
MATH 3225 Topology Final Assessment Solutions

NB this is a ‘take home’ exam. Some questions are relatively open, and a broad range
of nice correct answers are possible and can achieve marks. Indeed quite generally
marking schemes in this setting are intended as indicative rather than totally rigid.

1. (a) We saw in the course that the natural projection

p : X −→ X /∼

defined by p(x) = [x] is continuous and we trivially have p(X) = X /∼ . We
also saw that continuous images of compact, connected, path-connected
topological spaces are compact, connected, path-connected respectively.
Thus these three invariants are passed from X to X /∼ .

The remaining two invariants are not passed from X to X /∼ .

A counterexample in the notes shows that it is possible that X is Hausdorff
and X /∼ is not Hausdorff.

Consider another example from the notes: the cylinder. We know that the
square X = [0, 1] × [0, 1] is simply connected since (for example) [0, 1] is
clearly simply connected, and the product of two simply connected spaces
is simply connected.

However by exercise sheet 5 question 7 (or other good argument), we know
that

π1(X /∼) ∼= Z 6∼= π1(X).

[6 marks]

(b) i. We proved in exercise sheet 4 question 10 that

D2
/∂D2 ∼= S2

where S2 = {x ∈ R3 : |x| = 1}. Let f̃ : [0, 1] −→ D2 be defined by

f̃(s) = (−1 + 2s, 0).

This is continuous since both of its components are continuous as
maps into R. Letting f(s) := p ◦ f̃(s), we have immediately that
f : [0, 1] −→ S2 is continuous (composition of continuous functions)
and f(0) = f(1) = [(1, 0)] making f a loop. The image of f is a great
circle (equator) passing through the north pole of S2.
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There are many possibilities for the second loop. For example

f̃1(s) = (0,−1 + 2s).

[3 marks]

ii. We cannot here use either of our previous loops anyway since they
pass through the excluded point. Any two chords not through (0,0)
will do.

[2 marks]

iii. Any two chords avoiding the two excluded points will do.
(Reserve the last mark for some observation about homotopy.)

[3 marks]

(c) Our definition of T 2 is, schematically, the unit square (let’s label the edges
ABCD) with parallel orientation arrows on the parallel edges — meaning
that B and D are identified pointwise according to the arrows; and A,C
similarly.
One way to proceed is to build something homeomorphic to the square
from two disconnected squares (quotiented together pointwise along an
edge, say), and then use the fact that the quotient of a quotient is a
quotient. In other words we finish with a T 2-building quotient analogous
to the defining construction but on the new ‘square’.
(Other well-explained constructions are acceptable.)

[7 marks]

(d) It is fine here to follow the lecture notes fairly closely at first (Theo-
rem 11.15 in ver.2.10 of the notes). The key extra thing (for full marks) is
to discuss the completeness property of R and how it is used.

[4 marks]
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2. (a) For n ≥ 3 consider Rn equipped with the usual topology and let

L = {(x1, . . . , xn) ∈ Rn : (x1, x2) = (0, 0)}.

Prove that Rn \ L is path connected and π1(Rn \ L) ∼= Z.

[7 marks]

(b) Consider Sn = {x ∈ Rn+1 : |x|2 = 1} and let

Sn−2 := {x ∈ Sn : (x1, x2) = (0, 0)}.

Prove that Sn \ Sn−2 is always path connected and π1(S
n \ Sn−2) ∼= Z.

[8 marks]

(c) Find an open subset U ⊂ R3 so that U is path connected, but not simply
connected and π1(U) 6∼= Z. You should justify that your set U has the
desired properties, and write down what π1(U) is. [10 marks]

Solution:

(a) (The proof of this question is potentially quite long, but it is a
translation of case n = 3 which was set as an exercise, and the
students have a sketch solution.)

Recall that π : Rn −→ R2,

π(x1, x2, . . . , xn) = (x1, x2)

is continuous and by definition we have L = π−1({(0, 0)}). We also have
that Rn \ L = {x ∈ Rn : (x1, x2) 6= (0, 0)}.
We first show that Rn \L is path connected. Picking a, b ∈ Rn \L we have
that π(a), π(b) 6= (0, 0) and, trivially (1 − t)(a1, a2) + tπ(a) = (a1, a2) 6=
(0, 0) for all t ∈ [0, 1] (similarly for b). Thus we may define

α(t) = (1− t)a+ t(π(a), 0, . . . , 0)

which is a path from a to (π(a), 0 . . . , 0) in Rn \ L. Let

β : [0, 1] −→ Rn \ L

be the equivalent path from b to (π(b), 0 . . . , 0).

[2 marks]

We saw in the lectures that R2 \ {(0, 0)} is path connected, thus there is a
path γ̃ from π(a) to π(b) in R2\{(0, 0)}. Defining γ(t) = (γ̃(t), 0, . . . , 0) we
see that γ is a path from (π(a), 0, . . . , 0) to (π(b), 0 . . . , 0) in R2 \{(0, 0)}×
{(0, 0, . . . 0)}. Thus α ∗ γ ∗ β is our path from a to b.

[2 marks]

This allows us to define a function

H : Rn \ L× [0, 1] −→ Rn \ L

by H(x, t) = (1− t)x+ tπ(x). H is continuous since all of its components
are continuous. Furthermore, H(x, 0) = x for all x ∈ Rn \ L, H(y, t) = y
for all y ∈ R2 \ {(0, 0)} × {(0, 0, . . . 0)} and t ∈ [0, 1] and finally, H(x, 1) ∈
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R2 \ {(0, 0)}× {(0, 0, . . . 0)} for all x. Therefore H is a strong deformation
retraction from Rn \ L to R2 \ {(0, 0)} × {(0, 0, . . . 0)}.

[1 mark]

It remains to check that R2 \ {(0, 0)} ∼= R2 \ {(0, 0)} × {(0, 0, . . . 0)}. So
we have

π1(R2 \ {(0, 0)} × {(0, 0, . . . 0)}) ∼= Z

and we are done by invoking a Proposition in the notes. (Explicit proof
step also acceptable.)

[1 mark]

The function f : R2 −→ Rn given by

f(x1, x2) = (x1, x2, 0, . . . , 0)

is continuous and injective with im(f) = R2×{(0, 0, . . . 0)}. If we restrict
π to π| : R2 × {(0, 0, . . . 0)} −→ R2 we see that π| is continuous and
furthermore f ◦ π| = IdR2×{(0,0,...0)} and π| ◦ f = IdR2 so in fact f is a
homeomorphism between R2 and R2 × {(0, 0, . . . 0)}.

[1 mark]

Alternatively: One could prove that Rn \ L ∼= R2 \ {(0, 0)} × Rn−2 and
use other results from the exercise sheets/course to obtain the result.

(b) The stereographic projection f : Sn \ {N} −→ Rn is defined in the notes
by

f(x1, . . . , xn+1) =
1

1− xn+1

(x1, . . . xn)

and it is a a homeomorphism.

[3 marks]

A Proposition in the notes now tells us that if Z ⊂ Sn \ {N} then f :
Z −→ f(Z) ⊂ Rn is a homeomorphism.

[1 mark]

Notice that setting Z = Sn \ Sn−2 we have Z ⊂ Sn \ {N} and Z = {x ∈
Sn : (x1, x2) 6= (0, 0)}.

[1 mark]

Therefore

f(Sn \ Sn−2) = {x ∈ Rn : (x1, x2) 6= (0, 0)} = Rn \ L.

[2 marks]

So we are done by the first part of this question, and the fact that path
connectedness and the fundamental group are topological invariants.

[1 mark]
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(c) There are lots of options here. For instance we could let U be R3 with the
coordinate axes removed. There is a strong deformation retraction from U
to a 2-sphere with six points removed, which is homeomorphic to R2 with
five points removed. This space then deformation-retracts to a bouquet of
five circles whose fundamental group is a free group on five generators -
this is not Abelian so π1(U) 6∼= Z.

Similarly if we remove n disjoint lines from R3 we have a path-connected
subset whose fundamental group is the free group on n generators: it’s
easiest to prove this when we take n lines {Li}ni=1 which are all contained
in some plane and are mutually parallel. We can then deformation-retract
this space to R2 with n-points removed.
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3. (a) Xn is a pair of spheres touching at a single point so it is not a topological
manifold.

[2 marks]

[{xn+1=0}]

When n = 1 this is a bouquet of two circles giving π1(X
1) ∼= 〈a, b; ·〉

directly from example...in the notes.

[1 mark]

When n ≥ 2 we will apply Van Kampen’s theorem with U and V as
suggested below.

[1 mark]

Notice that U ∩ V deformation retracts to a point [{xn+1 = 0}], and
furthermore that U (resp. V ) deformation retracts to a sphere Sn where
n ≥ 2. [1 mark]

We have seen in the lectures that π1(S
n) is trivial when n ≥ 2, thus Van

Kampen’s theorem immediately tells us that π1(X
n) ∼= {0} the trivial

group when n ≥ 2. [2 marks]
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(b) Below you can find a picture of X followed by choices of U and V respec-
tively according to Van Kampen’s Theorem.

[2 marks]

From the picture of X we see that it is not a topological manifold.

[1 mark]

Notice that U ∩ V deformation retracts to a point [Γ], and furthermore
that U (resp. V ) deformation retracts to a torus.

[1 mark]

Thus from what we have proved in the lectures: π1(U, [Γ]) ∼= 〈a, b; aba−1b−1〉
and π1(V, [Γ]) ∼= 〈c, d; cdc−1d−1〉 and π1(U ∩ V, [Γ]) ∼= 〈·; ·〉.

[2 marks]

Van Kampen’s Theorem tells us immediately that

π1(X) ∼= 〈a, b, c, d; aba−1b−1, cdc−1d−1〉.

[2 marks]

Γ

Γ

[Γ]

Γ

Γ

[Γ]

Γ

Γ

[Γ]

(c) If we take the basepoint to be the touching point then our two paths can
be each a trip around one of the loops and back to base.

Call the two loop-paths a (around circle A, say) and b; and the group
elements [a] and [b] respectively. It is clear that the path compositions
ab and ba are well-defined and not equal, so we need to consider whether
there is a path of paths between them. But observe that there is no way
to drag even the path around A away from A completely, so every path in
[ab] starts with a bit that may visit both A and B, but only ‘irreversibly’
loops around A — and necessarily does so. So [ab] 6= [ba], so [a][b] 6= [b][a].

[10 marks]
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4. (a) There are many acceptable ways to do this. For example recall that finite
topologies are Alexandroff, so every point has a smallest neighbourhood
n(x). Writing these in the order (n(x), n(y)) — and writing just x for sin-
gleton {x} — we have: TY  {(Y, Y ), (x, Y ), (Y, y), (x, y)}. The answer
must check that each claimed element is or gives a topology (by construc-
tion in this format); and that the list is complete. Here the latter follows
since it is the complete subset of the power set of the power set satisfying
the first axiom.

[4 marks]

(b) Here again we may refer to the power set of the power set, which is a
superset, and finite.

[2 marks]

(c) If X has only one element then the power set of X contains two elements:
∅ and X = {x}. Since a topology on X is a collection of subsets of X, τ ,
which satisfies, in particular, that X, ∅ ∈ τ , then the only possible topology
is given by the discrete (equivalently indiscrete) topology in this case.

[2 marks]

(d) Throughout the course we have only seen two topologies that can be put
on arbitrary sets. The discrete topology and the indiscrete topology.

[1 mark]

The discrete topology on X, that we will denote by τ1, is the collection of
all subsets of X. In other words it is the power set of X. In this case all
subsets of (X, τ1) are both open and closed. [2 marks]

The indiscrete topology on X, that we denote by τ2, only contains X and
∅. So the only open sets in (X, τ2) are X and ∅. These are also the only
closed subsets in X. [2 marks]

(X, τ1) ∼= (X, τ2) if and only if there exists a homeomorphism f : (X, τ1) −→
(X, τ2). We saw in the course that a homeomorphism is a continuous bi-
jection whose inverse is also continuous; and we concluded that f thus
induces a bijection between the open sets in the domain, to the open sets
in the target. Thus (X, τ1) ∼= (X, τ2) implies that |τ1| = |τ2|.

[2 marks]

WhenX has at least two elements then certainly |τ1| > 2. SinceX, ∅, {x} ∈
τ1 for any x ∈ X and {x} 6= X by assumption. However, |τ2| = 2 for any
X. So we must have that (X, τ1) 6∼= (X, τ2).

[2 marks]

There are many alternatives to the above argument, e.g.: There can be
no continuous bijection g : (X, τ2) −→ (X, τ1) when X has at least two
elements: since |g−1({x})| = 1 so g−1({x}) can never be open in τ2.
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(e) There are various acceptable methods here. For example the following,
which is not specific to the given Z but works generally:
We can use the same n(x) notation as before. If |τ | = 3 then the list of
n()’s can (indeed must) have repeated entries, but has exactly two types
of entry — one of which is Z itself. The other is Y ( Z, say. (Since then
the topology is {∅, Y, Z}.)
Note that the entry Y is n(a) for each a ∈ Y ; and otherwise n(a) = Z.
Since Y 6= ∅, there are 2|Z|−2 choices. So this is the number of topologies.
Two of these topologies are homeomorphic if an action of the symmetric
group on Z takes one in to the other, i.e. their Y sets have the same size,
and not otherwise. So there are |Z| − 1 homeomorphism classes.

If |τ | = 4 then we must choose 2 proper subsets of Z. The first can be
chosen freely per se. Since we are working up to homeomorphism it is
enough to choose the order of this set. We must choose the second such
that the set created is closed under union and intersection. Thus either
they are related as Y ⊂ Y ′; or they give a partition of Z. In the first case,
working up to homeomorphism, again it is enough to choose the order.
Thus we have a contribution of n(n−1)

2
classes, where n = |Z| − 1. In the

partition case the second set is determined. To avoid double-counting we
can simply restrict the first set order to be in the range 1, ..., |Z|/2. These
constructions are disjoint, so the numbers are simply added to give the
total number of homeomorphism classes.

[8 marks]
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