GCD. If  is this GCD
then it can be written in the form v = az + by for some z,y € R.

Proof. This is an analogue of the situation for Z. There is an algorithm for computing the unknowns
starting from a, b in either case, called Fuclid’s algorithm. In the Z-case this starts from the familiar
observation that @ = ¢b + r has a solution with 0 < r < |b|, where ¢ is called the quotient, and r
the remainder. If course this just says that for every b there is an element r of the class of a in Zj,
in the interval [0, |b]).

Here, with n = —2, we express b = [+m+/n and define b_ = [—m+/n and M = bb_ = [>—(n)m?.

Thus
ab_ _ ab_

a’ p—
bbb M
Write ab_— = t + sy/n, so that

a t s

RRTAR
Now let X,Y be the integers closest to the two ratios on the right, that is |{; — X| < 1/2 and
similarly for Y. Next set

g=X+Yn

and r = a — qb. We have
rb_ =ab_ —gbb_ =ab_ —qM = (t + s/n) — (X +Y/n)M = (t - MX) + (s — MY )\/n

N(rb_) = (t — MX)* — (n)(s — MY)?

SO

(Note well how this parallels the Z-case.)
(Note that this argument works also for n = —1, 2, 3, but not for n = —3.)
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Using this idea we run an algorithm, first defining ¢1, 7 by:
a=qb+nr

then g9, 72 by
b= qar1 +12

then g;,r; by
T1 = (q3r2 + T3

and so on. Note that N(r;) > N(r2) > .... Thus eventually some N(r;) = 0. Let v be the last
nonzero remainder v = ri_1. Evidently 7|rr_2, so v|rg—s and so on, so 7|b, so vy|a. Now if ¢ is
another common divisor then it divides all the remainders, so it divides y. O

(2.4.15) THEOREM. In Z[/-2], if d|ab and the GCD of d and « is a unit, then d|b.

Proof. By (2.4.14) we can write a unit u = dr+ay. Thus b = buu~! = dbzu~! +abyu~!. Evidently
d divides the RHS, so it divides b. O

(2.4.16) Proof of (2.4.11): Say d is irreducible and d|ab in Z[/—2]. (We require to show, then, that
d|a or d|b.) Now let  be a GCD of d,a (recall that such a thing exists, by the Euclid algorithm
argument). Indeed set d = ze. By irreducibility of d, either x or e is a unit. If = is a unit then d|b
by (2.4.15). If e is a unit then d|z, and since z|a we have d|a. O

UFDs

(2.4.17) A ring R is a unique factorisation domain (UFD) if it is an integral domain and
(i) every nonzero nonunit can be written as a product of irreducibles

T = pip2..-Pk

and (i) if z = ¢1¢2...q; is another such factorisation then k& = [ and there is an ordering so that
pi, q; are associates for all i.

(2.4.18) EXAMPLE. Z is a UFD: we can write —45 = (—3).3.5 = 3.3.(=5) = (=5).(=3).(—3), and
—1 is a unit.

(2.4.19) THEOREM. Z[v/—2] is a UFD.

Proof. The idea of this proof is to use the norm function to upgrade the proof of the Fundamental
Theorem of Arithmetic for use in this case.

To show factorisation, suppose for a contradiction that there is a nonzero, nonunit element «
that cannot be written as a product of irreducibles. Then there is, in particular, such an element
with smallest norm N(«) (among all such elements). Obviously « is not irreducible, so o = v
with (3,7 also nonunits. Thus N(a) = N(G)N(v) with N(5), N(y) > 1. Thus 1 < N(8) < N(«)
and 1 < N(v) < N(«). But then by assumption we can write 3,7 as products of irreducibles.
Thus we can do this for a too — a contradiction.

The proof of uniqueness is analogous to the case for Z, using Theorem (2.4.11) to allow us to
treat irreducibles as primes. O

(2.4.20) REMARK. The same argument shows that Z[i], Z[v/2], and Z[/3] are UFDs. Z[y/—5] is
not a UFD since 2.3 = (1 + v/—5).(1 — v/—5) are alternative factorisations of 6.
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(2.4.21) EXAMPLE. Let us write 30 € Z[i] as a product of irreducibles. We have 30 = 2.3.5 for
starters, but also 2 = (1 +1)(1 — ), so we can go further...
How can we be systematic about this?
If an integer can be written as a norm in Z (i.e. in the form n = a2 +b?), then n = (a+ib)(a — ib).
The factorisation of 2 above comes from 2 = 1! +12; and we also have 5 = 22 +12 = (2+i)(2 — ).
Thus

30=(14+4)(1—14).3.2+4)(2—1)

Can we go further? (No.)

(2.4.22) EXERCISE. What happens if we form the quotient Z[\/n]/rZ[\/n] for r a unit; r an
irreducible; or r a prime?

2.5 Polynomials

See for example Kelarev? [?, §3.4], or Anderson—Fuller® [?, §1 Exercise 16], for a more general
setting for the following.

(2.5.1) Let R be a ring. A polynomial in indeterminate x, with coefficients in R, is a formal
expression of the form

f(@) = ao+ a17 + a2 + ... + apa” = Zaﬂi
i=0

(any n € N) with a; € R. We say f(z) = g(z) if the ‘coefficients’ a; agree for all i. We write R][x]
for the set of all such polynomials.

(2.5.2) REMARK. Note that this is somewhat like Z[v/d], except that we do not know d, so we
cannot eliminate 22 from expressions.

(2.5.3) We assume that you are familiar with real polynomial arithmetic. We define sum and prod-
uct on polynomials in the usual way (treating the symbol + above as the usual + for polynomials),
making use of the operations in R in place of real arithmetic. For example

(ao + ala:) X (b() + blx) = agbg + (a0b1 + albo)a: + a1b1x2

One sees that (R[z], +,0) is an abelian group; and that (R[x], X, 1) is a monoid. The operations
‘distribute’ appropriately, and so R[z] is a ring.

The ‘usual’ polynomial arithmetic can be considered to be inherited from arithmetic in R,
treating = as an unknown, but an unknown from R. However one also ‘usually’ assumes here that
R is commutative. If R is not commutative then the behaviour above is not right for  unknown
in R. However it is OK for  unknown ‘central’ in R. (In practice we will take R commutative, so
there is no issue here.)

(2.5.4) Define R[z,y] = (R[z])[y] and so on.

4Ring constructions and applications. By Andrei V. Kelarev.
5Rings and categories of modules. By F W Anderson and K R Fuller.
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(2.5.5) LEMMA. If R is a field then R[x] is an integral domain. The units are the nonzero constant
polynomials. Every nonzero polynomial is associated to a unique monic polynomial (a polynomial
with leading coefficient a,, = 1).

Proof. Note that R[x] is a commutative ring, and that it is not the zero ring, and that the constant
polynomial 1 is the identity of multiplication. Suppose f(z) = Y., a;z* and g(z) = Y.I*, bz,
of maximal degree. We have
fg = anbpma™™™ + ...
Since R is an integral domain a,b,, # 0. Thus fg # 0.
We leave the checking of units and associates as an exercise. O

(2.5.6) THEOREM. Let R be a field and f, g € R[z]*. Then there are ¢, € R[z] such that f = qg+r
with either 7 = 0 or degree r less than degree g.

Proof. Use polynomial division.

(2.5.7) THEOREM. If R is a field then any pair f, g € R[z] have a GCD h € R]x]; and we can write
h = fu+ gv for some u,v € R[z].

Proof. A direct analogy of the Euclid algorithm from before. Note that it terminates this time
because the degree is decreasing. O
The following are proved essentially as for the Z[/—2] case.

(2.5.8) THEOREM. Suppose R is a field and consider R[z]. If the GCD of f(z), g(z) is a constant
polynomial, and f(z)|g(x)h(z) then f(x)|h(x).

(2.5.9) THEOREM. If R is a field then every irreducible polynomial in R[z] is prime.
(2.5.10) THEOREM. If R is a field then R[z] is a UFD.

2.6 Polynomials over Z

Now what about R[z] when R is not a field?
(2.6.1) LEMMA. Z[z] is an integral domain. The units are +1.

Proof. Z is not a field, but in fact the same argument works here as in the case R[z] for R a field.
(2.6.2) If f = > .a;z" € Z[z] the content of f (denoted cy) is the GCD of the coefficients.
Polynomial f is primitive if its content is 1.

(2.6.3) EXAMPLE. Let f = 4z — 6 and g = 1022 + 15. We have ¢y = 2 and ¢, = 5.

(2.6.4) REMARK. If f € Z[z] \ Z is irreducible then it is primitive, since any non-constant f can
be expressed in the form ¢y f’ where f’ is non-constant primitive.

(2.6.5) THEOREM. (Gauss’s Lemma) If f, g € Z[z] are primitive then so is fg.
Proof. Hint: One can set this up as a proof by contradiction.

(2.6.6) Corollary: For any f,g € Z[x] the content of fg is csc,.
(2.6.7) EXAMPLE. From our example (2.6.3) above we have ¢ty = 10. (Check this by brute force!)
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(2.6.8) REMARK. Note that each prime number p is an irreducible element in Z[x]; but no such
p is irreducible in Q[z]. OTOH, an element of the form z + a (a € Z) is also irreducible in Z[z].
(How about in Q[z]?) What other irreducibles are there in Z[z]? Is 2% + 1 irreducible? Is 2% — 1?7
Is 2% — 27

(2.6.9) THEOREM. If f € Z[z] \ Z is irreducible in Z[x] then it is also irreducible in Q[z].

Proof. Hint: Aim for a contradiction.

(2.6.10) THEOREM. (A) The irreducible elements of Z[z] are the numbers +p with p a prime
number; and the primitive polynomials that are irreducible in Q[z].

(B) Every irreducible element in Z[z] is prime.
(C) Z[z] is a UFD.

Proof. Non-examinable.

2.7 Irreducible polynomials

(2.7.1) THEOREM. (Factor theorem) Suppose R a field. If f € R[z] and a € R then (x —a) is a
factor of f iff f(a) = 0.

Proof. The (only if) part is trivial. The (if) part uses polynomial division. O

(2.7.2) Corollary: If R is a field then f € R[x] of degree n has at most n roots in R.

(2.7.3) THEOREM. (Fundamental theorem of algebra) Every f € C[z] of degree > 0 has a root in
C.

Proof. Interestingly, this one is easier to prove using Analysis. O

(2.7.4) Corollary: The irreducible polynomials in C[z] are the linear polynomials az + b (note that
ar +band z + g are associates).

The irreducible polynomials in R[z] are the linear polynomials az+b and the quadratics axz?+bz+c
without real roots.

(2.7.5) LEMMA. If R is a field and f € R[z] has degree 2 or 3 and has no root in R, then it is
irreducible.

Proof. If f = gh one of g, h must have degree 1, giving a root in R. O
(2.7.6) EXAMPLE. Let f € Zs[z] be f = 2® + 22 +2/. For x = 0/,1,2" we have f(x) = 2/,1/,2
respectively. Thus f is irreducible.

(2.7.7) THEOREM. (The rational root test) If f = >°I' ja;2" € Z[z] and r/s is a rational root
(with r, s coprime integers), then r|ag and s|a,.

Proof. Hint: Consider s" f(r/s) = 0.

(2.7.8) EXAMPLE. Any rational root of f = 23 4+ +9 must be of form r/s with 7|9 and s|1. That
is, r = +£1,43, £9 and s = +1. Trying all six cases one quickly finds that none gives a root. Since
the degree is 3, we deduce that f is irreducible in Qlx].
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(2.7.9) THEOREM. (Eisenstein’s criterion) Let f = Y7  a;z" € Z[z]. Assume that there is a prime
number p such that

(i) p fan

(i) plo (i # )

(iii) p? fao.

Then f is irreducible in Q[x].

Proof. By (2.6.9) it is enough to show f irreducible in Z[z]. Suppose (aiming for a contradiction)
that f = gh with g = >, biz" of degree s > 0 and h = ), ¢;* with degree t > 0. Thus n = s + ¢,
and a; = Z;:o bijci—j. Now plag so p|(boco), so p|by or p|co (but not both, since p* fag) — say
p|b0.

Now plai so p|(boct + bico) so plbico; and p feg so p|by. Similarly p|b; for all i. But then p|a,,
giving a contradiction. O

(2.7.10) EXAMPLE. Taking p = 3 we see that 72% — 3623 — 622 + 182 — 12 is irreducible.

(2.7.11) EXERCISE. Is f = 219 + 2% + 2% + ... + 2 + 1 irreducible?
Obviously we cannot apply Eisenstein directly here (why not?). But note that f = f(z) is irre-
ducible if f(z + 1) is irreducible... (Now consider p = 11.)

2.8 Fields of fractions

A commutative ring that is not a field fails to be a field by lacking inverses. Recently we have been
thinking about extending rings and fields by adding elements to them from rings which contain
them. Could we extend a ring to a field by ‘adding inverses’? What if we do not have to hand a
larger ring from which to get these inverses?...

(2.8.1) Let R be an integral domain and consider the set R x (R\ {0}). Define an additive binary
operation on this set by (r,s) + (t,u) = (ru + ts,su). This is closed and commutative. Is it
associative? Is there an identity element? An identity element would be an element (e, eq) such
that (en,eq) + (t,u) = (epu + teq, equ) = (t,u) for all t,u. Such an element is (0, 1).

Define a multiplicative binary operation on this set by (r,s)(t,u) = (rt,su). This is closed and
commutative. Is it associative? Is there an identity element? An identity element would be an
element (i,,,iq) such that (i,,iq)(t, u) = (int,iqu) = (¢, u) for all ¢,u. Such an element is (1,1).

(2.8.2) The field of fractions of an integral domain R is the quotient of R x (R \ {0}) by (r, s) ~
(t,u) if ru = st. Addition is represented by (r,s) + (¢t,u) = (ru + ts, su) and multiplication by
(r, s)(t,u) = (rt, su).

One needs to check that these are well-defined on classes.

Example: The field of fractions of Z is Q.

(2.8.3) EXERCISE. We have seen that R[z] is an integral domain. What is the field of fractions of
Rx]?

(2.8.4) EXERCISE. A field is an integral domain. What is the field of fractions of a field?
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2.9 Extension Fields

(2.9.1) To say a field F extends a field R is just to say that R is a subfield of F' (i.e. it is a subring
that is a field).

(2.9.2) EXAMPLE. R is an extension field of Q.

(2.9.3) Let F be an extension field of a field R, and a1, as, ..., a, € F. Define R(ay, as, ..., a,) to be
the set of all elements of F' obtained from elements of R and a4, ag, ..., a,, by repeatedly applying
the field operations: addition, multiplication, negation and multiplicative inverse.

This is a subfield of F' (possibly all of it). It is called the subfield of F' generated by R and

A1,02; -5 Ap -

(2.9.4) We assume familiarity with real and complex vector spaces, bases and so on. (But please
do ask for a refresher if you like.) We note that these ideas all extend to vector spaces over a field.
(2.9.5) EXERCISE. Define the term basis of a vector space. How would this work over an arbitrary
field (e.g. Z2)? What would go wrong if we tried to make it work over an arbitrary commutative
ring?

(2.9.6) The degree of a field extension F' O R, denoted [F' : R], is the dimension of F' as a vector
space over R.

(2.9.7) EXxAMPLE. [C : R] = 2 since {1,4} is a basis for C regarded as a real vector space. For d
non-square we have [Q(v/d) : Q] = 2 since {1,V/d} is a basis.

It can be shown that [R : Q] = oo, that is, R can be regarded as a vector space over Q, but there
is no finite basis.

(2.9.8) THEOREM. (Tower Law) Let L O F D R be field extensions. Then

[L:R)=[L:F[F:R]

Proof. The idea is to show that if {vy,...,v,} is a basis for F' over R and {wy,...,wn} is a basis
for L over F then {v;w;}; ; is a basis for L over R. O

(2.9.9) ExampLE. Consider Q C Q(v/2) € Q(v/2,4). One can check that {1,v/2,i,iv/2} is a basis
for Q(v/2,1) over Q.

2.9.1 Extending a field by algebraic elements

(2.9.10) Let F D R be a field extension. Element a € F is algebraic over R if there is a non-zero
polynomial f € R[z] with f(a) =0in F.

Otherwise a is transcendental over R.

(2.9.11) ExampLE. (I) v/2 € R is algebraic over Q, bince it is a root of f = 2% — 2 € Q[z].

(IT) /2 is algebraic over @, since it is a root of f = 2° — 2 € Q[x].

(I11) i € C is algebraic over Q, since it is a root of f =22 +1 € Q[ ].

(IV) a = /+/7 — 1 is algebraic over Q, since it is a root of f = z* + 222 — 6 € Q|x].

(v

) m € R is transcendental over Q (Lindemann, 1882). How might you prove this?
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(2.9.12) EXERCISE. What can we say about algebraic extensions of the field Zy?

(2.9.13) If a is algebraic over R then the minimal polynomial of a over R is the unique monic
polynomial f € R[xz] of least degree with f(a) = 0.

(2.9.14) ExaMPLE. Element V2 is a root of z* — 4 and 223 — 4z, but its minimal polynomial is
z? — 2.

(2.9.15) REMARK. Note that the minimal polynomial exists since by the algebraic assumption
there is a polynomial g € R[z] with g(a) = 0. But if the leading coefficient is g,, then (1/g,)g is
monic with the same root. Among such polynomials will be at least one with least degree. If it is
not unique then there are two of this degree, but then g — ¢’ also has root a and lower degree —
leading to a contradiction.

(2.9.16) LEMMA. Suppose F' D R is a field extension, and a € F algebraic over R with minimal
polynomial f. Then (i) f is irreducible in R[z]; (ii) If g € R[z] and g(a) = 0 then f|g.

Proof. (i) If f factorises as gg’ then one of g(a), ¢’(a) must be zero. Rescaling leads to a polynomial
of smaller degree — a contradiction.

(ii) Division gives g = ¢f +r. Then r(a) = 0, so in fact r(z) = 0 (else it contradicts the minimality
of f. O

(2.9.17) THEOREM. Suppose F' D R is a field extension, and a € F' algebraic over R with minimal
polynomial f. Then f is the unique monic irreducible polynomial in R[z] with f(a) = 0. (Le.
irrespective of degree.)

Proof. Suppose g has these properties. Then f|g, so g = fh for some h. But then h is constant
by irreducibility, and this constant is 1 since f and g are both monic. O

(2.9.18) EXAMPLE. {/2 is algebraic over Q since a root of 2™ — 2. This polynomial is monic
irreducible in Q[z] (by Eisenstein with p = 2, for example), so it is the corresponding minimal
polynomial.

(2.9.19) PROPOSITION. Suppose F D R is a finite field extension. Then every element of F is
algebraic over R.

Proof. Let a € F. Then all powers of a are in F. But these can’t all be linearly independent over
R. O

(2.9.20) THEOREM. Suppose F' D R is a field extension, and a € F' algebraic over R with minimal
polynomial f, of degree n. Then R(a) has basis {1,a,...,a" "'} as a vector space over R.

In particular [R(a) : R] =n, so R(a) is a finite extension field of R.

(2.9.21) EXAMPLE. a = V/2 has f, = 23 — 2 over Q. Thus Q(a) has basis 1, a,a® over Q. Thus
Q(a) = {a+ Ba+~va® : a,B,v € Q} and [Q(a) : Q] = 3.

Proof. Let fo = 2" +an_12" " + ... + apx®. The powers 1,a,a?,...,a”" " are linearly independent
over R by the minimal condition. Let E be the R-subspace of F' spanned by these. We will next
show by induction that a™** € E for all k > 0.

We have f,(a) = a™ + an—1a™ 1 + ...+ aga® = 0, so the base case k = 0 is true. Now suppose
true up to level k — 1 (the inductive assumption). Multiplying by a* we have

a"tF = —a,_1a"F — g, _0a™ T2 — L apd®
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But everything on the right is in E by assumption, and hence so is a™*.
Thus E contains all positive integral powers of a.

It follows from this that E is closed under products, so it is a subring of F'. Next we show
that it is a subfield. Suppose b € E*. Then let b = bya’ + ... + b,,_1a" ! be an expansion in the
spanning set. Thus b = g(a) where g = bga® + ... + b,,_12" 1. Since g(a) # 0 we know that f, [g.
As f, is irreducible, it and g have a GCD which is a unit. Thus there are polynomials u, v such
that f,u+ gv = 1. Thus g(a)v(a) = 1. Thus b= =v(a) € E.

Finally we show that E = R(a). The inclusion E C R(a) follows from the definition, and the
reverse inclusion holds since F is a field which contains R and a. O

Throughout this section we have had the assumption that F O R is a field extension, and
we have considered the nature of elements of F' in relation to R. This contrasts with our earlier
construction of fields of fractions, where we wanted to extend a (certain kind of) ring without
having a pre-existing structure to extend it into.

If our subfield is a subfield of the complex numbers then of course every polynomial over the
subfield has a root over C, so extending the subfield by a root of a polynomial is the same as
extending by a concrete complex number. In general though, we could start with a field and a
polynomial f over that field, and it is not a ‘given’ that there is an extension field containing a
root of f.

Except that...

(2.9.22) THEOREM. (Kronecker’s Theorem) A polynomial f in a field F' has a root in an extension
field.

Proof. We may assume that f = f(x) does not have a linear factor in F[z] since otherwise that
factor would give the root. Let g(z) denote a factor of f(z) which is irreducible. Let F =
Flx]/gF[z]. Since g is irreducible this ring is a field containing F', and hence an extension field of
F. The representative « € F[z] of the element z’ € E satisfies f(x) = h(z)g(x) =0 (mod g(z), as
it were), so f(z') = h(z') g(2')=0". O

(If the learning curve is a bit steep here, first recall that the basic model for something like
Flx]/gF[x] is Z, = Z/pZ (p prime); and then have a look at some of the exercises and hints in
section 2.11, such as Theorem (2.11.2).)

(2.9.23) EXERCISE. (Optional) Show that the smallest extension field of Zs in which py(z) =
z' 4+ x + 1 € Zs[z] has a zero is isomorphic to the smallest extension field of Zy in which py(z) =
x* 4+ 23 + 1 € Zy[x] has a zero.

2.9.2 Remarks on Kronecker

(2.9.24) Recall the fundamental theorem of algebra. From this we see that, while there are lots
of non-algebraically closed fields, the fields @Q and so on contained in C can be extended to an
algebraically closed field.

We now see that the Kronecker Theorem says something similar (but more general). If we start
with an arbitrary field F' and form polynomials, then either F' is algebraically closed or eventually
we will find a polynomial without a root in F'. But then we can form an extension field of F', via this



26 CHAPTER 2. RINGS, POLYNOMIALS AND FIELDS

polynomial, which does contain a root of F. Iterating this process to ‘closure’ (i.e. exhaustively)
we will extend F' to an algebraically closed field.
On the other hand note (cf. e.g. Fulton [?]):

(2.9.25) Let F be any field. Let f1, fa,..., fn be a set of irreducible monic polynomials in F[z].
Then fi1fo,...fn + 1 is not divisible by any of these. Thus there are infinitely many distinct
irreducible monic polynomials.

(2.9.26) It follows that the algebraic closure of any field F' is infinite.

2.9.3 Geometric constructions

(2.9.27) We say a real number a is constructible if starting with two marked points in the plane at
distance 1 apart, we can construct two marked points with distance |a| between them, using only
the following operations:

(i) draw line through any pair of marked points;

(ii) add the distance between these to our set of constructed constructible distances;

(iii) draw a circle of constructed radius centred at a marked point (e.g. the circle defined by that
point and another marked point);

(iv) mark any point of intersection of lines and circles.

(2.9.28) EXAMPLE. Any number in Q is constructible. /2 is constructible.

(2.9.29) EXERCISE. (Optional) What other kinds of real numbers are constructible?

(

2.9.30) LEMMA. The set S, of constructible numbers is a subfield of R. If ¢ € S, then so is 1/|al-

Proof. Optional exercise. (The key point is that we have embedded the real line in the real plane.)

(2.9.31) THEOREM. (Wantzel 1837) If a constructible, then it is algebraic over Q and the degree
of its minimal polynomial over Q is a power of 2.

Proof. Optional exercise.

2.10 Ideals

Let R be a ring. We can partially order the ideals of R by inclusion. Obviously R itself is the top
of this order, but if we restrict the order to the proper ideals then there could be many maximal
elements in the order.

For example, 367 C 187 C 6Z C 37, but we can’t go any further without hitting Z, so 3Z is a
maximal element among the proper ideals of Z. Indeed pZ is a maximal element iff p prime.

(2.10.1) In general we call the maximal elements of this order the maximal ideals of a ring.

(2.10.2) A proper ideal P in a commutative ring R is a prime ideal if whenever ab € P then either
ac€ PorbeP.

(We will give a definition for prime ideal in an arbitrary ring in (2.10.21).)

(2.10.3) EXAMPLE. The maximal ideals of Z are also prime. (We will see later that maximal ideal
implies prime ideal in any commutative ring R.)
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Ideal ‘arithmetic’, towards Principal ideal domains

(2.10.4) EXERCISE. Show that the intersection of two subgroups of a group is a group.

Answer: Let H H' C G be groups. If g,f € HN H' then g,f € H,H' so gf € H,H', so
gf € HN H'. Thus multiplication closes in H N H’'. Evidently the identity element e of G lies in
H and H' and hence in HN H'. Finally if g € H, H' then g~ € H, H' so H N H’ also has inverses.
O

(2.10.5) Let R be an abelian group and S a subset. Let us write (S) = (S)g for the intersection
of all subgroups of R containing S. This is called the abelian group generated by S in R.

(2.10.6) The group (S) is the set of finite sums of elements of S and their additive inverses.
Example: (3)z = 3Z = (3, —6)z.

(2.10.7) Recall that an ideal in a ring R is a subgroup J such that rar’ € J for all r,7/ € R and
ac€J.

(2.10.8) Note that if J is an ideal of R then J = (J)p.
(2.10.9) LEMMA. The intersection of two R-ideals is an R-ideal.

Proof. If A, B ideals and z € A, B then rz € A, B (and so on). Closure under addition is also
clear. O

(2.10.10) Note that if {J;};cr is a set of R-ideals then N;J; is an R-ideal.

I

D N
SN s

(2.10.11) EXAMPLE. Let S C R a subset, and let {.J; },c7(s) be the subset of ideals of R such that
J; 2 5. Then
(S) = N;J;

is an ideal.
(2.10.12) This (5) is the smallest R-ideal containing S. It is called the ideal generated by S.
(2.10.13) Let S = {s1, 52, ..., 8n,} C R. Elements of (S) = (s1, s2, ..., $n) take the following form.
Firstly we have all constructs of form rs;r’. Then we have all finite sums of such constructs:
(81,82, ey Sp) = {eriﬁsir;ji | 75,5755, € R; si € S}
i g

That is, (S) = ({rar’ | r,7’ € R; a € S})g.



28 CHAPTER 2. RINGS, POLYNOMIALS AND FIELDS

(2.10.14) Let R be a ring. For A, B subsets of R we define another subset of R by
AB = {a1b1 + agby + ... + anby, | neN, q; € A7 b; € B}

(where the empty sum is zero). Note that this is the finite additive closure of the set of elements
of the form ab with a € A and b € B.

2.10.15) Note that if A, B are ideals then so is AB. (See e.g. Jacobson I §2.5.)

(

(2.10.16) Suppose A, B are R-ideals. What is (AB)A?

(2.10.17) EXERCISE. Whats is A(BA)? How are they related?

(Answer: (AB)C = A(BC) — see e.g. Jacobson I §2.5.)

(2.10.18) Let R be a ring and S a subset of R. The subset of R generated by S is the set RSR.
(

2.10.19) Let R be a ring. For A, B subsets of R we define another subset of R by
A+B :={a+b| ac A be B}

If A, B are R-ideals then so is A + B. (See also, e.g., Zariski-Samuel [?, §IIL.7].)

(2.10.20) EXERCISE. What are AN B, A+ B and AB in each of the following cases?:

(i) A=2Z and B = 3%Z;

(ii) A = 2Z[z] and B = 2Z[z];

(iii) A = 2Z[x] and B = 2z7Z][z].

(2.10.21) A proper ideal P in an arbitrary ring R is a prime ideal if, for ideals A, B, whenever
AB C P then either AC P or B C P.

(Note that this definition contains the commutative case.)

Principal ideal domains

(2.10.22) An ideal in a commutative ring R is principal if it can be expressed in the form dR for
some d € R.

(2.10.23) We have repeatedly used the construction dR for ideals in commutative rings. For
example 37 is an ideal in Z.
(2.10.24) LEMMA. Every ideal in Z is principal.

Proof. Let I be an ideal in Z and d the smallest positive element. Suppose for a contradiction that
I\ dZ # 0, and let d’ be the smallest positive element. Then d’ — Id € [1,d — 1] for some [. But
d' —ld € I, contradicting that d is smallest. O

(2.10.25) A principal ideal domain (PID) is an integral domain such that every ideal is principal.
(2.10.26) EXERCISE. Show that every ideal in Z[v/2] is principal.

(2.10.27) EXERCISE. Show that we can choose a d so that Z[v/d] is not principal.

(2.10.28) EXERCISE. Show that the ideal of Z[x] generated by 2 and z (i.e. the smallest ideal
containing these two elements) is not principal.

(2.10.29) LEMMA. If 7 is an irreducible element in a PID R then 7R is a maximal ideal.
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Proof. Else TR C aR C R for some a, so r = ab for some nonunit b, a contradiction. O

(2.10.30) LEMMA. A maximal ideal M in a PID R has the property that ab € M implies a or
be M.

Proof. For, suppose ab € M but a,b ¢ M. Then M +aR = {m+ar|m e M, r € R} and M +bR
are both ideals properly containing M. Since M is maximal this says that M +aR = R = M +bR.
We have aRbR C abR C M, so R= R?> = (M +aR)(M +bR) C M? +aRM + MbR + aRbR C M
— a contradiction. O

(2.10.31) LEMMA. A PID is a UFD.

Proof. First we show that any element x of a PID R can be factorised into a list of irreducible
factors. Clearly if  cannot be factorised then it is irreducible, so the only obstruction is if in fact
it can be factorised but this process does not terminate! We rule this out as follows:

Suppose R is an integral domain, and (z =)rq,r2,73,... is a sequence of elements such that
7"i|7‘i,1.
(The example one might have in mind here is something like 100, 50, 10, 5, 2, 1.)
It follows that r; R O r;_1R. Let I be the union of all these ideals.
(This union might be over infinitely many ideals, but every element of I is an element of some 7; R.
Just as Z is infinite, but every element is a finite number.)
If R is a PID then there is an r such that rR = I. Thus there is some ¢ with r € r; R. At this point
I =rR = r;R (we have just shown that rR C r;R, and rR D r; R by construction), and ;R = rR
for all j > ¢ (so that all subsequent r;s are associates).
In particular, it is not possible to have an infinite sequence of r;s as above that are all non-associate.
(In our example this just says that every such positive integer sequence must terminate.)
But an infinite irreducible factorisation = p1ps... would give rise to an infinite sequence r, = = =
P1P2..., T2 = paps..., with r;|r;_1. Thus there can be no such factorisation.

Now we set out to show uniqueness. We will need to note a couple of facts.

(2.10.32) LEMMA. In a PID, irreducible implies prime.

Proof. First note that r irreducible implies 7R maximal, by Lemma 2.10.29. But any maximal
ideal M has the property that ab € M implies a or b € M, by Lemma 2.10.30.

Since rR is maximal it has this ‘prime ideal’ property. ¢ That is, whenever r|ab, then 7|a or
r|b. Thus r is prime.

O

(2.10.33) (Now back to complete the proof of (2.10.31))

Suppose p1p2...pr = q142.-..¢s are two irreducible (hence prime) factorisations of x € R. By prime-
ness p; must divide some ¢;. Hence p; = ug; for some unit u (by irreducibility). Reorder so that
q1 = q;- We then have ugips...pr = q1G2-..qs SO up2...pr = @2...qs. Up to the unit, this is analogous
to the initial equality except with one fewer irreducible on each side, so we can iterate, pairing
each p; with a ¢; up to a unit. This establishes uniqueness. O

(2.10.34) EXAMPLE. Since Z is a PID, it is a UFD. (But of course we already knew this.)
(2.10.35) EXERCISE. Can you think of a UFD that is not a PID?
(Hint: Think about Z[z].)

6An ideal M is prime if whenever A and B are ideals and AB is a subideal of M then either A or B is a subideal
of M.
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2.11 More Exercises

(2.11.1) For what nonsquare values of d is the set
Iy ={a+bVd|a,beZ; a—Dbeven}

an ideal in Z[v/d]?

HINTS: Suppose a = a+ bv/d and § = e + f/d both in I;. We have (a 4+ bv/d) + (e + f/d) =
(a+e)+(f+bvdand a+e— f—b=(a—b)+ (e — f), so we have closure under addition for
any d.

Now for a € Iy and § € Z[Vd] we have (a + bVd)(e + fv/d) = ae + dbf + (af + be)V/d and
ae+dbf — (af + be) = e(a —b) + f(db— a) The first part is even for any e, and the second part is
even for any f provided that d is odd.

(2.11.2) THEOREM. Let F be a field. Then F[z]/gF[z] is a field if g is an irreducible polynomial
in Flz].

Prove it. (What about the only if version?)

HINTS: Let h € F[z] be a representative of h’ € F[z]/gF[z]*. Since g is irreducible, the GCD
(g,h) = 1. Thus there is a u, v such that gu+hv = 1 in F[z]. But the image of this in the quotient
is K'v’ = 1/, so there is an inverse v’ of h'.

(2.11.3) CLAIM: Let F be a field and g a nonconstant polynomial in F[z]. The map F ——
F[z] — F[z]/gF[z] given by f +— fa° + 02! + ... — f’ is an injection.

Prove it.

HINTS: Suppose g = 1 + 22 for example. Then 1’ = {1,1+ g,1+ 2g,...,1+ (2+ z)g, ...} Note
that no other constant polynomial besides 1 occurs.

2.12 More revision exercises

(2.12.1) Find a GCD of a =5 + 147 and b = —4 + 7i in Z[i].
HINTS: We could start by trying to find a quotient-remainder formula: a = bg+r (say). Noting
that a has the bigger norm, we compute a/b, which will eventually give us a/b = q+r/b:
a 5+14i —4-Ti 78-91li 6 Ti

b —4+4+7i—-4—7i = 65 5 5

This is a/b = (1 — i) + (1 — 2¢)/5 (by first rounding to the nearest integers, then computing the
correction) so

a=(1—i)b+((1-2i)/5)b

The second summand (the ‘remainder’) is £ (1 — 24)(—4 + 7i) = (=44 14+ 8i + 7i) = 2+ 3i (of
course we knew the denominator would cancel, since a — (1 — i)b € Z]i]).

The norms are N(2+3/—1) = |22 —(—1)3%| = 13, and N(5+ 14i) = |52 — (—1)14?| =big, and
N(—4 + 7i) = |(=4)? — (=1)7%| =big-ish. This just checks that the remainder has small enough
norm (as the rounding method is designed to ensure — have a think about how it does this).

We next compute
b —4+712—31 13+ 26i

- _ — 142
243 243 2-3i 13 T
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Normally we would have to keep going, but since this quotient is in Z[¢] there is no remainder, and
we see that 2 + 3i|b. Thus 2 + 3i also divides a and is a common divisor.

2.12.2) Find as many subrings as possible of Q.
2.12.3) If 6 : R — S is a ring homomorphism, what can we say about 6(0)?

2.12.4) Determine which of the following mappings are ring homomorphisms:

1) 0 : Z[V2] — Z[\/2] defined by 0(a + bv/2) = a — by/2 for a,b € Z.

2) 0 : Z[\/2] — Z[\/2] defined by 0s(a + bv/2) = b+ ay/2 for a,b € Z.

3) 05 : Z[V/2] — Mz(Z[v?2]) defined by 63(a + by/2) = (a + bv/2)17 for a,b € Z (where 17 is the
identity matrix).

o~~~ o~ o~ o~

(2.12.5) (I) Let I be an ideal in a ring R. Show that the multiplication in the factor ring R/I is
well-defined.
(IT) Give the multiplication table for the factor ring Z/3Z.

(2.12.6) For y € R define A, = {f € Q[z] | f(y) = 0}. Under what circumstances is A, an ideal
in Q[z]?

(2.12.7) Write 2% — 2 as a product of irreducible polynomials over each of Q[z], R[z], and C|x].
2.12.8) Determine which of the following polynomials are irreducible over Q:

) 223 + 5z% — 2z + 3.

(
(a
(b) z* + 5522 + 1210x.

2.13 Homework exercises

Here we write det M for the determinant of a square matrix M.

(2.13.1) Show that a sufficient condition for a matrix M in the ring M2(Z) to be a unit in Mz(Z)
is det M = £1.

(2.13.2) Consider the subset S* of matrices in M»(Z) such that all four matrix entries are nonzero.
Give an example of an element of S*:

(i) that is a unit in M»(Z);

(ii) that is a non-unit in M3(Z) but a unit in M>(Q); and

(iii) that is a non-unit in M3(Z) and in M2(Q).
(

2.13.3) Show that for any unit U in the ring R = M3(Z) the map
fu:R—R
given by fy(X)=UXU""! is a ring homomorphism from R to itself.
Construct an inverse map to fy.

(2.13.4) There are infinitely many elements X of M3(Z) with det X = 0. Recall from lectures that
for each choice of d € Z we have a subring

a db

m@=((§ V) laven)
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(i) Prove carefully that, for any choice of d, M$(Z) is a ring.

(ii) For what choices of d does the ring M$(Z) contain nonzero elements X with det X = 0?
(iii) For what choices of d is M (Z) a commutative ring?

(

2.13.5) Consider a fixed but arbitrary d € Z, and consider the ring R = Z[v/d]. Suppose = € R
obeys = = a 4+ V/db with a,b € Z. For what values of d does z determine a unique values for the
pair (a,b) in this way? In the other cases, what can be said about the set of pairings (a,b) such
that = = a 4+ v/db, for any given z.

(2.13.6) For each d determine whether the map
fa: M3(Z) — Z[Vd]

given by < Z Cib ) — a + V/db is a ring homomorphism.

(2.18.7) Prove that M, ?(Z) is a UFD.

Answers

1. The inverse of M if it exists is easily verified to be the transpose of the matrix of cofactors
‘divided’ by det M. The transpose of the matrix of cofactors is integral by construction. +1 divide
every integer.

2. Examples: (i) ( 1 § )
w (1)
(iii) ( L >

3. fula+b)=U(a+b) Ut =U(a) Ut +UDBU = fy(a) + fu(b) (via distributivity);
fu(ab) =U(ab)U=t =U(a)ULUB)U = fu(a).fu(b)
Inverse is fy-1.
4. (i) Observe that it is a subset. Now check closure and inverses.
(ii) d a perfect square.
(iii) any.
5. (i) d not a perfect square;
(ii) There are infinitely many (with a, b related by a simple formula).
6. Yes. To see this check fi(ab) = fa(a)fa(b) and fq(a + b) = fa(a) + fa(b) for each d (routine
calculations, which you should do!, with d left as an arbitrary but fixed number).

Homework exercises 2

(2.13.8) For n > m consider the set map

U My (Z) — M, (Z)
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ail a2 A1m QA1n
a1 a2 agm a2n ail aio G1im
a1 a22 a2m
—
Am1 Am2 .. AQmm -~ Amn
am1 Am2 ... Amm
an1 an2 oo Qpm .. Qpn

For which values of n,m is this a ring homomorphism (if any)? Give reasons for your answer.
(2.13.9) Show that the intersection of two subgroups of a group is a group.

(2.13.10) For R a ring and A a subset of R, let s(A) denote the set of all subrings of R that
contain A (including R itself). Show that the intersection of all these subrings is itself a subring
of R.
This intersection subring is called the ring generated by A in R.
Suppose that 0 # 1 in R. Show that the sets (), {0} and {1} all generate the same ring in R.
Construct a ring R with 0 # 1 such that the ring generated by @ in R is
(i) isomorphic to Z;
(ii) not isomorphic to Z.

(2.13.11) Consider the polynomial f = x? + 1. Regarded as a polynomial over which of the
following coefficient rings is this polynomial irreducible? (i) Z; (ii) R; (iii) C; (iv) Z2. Give reasons
for your answers.

(2.13.12) Explain why the polynomial #% — 7 is irreducible over Q, quoting any theorems you use.
(2.13.13) Give the multiplication table for the ring Z/47Z.

Answers

8. Define A € M, (Z) (any n > 1) by a1, = an1 = 1 and all other entries zero. Then U(A) =0
(any m < n) but W(A?) # 0. Thus never a homomorphism. (Other formulations are possible.)
9. Let G,G be the subgroups. If a,b € G NG’ then a,b € G,G so ab in G,G’ (since they are
groups), so ab € GNG', so the operation is closed in GNG’. Tt is associative by restriction similarly.
The identity lies in both, hence in the intersection. Inverses lie in the intersection similarly.
10. Suppose elements a,b lie in the intersection. Then they lie in every subring. Now proceed
similarly to above.

The smallest subring containing ) is simply the smallest subring. But every ring contains 0, 1,
so this subring does. Thus it is the same as the subring generated by 0, or 1.

(i) R (other answers are possible);

(il) Zo.
11. This is a quadratic, so it is irreducible iff it had no root in the ring. Thus: (i) irreducible,
since every element of f(Z) is positive; (ii) irreducible, since every element of f(R) is positive; (iii)
not irreducible (i is a root); (iv) not irreducible (1 is a root).
12. Use Eisenstein’s criterion with p = 7. (Or could determine a complete factorisation over C,
and note that none of the roots lie in Q C C.)
13. Elements of Z/4Z are {[0],[1],[2],[3]}. Multiplication is then just as in the usual mod.4
arithmetic.
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Homework exercises 3

(2.13.14) Determine if the map X : Z[z] — Z[z] given by f(z) — f(z+3) is a ring homomorphism.
(2.13.15) Explain what is meant by Q(+/7).

(2.13.16) Suppose K D F'is a field extension Explain what it means for a € K to be algebraic
over F.

(2.13.17) Prove that /7 is irrational.

(2.13.18
(2.13.19

(2.13.20) Let f(z) = 223 + 32% + 92 + 12 € Z[z]. Is this polynomial primitive? State Eisenstein’s
criterion, and use it to determine if f(z) is irreducible over Q.

Compute the polynomial 23 f(1/x). Can Eisenstein’s criterion be applied directly to this poly-
nomial? Is it irreducible (give reasons for your answer)?

Determine a basis of Q(v/v/5 — 11) over Q.

Construct an irreducible quadratic polynomial in Zs[z] (where Zo = Z/2Z).

— ~— ~— —

(2.13.21) Let g(z) = 23 + 32 + 9 € Z[z]. This polynomial is irreducible over Q, but why can we
not use Eisenstein’s criterion to show this directly?

(2.13.22) Determine which of the following polynomials are irreducible over Q, explaining your
method in each case.
(i) fo(z) = 3z* + 1522 + 10;

(i) fi(z) = 32 + 1525 + 10;

(iii) fo(z) =22+ 2+ 2

(iv) fs(z) = fa(z + 3), where fi(z) is an irreducible polynomial.

(2.13.23) Let R be a ring and I, I’ ideals of R. Show that I NI’ is an ideal of R.

Answers

14. We need to check that X (fg) = X(f)X(g9), and X(f +g) = X(f) + X(g). We have
X(fg) = X(f(z)g(z)) = X((f9)(x)) = (f9)(x +3) = f(z + 3)g(z + 3) = X (f(2)) X (9(z))

X(f+9) = X(f(x)+g(x)) = X((f+9)(2)) = (f+9)(z+3) = f(z+3)+g(2+3) = X(f(z))+X (g(x))

(Note also that X (1) =1 and X(0) =0.)

15. Q(\/7) is the field of elements of form a + bv/7 (a,b € Q). This is the smallest field extension
of Q containing /7.

16. a € K is algebraic over F if there is a polynomial in the ring F[z] with root a.

17. Suppose for a contradiction that v/7 = a/b with a,b € Z coprime. Then 7b?> = a?. But then
7|a? and hence 7|a, since 7 is prime. But then 72 divides a? and hence 7 divides b%. So, similarly,
7 divides b, contradicting coprimeness.

18. Write a = v/v/5 — 11. Then a® = /5 — 11 and (a® 4+ 11)? = 5 so a is algebraic with minimal
polynomial f, = (a2 + 11)2 — 5 = a* + 22a? + 116 (note that this is irreducible: there is no
rational root, or indeed real root, since the coefficients are positive; thus the only possibility is
a factorisation into two quadratics; but the roots over C are a; = +v/++v/5 — 11 and one readily
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checks that no quadratic factor is integral).

A basis is therefore {1, a,a? a%}.

19. Try f(x) = 2% + 2 + 1. Since it is quadratic, it is enough to show that it has no roots in Zs.
We have f(0) = f(1) =1, so done.

20. The polynomial is primitive since the first two coeflicients are coprime. Eisenstein’s criterion
says f = Y i ¢z’ is irreducible over Q if there is a prime p such that p fa, and p|a; otherwise
and p? fao.

Thus f is irreducible by Eisenstein with p = 3.

g=23f(1/x) = 1223 + 922 + 32 + 2 and Eisenstein cannot show irreducibility directly since there
is no suitable prime.

g is irreducible since if it factorised this would induce a factorisation of f, contradicting its irre-
ducibility.

21. There is no suitable prime.

22. (i) irreducible by Eisenstein with p =5

(ii) ditto

(iii) irreducible by rational root test (Suppose /s a root, with 7, s coprime: then (r?+rs+2s?)/s? =
0, s0 72 = —s(r+2s) so s = £1 (else contradicts coprimeness), giving possible roots +1, +-2. These
all fail.)

(iv) irreducible since any factorisation induces a factorisation of fjy.

23. Need to show J = I NI’ an abelian group closed under the R action. Suppose j,k € J. Then
j,k€Isoj+kel, and similarly for I’, so j+ k € J. For r € R we have rj € I, I’ (since these
are R-ideals) so rj € J. Similarly for jr.

2.14 More (Optional) Rings and Exercises

(2.14.1) Let Ry, R2 be rings. Define operations on Ry x Ry by
(r1,72).(51,82) = (r181,7252)

(r1,r2) + (s1,82) = (r1 + 81,72 + 82)

Show that Ry X Rs can be made into a ring using these operations.
(The new ring is called the direct product or direct sum of Ry, Rs.)

(2.14.2) To form a product of three rings, R,, R1, R, say, we need to address some practicalities
of notation. For one thing the ‘indexing set’ I = {a,1, @} is not necessarily ordered (that is, we
may not be given an order on the set, and there may not be a natural way to assign one). For
another, the Cartesian product is not strictly associative. Thus the underlying set of the product
is not strictly R, x Ry X R, (indeed it is not necessarily clear what this means). A convenient
resolution is to consider R = X;c;R; to be the set of ‘indexed triples’ of elements from the three
rings. That is, if » € R then it contains, for each i € I, a component r;; and the collection of these
components determines r.

(2.14.3) Show that the above direct product construction extends in the obvious way to any finite
set of rings {R; | ¢ € I} (with I a finite indexing set).

(2.14.4) The construction may be extended still further to infinite indexing sets I (we write
R = [],c; Ri), but where R is such that » € R implies that only finitely many of the r; are
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different from the zero element of the ring R;. Explain why the given ‘pointwise’ addition and
multiplication close on R constructed in this way.

2.14.1 Group rings and skew group rings

(2.14.5) If R is a ring and S a semigroup (resp. monoid, group) then the semigroup (resp. monoid,
group) ring R[S] is defined as follows. The underlying set is the set of all formal sums ) _g7ss
where r; € R and only finitely many of these are nonzero. (See e.g. Kelarev [?, §3.2].) Addition is

(Dorss) + Q_rhs) = Y (re+1i)s

ses ses sesS
and
(Z TsS) . (Z rls') = Z (rsrls)ss’
ses s'eS s,8’€S

(2.14.6) Suppose R is a ring and G a group of automorphisms on R; and write 9 for the image
of r € R under automorphism g € G. The skew group ring R * G is the same set and additive
structure as R[G]; this time made into a ring by

-1

(rg)-(r'g") = ((r(*")? )(99"))
(2.14.7) The fized subring of G on R is

RY .= {reR|r"=rVgecG}

2.14.2 Monoid-graded algebras
(See e.g. Karpilovsky [?, §22].)

(2.14.8) An algebra A over a commutative ring K is a ring R together with a choice of subring K
from its centre.

(2.14.9) If M is a monoid then an algebra A over K is said to be M-graded if
A= OmemAm

is a direct sum decomposition of A as a K-module; and
AmAm C Ay

(When the latter is replaced by an equality A is strongly graded.)

(2.14.10) Note that if A is a K-algebra, and hence a ring, then A x G as above is a strongly
G-graded K-algebra. In particular
(AxG)y = Ag



