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INTRODUCTION

In this article we study a family of finite-dimensional associative aigebras. These
are usually referred to as the Hecke algebras of the general linear groups since they
are a deformation of the group rings of the symmetric groups (see (James and
Dipper {1986])). However they also anise in the study of knot theory and integrable
two-dimensional lattice models, (Jones [1987]). In these applications they appear
as centraliser algebras for the standard representation of the quantum eaveloping
algebra of the general linear group. In this article we consider certain quotients
which arise from this alternative point of view.

In this article we have used a presentation of these algebras which is equivalent to,
but not the same as, the deformation of the Coxeter presentation of the symmetric
groups. We have also made this article self-contained, even thongh this has meant
giving preofs of some results which are well-known.

Let V be a free module of rank m. Then the Hecke algebra of type An-1, Hs,
acts on @"V. Define H,(m) to be the image of H, in End(®@"V). Assuming that
the Laurent polynomial [m]' (defined in 1.2) is invertible there is an idempotent
F,, € H, such that

H.f (F) & Ho(m)/ {Fn) 2 H.(m - 1).

Then the main result in this paper is that, for each n and m, there is an algebra
isomorphism
FnHo(m)Fin = Hy_m(m).

This result can be seen as a dual to a result proved by Donkin and stated in
(Erdmann [1991, §1.4]). The ¢-Schur algebra, Sg{m,n}, is also a subalgebra of
End{®"V). In fact each of the algebras Hn(m} and Sy(m,n) is the centraliser of
the other although we do not prove this. There is an idempotent E € Sg(m, n) such
that ES,{m,n)E is isomorphic to Sg{rn —1,n) and there is an algebra isomorphism

Sq(m.n)f (E} 2= Sg(m,n —m).

The main application of this result is to show that if the polynomial [m]! is non-
zero then, for each n, the algebra H,(m) is quasi-hereditary in the sense of (Scott
11987)).

As a second application of this result we give a new proof of a special case of
the main theorerm in (James [1981]}). Let A and 4 be partitions of n with precisely
m parts and let A and & be the partitions of n — m obtained by removing the first
columnns. Then

D(x 4} = D(X, )

as entries in the two decomposition matrices. Qur result is a special case of this
result since we assume that [m]! is invertible. On the other hand our proof 1s ele-
mentary and does not use the g-Schur algebra, Also our method gives a refinement
involving a formal parameter (and applies to the Hecke algebras).

The algebras H,(m) occur in two-dimensional solvable lattice models as the al-
gebras generated by single bond transfer matrices (for a recent review see {Deguchi
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and Martin [1992]})). In this situation n depends on the size of the finite rectangun-
lar lattice and in ice-type models, for example, the parameter m is the number of
states on each edge. One of the consequences of the occurrence of the Hecke alge-
bras in solvable models is the implication of a certain profound connection between
each representation of Hn{m} and a corresponding representation of H,im(m). At
the level of physics this mapping embodies (the realisation in solvable models of) a
" fundamental axiom of statistical mechanics, that of stability of expectation values
of extensive observables under changes in system size small compared to n. The
restriction to extensive chservables (a standard example of which is mass density)
is simply because intensive observables {such as mass) obvicusly always depend on
the size of the system. In the algebraic formulation of statistical mechanics certain
amongst the extensive observables of a particular model may be put in a correspon-
dence with the indecomposable summands of the representation of Hn(m) in that
model. This suggests that there is a connection between representations of H,(m)
for different values of n, namely between those representations corresponding to
the ‘same’extensive observable. The results of this paper can be considered as a
precise formulation of this connection without further reference to physics.

A version of the results in this article presented from the point of view of solvable
lattice models has appeared in (Martin {1991]).




1. HECKE ALGEBRAS

Thete are several conventions and notations in the literature for the parameters
that will be used. The parameters we will use are § and q. These are related by
the formula:

§=q+q"

Let z be any indeterminate. Then the sequence P.(z) is a sequence of polyno-
mials in ¢ with integer coefficients where the degree of Py{2)isn — 1 for n 2 1.
This sequence is defined by the initial conditions FPp{2} = 0 and Py(z) = 1 together
with the recurrence relation

Poy1(z) = zPa(z) — Pr-alz)

These are the Chebychev polynomials of the second kind and their mam properties
can be deduced from the following two equivalent formulae.

Palg+g) =" =7 Pal2c0s0) =

The equivalence between these is given by putting ¢ = et
Lemmae 1.1, The polynomials P, satisfy the following identity:

sin nd

for n > 0.

sin #

n+1

Prpr=— Z Pi_p8nit!

J=1

Proof. By induction on n, assuming the result for n — 1 and »n — 2. The basis for
the indunction is

P =-FP,

Pz = —P_lﬂ - Po

The inductive step is the following calculation:
Pﬂ.+l — 6Pn —'Pn.—'[

n n—1
=63 P8+ Y P8
=1 i=1
n+l r+1
= =4 Z Pj_sﬁﬂ‘j“ + Z P_,-‘,,E”'j'“
=1 Jj=3
n+t
== (6Pj3 — Pj_4) 8" — P8
=3
n+l
- — E Pj_zan—j+l

i=1

Notation [.2. The polynomial [r]! is given by
[rlt = PL{8)Pa(8)... Pa(é).




Definition 1.3. For each n, the algebra H, is generated by elements 1, u, ..
%n_; subject to the relations:
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u? = bu;
Wil Ui — U = Wbl Wigl — Uidl

il = Uil if II'—_",'i >1

Definition 1.4. The Hecke algebra is generated by elements 1, o1, ..., 0 and
defining relations are

(i +1)(oi — ") =0
FiFip1 T = T 1041
Fig; = g4 if ii —j| >1

The inverse isomotphisms between the algebras defined by these two presenta-
tions are defined by:

u;Hq'I(a'.--!-l} g qu;—1

This shows that for § = 1 and § = 2 the algebra Hy, is the group algebra of the
symmetric group on n letters.

Remark 1.5. For each n, there is an involution of Hy, given by
w; =+ 6 — ity
Lemma 1.6. There is a natural isomorphism of H,—1-bimoduies

H, = H -1 @Hn—]un—lﬂ-n—b

Proof. The proof is by induction on a. Clearly
Hop1 =2 H, @ HounHy + HpugHoun iy + -
Hence it is sufficient to show that
HotpyHottnHy — HytnHy @ Hy.

Using the inductive hypothesis, the observation that u, commutes with H,_; and
the defining relations we have

HpugHounHy = Hﬂ“n(Hﬂ—l B Hytn-1Hp1)unfn
= “'H-HHHH" @ Hﬂ,uﬂuﬂ—luﬂ-Hﬂ-
— HnunHﬂ @ H‘I"I-




Proposition 1.7, For 0 € p € n— 1, there is a natural isomorphism of Hp_p-
bimodules

H, = @ Hﬂ-P(uiluil_.l B )Hn—p('“igui:-l ‘s uh]Hﬂ-P -

.. Hn_;.(ﬂ,'kﬂgt_l + 4 +‘Eljk)Hn_P

where the sum is over all sequences (iy,4z2,... ,1x) 2ad (j1,j2,... ,j&) which satisfy
the two conditions

n—pSiy <ig < i En—1
n—p<usiforl €Ik

Example 1.8, The longest expression in this sum is given by k = p,

{i1,d2,...,0p) =(R—p,a—p+1,... ,n—1)
{jl'ljz'l"' :rjP} ={n_P$“-P=--- 1“‘_1:']

and is given explatly by
Hnupun_PH,;_PI-I“_P+1H“_PH“-F . Hﬂ_-—p(ﬂn_] Up—? - .- Hn_F)H“._p.

Proof. By induction on p, using Lemma 1.8 for the inductive step.

Remark 1,9, This result, for p=n—1, gives a convenient basis of H, consisting of
reduced words. The basis consists of all words of the form

{Hi1u51_1 .- .ujl](u.-,u,-,_l e u_,-,] ves {ugtu,‘*_l . ,u_,-*}

where the sequences (iy,%z2,. .. ,ix} and {J1,J2,... ,jx) satisfy the two conditions

1l <tz < rigan—1
lﬂjf‘-‘éi[fﬂrl%fik

Corollary 1.10. For each n and p, with 0 < p < n, there is an isomerphism

n—1
H, = @ Hijwsuj_y .. tp—pin_p @Hn_p

j=n=p+l
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2. IDEALS

The algebra H,, always has two irreducible one dimensional representations de-
fined by

u; — 0 and w;—+ 8§ forig<n—-1.

Assuming that these representations are projective there are central idempotents
E, and F, in H, which satisfy

w;En =0 and wiFn = 0F, fori<n-—1.
Definition 2.1. For each n, X, is defined as an element of the algebra

H. ® Z(8).
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The sequence X, is defined inductively by X; =1 and
Xnp1 = LXn {Pnt1 — Pnun) Xa
[n]!

The following Proposition uniquely determines the elements X, and shows that
if Pa(8) is invertible for 1 € m £ n then

»

m

n)!

E, =

—

——y

Proposition 2.2. The elemenis X,, satisfy
(1} X, X, = [n}'X,
(2) v, Xp=0forlgisn—1
(3) Xpui=0forlgigsn—~1
{(4) X, is an element of H,
This result is given in (Jones [1983]) and (Wenzl [1988]).

Praof. The proof is by induction on n. The basis for the induction is that the
Theorem holds for r = 1. The inductive hypothesis is that the Theorem hoids for
X, and that X, alsc satishes

Xnunxr;u“ =3 Pﬂ-‘.l[ﬂ- - 1}!Xﬂ.“n

Hn.YﬂﬂnXﬂ = n+'|_[ﬂ - llIu“X“a

The indnctive step follows from the following calculations. In each of these calcu-
lations, the previous calculations, as well as the inductive hypothesis are assumed.
Note that u.4; commutes with X,.

1
“nxn+l = wﬂn-xn (Pn+1 - Pnun)-xn

= unXn{Pri1— Pat1) =0
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Similarly Xy4+12a = 0.

Xﬂ+lxn+l = Xn+l (Pn+1 - nﬂn) Xﬂ
= [n. -+ 1]!Xn+1

Xt 1¥nt1 Xnt1ttadr1 = Xnt1tnst (Pre1 — Patn) Xntingi
= 5Pn+1xn+1un+1xn - Pan+1Hn+1“nﬂn+1Xn

= n+2{ﬂ]!X n+1%n1

Similarly %41 Xa+1tnr1Xn+1 = Praz[nllunt1 Xngr

Definition 2.3. The sequence of elements Y, € H,, is defined by ¥; =1 and

-
+1 = ]

Ya Yn(“Pn—l +Pnun)yn

Example 2.4. The sequence ¥, starts

i=1
Yo=u,

Yg = WUzl — U]

Corollary 2.5. For each n, the element ¥,, € H, satisfies

(1} Yo.Y, = [n]'Tn
{(2) w¥,=0Y forl<isn—1
(3) You;=8Y, forl €ign—1

Proof. For each n, apply the involution of Remark 2.5 to the element X, € H,.

Lemma 2.6. The sequence Y, also satisfies

Yn+l =Y, Z Pj—z{“nun-l v 'uj) + Py

=1




