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Abstract We consider a series of N -state L(≥ N) site quantum spin
chains, characterised by the ordered partition of N into 2 parts, N = P +M .
These (P/M) chains are invariant under an action of UqSU(P/M), and are
built from a representation of the Hecke algebra HL−1(q). We establish that
the intersection of the spectra of a (P/M) and (P ′/M ′) chain of fixed length L
is the spectrum of the (min(P, P ′)/min(M,M ′)) chain of that length. We es-
tablish that the spectrum of the (P/M) chain breaks into blocks corresponding
to irreducible representations of HL−1(q) (or equivalently irreducible represen-
tations of UqSU(P/M)) characterised by Young diagrams with no rectangular
subdiagrams of dimension (P + 1) × (M + 1) (height × width resp.). We give
the corresponding quotient relations for the Hecke algebra. We discuss several
implications of these results.

1 Introduction

There has been much interest recently on the one hand in computing the spectra
for quantum spin chains and on the other hand in determining the structure of
Hn(q) and associated quantum groups at q a root of unity. In this paper we
introduce technology for progress in both these areas!

Let us begin with the physics side. We consider the (P/M) quantum chains
defined by the Hamiltonians with L = n+ 1 sites:

H =

n∑

j=1

U
(P/M)
j (1)

∗Permanent address: Mathematics Department, City University, Northampton Square,

London EC1V 0HB, UK.
†Permanent address: Physikalisches Institut, Nussallee 12, 53 Bonn 1, Germany.

1



where

U
(P/M)
j =

q + q−1

2
−







∑

a 6=b

Eab
j Eba

j+1 +
q + q−1

2

P+M∑

a=1

ǫaE
aa
j Eaa

j+1+

+
q − q−1

2

∑

a 6=b

sign(a− b)Eaa
j Ebb

j+1






(2)

and, with N = P +M , the N ×N matrices Eab have elements

(Eab)cd = δac δ
b
d (a, b, c, d = 1, 2, ..., N)

and finally

ǫ1 = ǫ2 = .. = ǫP = −ǫP+1 = −ǫP+2 = .. = −ǫP+M = 1.

These Hamiltonians were introduced for q = 1 by Sutherland1 and generalised
for q 6= 1 by Schultz2. If we consider the case P +M = 2, from equation 2 we
get

U
(P/M)
j =

q + q−1

2
−
{

s+j s
−
j+1 + s−j s

+
j+1 +

q + q−1

2

[
(1 + ǫ2)

2
(szjs

z
j+1 + 1/4)

+
(1− ǫ2)

2
(szj + szj+1)

]

+
q − q−1

2
(szj+1 − szj )

}

(3)

where s+, s− and sz are SU(2) spin 1/2 matrices. If we take ǫ2 = 1 (i.e. the
(2/0) chain) we get the well known spin 1/2 Heisenberg chain which has a
massless phase for −2 ≤ (x = q + q−1) ≤ 2 and a massive phase for |x| > 2.
The (1/1) chain has also been extensively studied3. It has a floating phase for
−2 < x < 2, a Pokrovsky-Talapov4 phase transition for |x| = 2 and a frozen
phase for |x| > 2. This model might describe the coverage dependence on
fugacity for xenon adsorbed on copper5.

Recently it was found6 that the (2/1) chain is relevant for the understanding
of Anderson’s t-J model7. This model might in turn be relevant for desribing
high Tc superconductivity. The very different properties of the chains (2/0) and
(1/1), as well as the existence of other possible physical applications, motivated
us to try to understand the properties of all the chains (P/M). The burgeoning
interest in these models amongst the solid state community, and there relevance,
from a very different point of view, to q-representation theory, motivated us to
try to present the results in two parts, encompasing both traditional physical
and mathematical perspectives.

A simple inspection of equation 2 shows that for q = 1 the chains are
SU(P/M) invariant (for the definition and properties of the super algebras
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SU(P/M) see ref.s 8). It was also shown by Deguchi and Akutsu9,10 and by
Ge, Liu and Hue11 that for q 6= 1 the chains (P/M) are invariant under (an
action of) the so called quantum algebra UqSU(P/M). This is true specifically
for the open chains defined by equation 1. If one considers the chains with pe-
riodic boundary conditions (hence losing the UqSU(P/M) symmetry) one can
use the Bethe ansatz, and in this way de Vega and Lopes12 have obtained some
properties of the spectra in the continuum limit. In this paper we will be con-
cerned only with the open chains. The spectrum for real x is real here, even
for q on the unit circle. This is not the case in general for periodic boundary
conditions.

For open chains the Bethe ansatz equations were derived only for the (2/0)
case (see ref.13). The (1/1) chain can be written in terms of free fermions
through a Jordan-Wigner transformation. We hope that our appraoch to the
problem will help to develop the proper Bethe ansatz equations for the general
case.

Let us consider the problem of diagonalising a given chain (P/M) with L
sites (for the moment we assume q generic). We can first use the UqSU(P/M)
invariance to bring the Hamiltonian to a block diagonal form. Each block is then
labelled by an irreducible representation (λ) of the quantum algebra. Each block
will give a matrix of some dimension D(λ) which has to be diagonalised, and
this block will appear d(λ) times, where d(λ) is the dimension of the irreducible
representation (λ).

Naively one would expect that the same procedure must be repeated for
each chain (P/M) separately. This is not the case! For a given number of
sites L, different chains have some of the D(λ) ×D(λ) blocks in common, the
degeneracy d(λ) generally being different for the various chains. Thus if we have
already met a given block in one chain, and have diagonalised it, we can use
this information for many other chains. Moreover it turns out that we can write
the D(λ)×D(λ) matrices directly without needing to go through the standard
procedure of using Clebsch-Gordan machinery.

This enormous simplification of the problem is based on the observation

of Deguchi and Akutsu10 that the U
(P/M)
j ’s defined by equation 2 satisfy the

relations for the generators of the (unital associative) Hecke algebra Hn

UiUi = xUi (4)

UiUi±1Ui − Ui = Ui±1UiUi±1 − Ui±1 (5)

UiUi+j = Ui+jUi (j 6= 1) (6)

(the dimension of Hn is (n + 1)! independent of x). Moreover, for real q and
for all the chains (P/M) with L sites for which we have non-zero P and M ,
the lowest and largest eigenvalues are known. They are zero and (L − 1)x
respectively (an outline proof is given in section 3.4).

The paper is organised as follows. In section 2 we first describe the content
of irreducible representations (λ) of UqSU(P/M) for a (P/M) chain with L
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sites, using super-Young tableaux. To each super-Young tableau (Y ) there
corresponds an irreducible representation of the quantum algebra, of dimension
dP/M (Y ). As indicated, this depends on the chain (P/M). The same irreducible
representation (Y ) will appear D(Y ) times in the representation of the quantum
algebra which commutes with our Hamiltonian. This multiplicity is, in fact, the
dimension of the irreducible representation of the symmetric group SL described
by the same tableau Y . Note that a given tableau Y thus appears in two
‘different’ ways. Its second use (here associated to the symmetric group) is
more generally related to the Hecke algebra Hn. It turns out that if for a given
chain (P/M) a certain Young tableau appears (super or not) then the block
does not depend on (P/M). The reader should be able to understand the block
structure of the (P/M) chains after finishing this section.

In section 3 we write down a set of representations RPM of the Hecke algebra
Hn which we identify with those in equation 2. The new definition exhibits a
block diagonal structure (in a different way to that above) which establishes con-
tact with the q-deformed version of some standard representation theory. Using
this we obtain the precise irreducible content of the Hamiltonian representation.

In section 4 we show how to construct the irreducibles directly from the Hecke
algebra (i.e. independent of the (P/M) chain) and discuss the diagonalisation
of the Hamiltonian within these irreducibles.

In section 6 we draw conclusions and discuss a number of open questions
raised by this work.

In appendix A we consider the (1/1) chain, and show the connection between
the fermionic representation given by equation 3 and the irreducible represen-
tations given by Young tableaux. Appendix B is a very pedestrian presentation
of the (2/1) chain with 4 sites and q = 1. We present the usual approach of the
representation theory of the superalgebra SU(2/1), make the connection with
the super-Young tableaux, and then make contact with the H3 Hecke algebra.

On the mathematical side, the representations RPM have some useful prop-
erties for the analysis of Hn(q) at q a root of unity. In essence, they serve to
break up the problem in a new way, by introducing a new nesting of quotient
algebras well defined for all q (i.e. those for which RPM is faithful). Some of
these new quotients (see section 5) are potentially simpler to analyse than the
conventional ones17, the simplest of which is the Temperley-Lieb algebra (which
is presently the only one for which the structure is completely known). The new
quotients also have some nice Loewy decomposition properties18 (coming from
the faithfulness of RPM ). Considerable progress has been made in analysing
Hn(q) by noting Morita equivalences19 among towers of quotient algebras20. In
our notation these quotients correspond to (P/M) = (N/0). The question is,
do our other quotients have similar useful properties?
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2 Irreducible content of (P/M) chains via super-

Young tableau

æ
In this section we will consider the chains (P/M) in the case q = 1, and

just mention the modifications for q 6= 1 (here we assume q generic). Let us
first consider the chains (N/0), which are SU(N) symmetric. If we denote by

the N dimensional fundamental representation, then the content of SU(N)
irreducibles for a chain with L sites is obtained in the following way14. We
consider a Young tableau (Y ) with L boxes and with at most N rows, and Yi

boxes in row i:

← Y1 →
← Y2→

We distribute the numbers 1,2,..,N inside the L boxes such that they are nonde-
creasing if we move from the left to the right within a row (this corresponds to
the total symmetrisation in a row) and increasing if we move downwards inside
a column (this corresponds to the antisymmetrisation inside a column).

The number of ways we can repeat this distribution gives the dimension of
the irreducible representation d(λ) (see appendix B for an example). In the
tensor product

⊗ ⊗ ....⊗
(L times) we will obtain this irreducible D(Y ) times (where D(Y ) is the dimen-
sion of the symmetric group representation corresponding to the same tableau).
For example, for L = 4 the tableau (3,1) will appear 3 times since this tableau
corresponds to the 3 dimensional irreducible representation of S4. Notice that
we have used U(N) tableaux for SU(N) since they emphasise the simple cor-
respondence between d(Y ) and D(Y ). Of course the dimension d(Y ) depends
only on the differences λi = Yi−YN (i = 1, 2, .., N −1). Let us stress that using
Young tableaux allows us to organise the states into irreducibles without using
Clebsch-Gordan coefficients.

Let us now consider the (P/M) case. Again we have to consider the tensor
product

⊗ ⊗ ....⊗
(L times). Now the box represents the fundamental representation for SU(P/M).
It is most convenient to take the first P states bosonic and the remaining ones
fermionic. In order to find the content we will use super-Young tableaux15. We
take rows of length Y1, Y2, .., YL such that

∑

i

Yi = L. (7)
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In each box we distribute the numbers 1,2,..,N (remember N = P +M) in the
following way. In each row the numbers are non-decreasing if they are bosonic
and increasing if they are fermionic (this corresponds to a symmetrisation for
the bosonic-bosonic, or bosonic-fermionic couples, and an antisymmetrisation
for fermionic couples). In each column the numbers are increasing if they are
bosonic and non-decreasing if they are fermionic (this corresponds to the ‘an-
tisymmetrisation’ of the column). From this rule we learn that for the (P/M)
chain the Young tableaux have at most P rows and at most M columns. Like
the SU(N) case the number of ways we can distribute the numbers 1,2,..,N in
the super-Young tableau gives the dimension of the irreducible. For example, if
the super-Young tableau is just a row with L boxes the dimension d(Y ) is

d((L)) =

L∑

k=0

M !

k!(M − k)!

(P + L− k − 1)!

(L− k)!(P − 1)!
(8)

and if the tableau is just a column with L boxes the dimension of the irreducible
is

d((1L)) =

L∑

k=0

P !

k!(P − k)!

(M + L− k − 1)!

(L− k)!(M − 1)!
(9)

Notice that equation 9 is obtained from equation 8 by interchanging P and
M . As in the SU(N) case a given super-Young tableau Y will appear D(Y )
times, where again D(Y ) is the dimension of the irreducible representation of SL

corresponding to the Young tableau Y . Up to now we have considered the case
q = 1. For q 6= 1 (but generic) one can introduce the q-analogue of the Young
symmetriser (see later) in such a way that the overall picture with respect to
multiplicities and dimensions is unchanged.

Using the information presented in the next section, coming from the rep-
resentation theory of Hecke algebras, we will have the following result. Take
a given (P/M) chain with L sites. Draw all the super-Young tableau with L
boxes (keep in mind that they have at most P rows and M columns). To each
Young tableau corresponds a block of dimension D(Y ) × D(Y ) in the Hamil-
tonian. Look at all the chains you have computed before. If you already met
the tableau Y you use the spectra already computed. If the tableau is new you
diagonalise the block, and can then use the spectra for the present chain and for
all subsequent chains which contain this tableau. Conversely, since the SU(2/0)
and SU(1/1) spectra are known3,16, the physical properties of the tableau types
λ = (S + T, S) and (S, 1T ) (for S, T any natural numbers) are known and can
be used for other chains.

We will see in the next section that in general if we have two chains (P/M)
and (P ′/M ′) of the same length then the spectrum of the former is entirely
contained in the spectrum of the later (up to multiplicities) if and only if P ′ > P
and M ′ > M . Furthermore, if P ′ > P and M > M ′ then barring accidental
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degeneracies (e.g. at q a root of unity) the intersection of the two spectra is
precisely the spectrum of the (P,M ′) chain.

3 Irreducible content of (P/M) chains via Hecke

algebras

In this section we first rewrite the Hamiltonian representation in such a way
as to exhibit a block diagonal structure, and then analyse the content of the
blocks.

3.1 Hamiltonian representations of Hn

Let P,M be non-negative integers such that N = P + M is positive. Let
VN = {1, 2, .., N} be shorthand for the standard ordered basis for CIN , and
IN be the N × N identity matrix, and R the N2 × N2 matrix with action on
u⊗ v ∈ V 2

N given by

R u⊗ v = 0 if u = v ≤ P (10)

R u⊗ v = x u⊗ v if u = v > P (11)

and otherwise, with p = sign(v − u),

R u⊗ v = qp u⊗ v + v ⊗ u. (12)

Then for N < n and V the space spanned by V n+1
N we can check by direct

computation that there is a representation RPM : Hn(q) 7→ EndCI(V ) given by

RPM (Ui) = IN ⊗ IN ⊗ ...⊗R⊗ ...⊗ IN (13)

where M appears in the ith position in the product. This is the same represen-
tation as that defined in equation 2, i.e.

RPM (Ui) = U
(P/M)
i .

3.2 On q-Young symmetrisers

From the Hecke representation theory perspective we can deduce the irreducible
content of RPM as follows:

To make contact with the representation theory of the symmetric group we
must review q-Young symmetrisers21. The following passage follows closely the
presentation in ref.17.
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Definition 1 (Idempotents) For each m = 1, 2, 3, .., n+ 2 define an idempo-

tent Em ∈ Hn(q) by
E1 = E2 = 1

and then

Em ∈ Hm−2(q) ⊂ Hn(q)

and

EmEm = Em

and for i = 1, 2, ..,m− 2
EmUi = UiEm = 0.

There can be at most one such element, since if Em, E′
m ∈ Hm−2(q) both have

the above properties then EmE′
m = Em = E′

m.
Let us consider the existence of such an element. We need

Definition 2 For each positive integer n define kn, a function of x, by k1 = 0
and

kn+1 = 1/(x− kn).

Definition 3 Define I[m− 2] ∈ Hm−2(q) by I[0] = 1 and

I[m− 2] = I[m− 3](1− km−1Um−2)I[m− 3]

The existence of I[m − 2] for a given value of q is guaranteed unless some kn
required in its construction has a pole at that point.

Proposition 1 (see ref.17) If I[m− 2] exists then

Em = I[m− 2]

For example

E4 = 1 +
U1U2 + U2U1 − x(U1 + U2)

x2 − 1
+

U1 − U1U2U1

x(x2 − 1)
.

Under the automorphism D : Hn(q)→ Hn(q) defined by

Ui 7→ x− Ui

we have another idempotent

D(Em) = Fm.

For X ∈ Hn(q) we define X(t) ∈ Hn+t(q) by the translation

U
(t)
i = Ui+t.
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Definition 4 For n ≥ b ≥ a > 0 and c = 3 − a + b define Fab ∈ Hn(q) by the

translation

Fab = F (a−1)
c .

Consequently, if a ≤ i ≤ b then

Ui Fab = Fab Ui = x Fab. (14)

For example,

F11 =
U1

x

F12 =
U1U2U1 − U1

x(x2 − 1)
.

We similarly define (with c = 3− a+ b as before)

Eab = E(a−1)
c

so that
Ui Eab = Eab Ui = 0

if a ≤ i ≤ b. For example E1 −1 = 1.
Note that, as with Eij , Fij may not be well defined for all x (consider our

examples). However, it follows from the definition that for each problematic x
there exists a well defined function f = f(x) such that fFij is finite at this x,
although nilpotent. Then clearly

Ui fFij = x fFij . (15)

The numbers f are computable, but we will not need the details here (see ref.
20, for example).

3.3 On q-permutation representations

Definition 5 For A ∈ Ha(q) but not in any H
(t)
c (q) with c < a, and B ∈ Hb(q)

similarly, we define

A⊗B ∈ Ha+b+1(q)

as the product of A with the translation of B into H
(a+1)
b (q).

Note from the definition above that our representation RPM is block diagonal
with blocks labelled by partitions of n+1, corresponding to fixed numbers of 1’s,
2’s, 3’s,...,N ’s in the basis vectors. Suppose we label these partitions by Young
tableau λ = (λ1, λ2, ..) with (as before) ith row length λi giving the number of
i’s, then our blocks are isomorphic to the left Hn modules generated by

Λλ(P,M) =
(
⊗P

i=1Eλi+1

)
⊗
(
⊗P+M

i=P+1Fλi+1

)
.
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Outline proof: Consider the action of the generators {Ui} on the basis vector

1111..11222..2333..3.....NN..N

in RPM and compare with the action on Λλ(P,M). The isomorphism follows
from an analogous treatment to the M = 0 case in Martin ref.17 (specifically
in the limit of independent large imaginary xi, in the notation of chapter 9
therein).

By analogy with the q = 1 case these representations are induced from the
Young symmetrisers/antisymmetrisers for smaller algebras - so we call them (q)
permutation representations.

3.4 Irreducible content of q-permutation modules

The generic irreducible content of such an induced module may be determined
by continuity with the symmetric group case as follows (a trusty old reference
is Hamermesh, ref. 22):

1. write all the 1’s in a row (assuming P 6= 0);
2. for each number i = 2, 3, .., P take the λi copies and add them one at a

time to the existing diagram in such a way that each stage is a standard shape
Young diagram with non-decreasing rows and columns, and such that no two
i’s appear in the same column;

3. for each subsequent number i = P + 1, .., N take the λi copies and add
them to the diagram such that no two appear in the same row.

Each diagram constructed in this way gives the tableau shape for an irre-
ducible component of the block, which we will describe in the next section. The
procedure may be checked by looking at the restriction from n to n − 1 in the
Bratelli diagrams for the irreducible and permutation modules.

For example, consider the case P = 2,M = 1 and λ given by

1 1 1
2 2
3 3

(since the basis is obtained by writing the numbers here in all possible orders
this is a 7.6.5.4/2.2=210 dimensional representation). We have, after step 2.:

1 1 1 2 2 and
1 1 1 2
2

and
1 1 1
2 2

giving, after step 3.,

1 1 1 2 2 3
3

and
1 1 1 2 2
3
3

and
1 1 1 2 3
2 3
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and

1 1 1 2 3
2
3

and
1 1 1 2
2 3
3

and

1 1 1 2
2
3
3

and

1 1 1 3
2 2 3

and
1 1 1 3
2 2
3

and
1 1 1
2 2 3
3

and

1 1 1
2 2
3
3

.

We will give a means to check that all the diagrams have been found (by di-
mension counting) shortly. Notice that in this example λ = (5, 1, 1) occured as
output with multiplicity 2. Summing over all the permutation blocks we would
get the total multiplicity of the corresponding irreducible representation in the
Hamiltonian, and hence the dimension of an irreducible representation of the
centralising quantum group.

In general, working over the whole of the representation RPM (equation 10),
every possible partition is realised by this procedure except those involving the
rectangular diagrams of height P + 1 and width M + 1. This cannot appear as
a subdiagram in any diagram, since the first box in the last row must contain
at least a P + 1 by rule 2., and then each subsequent number in the row must
be at least 1 higher than its predecesor, so the last is P + M + 1, which is a
contradiction. To see that all other diagrams do appear note that if the original
(permutation module) diagram satisifies the rules in the three steps then this
diagram will appear in the output from the three steps.

We are now in a position to check that (L − 1)x is the largest eigenvalue
for any non-zero P and M and real q. First note that the one dimensional ir-
reducible representation associated to λ = (1, 1, .., 1) appears in all such chains
(and has this eigenvalue - for an explicit demonstration of this see the next
section). Now for given L consider the (1, 1, .., 1) q-permutation module asso-
ciated to the (L, 0) chain. Clearly no irreducible representation is excluded in
this case (an (L+1)× 1 diagram is impossible with L boxes) and in fact this is
the regular representation of the whole Hecke algebra. This means, of course,
that one dimensional irreducibles appear with multiplicity one. In the Hamil-
tonian basis at q = 1 this representation of the Hamiltonian has unique largest
eigenvalue (L− 1)x (x = 2) with eigenvector v defined by vi = 1. On the other
hand, for q a positive indeterminate, some power of H in this representation is
a positive matrix (see the definition). Then by the Perron-Frobenius theorem
the largest magnitude eigenvalue of H is unique for all positive q. This means
that there can be no crossings of magnitudes of eigenvalues involving the largest
magnitude eigenvalue, so (L− 1)x is the largest throughout this region.
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4 Building the irreducible representations of Hn

We have shown how to determine the generic irreducible content of RPM , iden-
tifying each irreducible representation by a Young diagram λ. Now we show
how to work out matrices Rλ(Ui) representing the generators for each diagram,
and hence the relevant block of the Hamiltonian.

Here we present 2 distinct procedures, one designed to be well defined for all
q, and one not, but with a highly algorithmic construction (suitable for putting
on a computer). The search for a basis with both qualities goes on!

For a given diagram λ we take λi to be the length of the ith row as before,
and λ′

i the length of the ith column (examples will follow shortly). For the
algebraically minded we will first define the representation Rλ(Ui) in a robust
way, i.e. by giving a basis for the representation in the algebra itself. The
explicit matrices may then be deduced from the defining relations, as we will
see.

The representation λ is associated to the left Hn module generated from the
one dimensional subspace

Wo =
(

⊗iFλ′

i
+1

)

Hn

(
⊗jEλj+1

)(−)

where the (−) signifies that the term in the bracket is reflected in the generators
(i.e. Ui ↔ Un+1−i). An elementary introduction to this construction may be
found in, for example, Martin, ref. 17.

It is known how to compute the dimensions of irreducibles. There follows a
brief review of the procedure involved. The interested but inexperienced reader
should consult Hamermesh, ref.22. The dimension of the representation Rλ is
given by the ‘hook length’ rule

dim(Rλ) = (n+ 1)! /
∏

i

hi

where the product is over boxes in λ, and hi is the hook length for box i, defined
as the number of boxes traversed in first reaching box i horizontally from the far
right and then leaving box i vertically to the bottom. For example, the shape
(3, 2, 1, 1) gives hook lengths (positioned in the boxes to which they corrrespond)

6 3 1
4 1
2
1

and hence dimension 7!/(1.3.1.6.4.2.1)=35.
This dimension is also the number of standard Young tableau for λ - which

is the number of ways of putting the numbers 1 to n in the boxes of the diagram
so that each row and column is increasing (examples shortly). These standard
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tableau are thus a convenient list of labels for the basis vectors. A good basis
is any linear combination of the set of dim(λ) elements Ws ∈ Hn constructed
iteratively in the following way:

Starting from an initial basis vector Wo as defined above (corresponding to
a given standard tableau, which we will define shortly), and then for s and t
standard Young tableaux, we obtain new basis vectors by

Ws = UiWt

if t → s on interchanging the numbers i and i + 1 in the tableau (the corre-
spondence with the definition in Martin, ref.17, is obtained by replacing tableau
rows with orthogonal directions on the hypercubical lattice).

We are now only missing a starting tableau (o) for this iteration. To obtain
this note that the iteration defines a partial order on standard tableau, with
that tableau exhibiting unit increases down the columns, e.g.

1 5 9 11
2 6 10
3 7
4 8

the unique first; and unit increases across the rows, e.g.

1 2 3 4
5 6 7
8 9
10 11

the unique last. The first standard tableau s = o corresponds to the first basis
element, Wo.

4.1 Examples

4.1.1 The canonical basis

In the case n = 4 there are 5 irreducible representations corresponding to the
partitions

(4), (3, 1), (2, 2), (2, 1, 1), (14).

These have dimensions 1,3,2,3, and 1 respectively. For example, the (3, 1) rep-
resentation has standard tableau

1 3 4
2

and
1 2 4
3

and
1 2 3
4

.

The corresponding basis states are, altogether,

B(4) = {E13}
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B(3,1) = {U1E23, U2U1E23, U3U2U1E23}
B(2,2) = {U1U3U2E1E3, U2U1U3U2E1E3}
B(2,1,1) = {F12E3, U3F12E3, U2U3F12E3}

B(14) = {F13}.
Writing x for q + q−1, the representations associated to these basis states are
then

R(4)(Ui) = 0

R(3,1)(U1) =
(

x 0 0

1 0 0

0 0 0

)

;R(3,1)(U2) =
(

0 1 0

0 x 0

0 1 0

)

;R(3,1)(U3) =
(

0 0 0

0 0 1

0 0 x

)

R(2,2)(U1) =

(
x 0
1 0

)

;R(2,2)(U2) =

(
0 1
0 x

)

;R(2,2)(U3) =

(
x 0
1 0

)

R(2,12)(U1) =
(

x 0 0

0 x 0

x 1 0

)

;R(2,12)(U2) =
(

x 0 0

0 0 1

0 0 x

)

;R(2,12)(U3) =
(

0 1 0

0 x 0

−x 1 x

)

R(14)(Ui) = x.

The Hamiltonian subblocks are thus

(0),





x 1 0
1 x 1
0 1 x



 ,

(
2x 1
2 x

)

,





2x 1 0
0 2x 1
0 2 2x



 , (3x)

respectively, with eigenspectra

(0), (x, x±
√
2), ((3x±

√

x2 + 8)/2), (2x, 2x±
√
2), (3x).

Notice that in the large x limit the largest and smallest eigenvalues must
be associated to λ = (1L) and (L) respectively. This result obviously holds as
long as there are no spectrum crossings, and in general there are no spectrum
crossings until x = 2.

In the case n = 5 there are 7 irreducible representations corresponding to
the partitions

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (15).

Let us restrict attention here to (3, 1, 1). The dimension is 5!/(5.2.2)=6. The
first tableau is

o =
1 4 5
2
3

and the only exchange possible here (consistent with a standard tableau output)
is 3↔ 4, so with Wo = F12E34 we have Ws = U3Wo. The new tableau is

s =
1 3 5
2
4
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which may be modified either with i = 2 or i = 4. Carrying on in this way we
get the basis:

{Wo, U3Wo, U4U3Wo, U2U3Wo, U2U4U3Wo, U3U2U4Wo}.

From this we can read off (by application of the defining relations) the repre-
sentation

R(3,1,1)(U1) =











x
0 x
0 0 x
x 1
0 0 1
0 1 0 0 0 0











;R(3,1,1)(U2) =











x
0 0 0 1
0 0 0 0 1
0 0 0 x
0 0 0 0 x
−x 0 0 x 1 0











R(3,1,1)(U3) =











0 1
0 x 0 0
0 1 0 0 0
−x 1 0 x
0 0 0 0 0 1
0 0 0 0 0 x











;R(3,1,1)(U4) =











0 0
0 0 1 0
0 0 x 0 0
0 0 0 0 1
0 0 0 0 x 0
x 0 0 −x 1 x











and the Hamiltonian

H =











2x 1
0 2x 1 1
0 1 2x 0 1
0 2 0 2x 1
0 0 1 0 2x 1
0 1 0 0 2 2x











with spectrum
{2x, 2x, 2x± 1, 2x±

√
5}.

If we write the basis states out according to the partial order on standard
tableau then the matrix entries above the diagonal will always be either zero or
one. Unfortunately those below the diagonal require application of the defining
relations. We can avoid this by working with another basis:

4.1.2 The Hoefsmit (Young normal) basis

For those requiring a more algorithmic construction we have a basis {|s >:
s standard in λ} (Hoefsmit, ref. 23) for the same representations with the
following action:

R(Ui)|s >= kg|s > +
√

kg/kg+1|si >

where g = gi(s) is the difference in row position of the numbers i and i + 1
minus the difference in column position, kg comes from definition 2, and si is
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the tableau obtained by interchanging i and i+1 in s (note that the coefficient
is zero every time this is not standard).

We can reproduce one of our previous examples as follows: For λ = (2, 2)
we have standard tableau

o =
1 3
2 4

; s =
1 2
3 4

.

For U1 we have i = 1, so g1(o) = −1 and g1(s) = 1, giving

U1|o >=

x
︷︸︸︷

k−1 |o > +0

and

U1|s >=

0
︷︸︸︷

k1 |s > +0

while for U2 we have g2(o) = −2, g2(s) = 2, giving

U2 =




1/x

√
x2−1
x2

√
x2−1
x2

x2−1
x





and g3(o) = −1, g3(s) = 1 so U3 = U1. The Hamiltonian is




2x+ 1/x

√
x2−1
x2

√
x2−1
x2

x2−1
x





which the reader will readily verify has the same spectrum as before. It should
be clear already from this example, however, that algebraic diagonalisation of
H is typically somewhat harder than before. This is the price paid for a more
agorithmic construction.

4.2 On computing the spectrum

The partial order associated to the standard tableau of λ is in fact a lattice
(in the algebraic sense, see e.g. MacLane and Birkoff, ref.24). This lattice
may be arranged in levels corresponding to the number of steps required from
the lowest standard tableau. The non-zero elements of the Hamiltonian in the
Hoefsmit basis correspond to the nodes (diagonal elements) and bonds (off-
diagonal elements) of the Hasse diagram for the lattice. Their value must be
computed by the procedure given above, but the level property means that there
are at most n non-zero elements in each row, and frequently much fewer. This
and the lattice property means that diagonalisation of the Hamiltonian requires
the solution of far fewer simultaneous equations than might be expected.
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In the canonical basis the picture is similar on and above the diagonal,
but much simpler. All the non-zero elements above the diagonal are 1, the
diagonal elements are just the number of integers i in the standard tableau
for which i is in a higher row than i + 1. In the (P/M) = (1/1) case this
number is always a constant, and it always seems to be possible to symmetrise
the matrix without affecting the upper triangle. The resultant matrix can be
diagonalised by a kind of Bethe ansatz (our (3, 1, 1) example illustrates all these
points nicely). Unfortunately below the diagonal is complicated in general,
although finite lattice tests suggest that it can be tidied up relatively easily in
many cases. Once again, you pay your money and you take your choice.

5 The quotient algebras (P,M)Hn(q)

This section is intended for those interested in the structure of the Hecke algebra
at q a root of unity.

We define a sequence of quotient algebras of Hn(q) as follows. The quotient
(P,M)Hn(q) is obtained by imposing the quotient relations

(P,M) =
(
⊗M+1FP+2

)
HPM+N

(
⊗P+1EM+2

)
= 0.

For example:
(i) with x 6= 0 then (1, 0)Hn(q) is obtained by putting F11 = U1/x = 0,

whilst with x = 0 the quotient relation is x F11 = U1 = 0 (the first expression
is, of course, purely formal at x = 0);

(ii) the case (2, 0) corresponds to the Temperley-Lieb algebra;
(iii) the case (1, 1) has quotient relations given by

(1, 1) = (U1U3)U2((x− U1)(x− U3)) = 0.

In this case the reader will readily confirm that, among the complete list of
generic irreducible representations of H4 given in section 4.1.1 for example,
only R(2,2) violates this relation (and so can not be a representation of the (1, 1)
quotient). Furthermore, writing (1, 1)op for (1, 1) with the factors written out
in reverse order, we find that in Hn(q)

(1, 1)opU2(1, 1)
op = (x4 − x2) (1, 1)op

so generically (1, 1) = 0 implies (1, 1)op = 0; and (1, 1) U2 is (generically)
idempotent up to a finite factor.

We conjecture that RPMHn(q) is a faithful representation of (P,M)Hn(q)
for all q, as has been proved in the M = 0 case in Martin ref.18, and for q
generic in this paper.
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6 Conclusions and discussion

We have classified the structure of the chains (P/M), but much work remains to
be done. One obvious question is to study the thermodynamical limit (L→∞)
and to classify the different excitations according to the super-Young tableaux.
This implies the development of a proper Bethe ansatz formalism. A very impor-
tant further step has to be made in the case where q is on the unit circle. This
implies on one side understanding the representation theory of UqSU(P/M)
superalgebras, which will allow the derivation of the corresponding restricted
models (see ref.16 for the (2/0) chain); and on the other side use of the non-
semisimple Hecke algebras, in order to classify the structure of the part of the
spectrum which does not enter the restricted models.

From the mathematical point of view, results such as the (1/1) spectrum
in appendix A can be used to examine the break up of generically irreducible
representations into smaller representations at q root of unity. This is because
of the property that if one representation becomes an invariant subspace of an-
other, then its Hamiltonian spectrum must be contained in that of the other.
Thus, although the spectrum is not a sensitive enough probe to prove that an
invariant subspace appears (because of the possibility of accidental degenera-
cies), it can often prove that one does not appear, and when one may appear it
gives all the candidates.

Another natural question to ask is whether there are models corresponding
to the partition of N into more than 2 parts. This implies, on the one hand
para-fermion-like statistics, and on the other hand a higher order local relation
for the quotient of the braid group (relation 4 is quadratic). Some candidates
may be found in ref.25.
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Appendix A: The (1/1) chain

This chain is described by the Hamiltonian implied by equation 3. As shown
in ref.3b, the Hamiltonian can be diagonalised through a Jordan-Wigner trans-
formation and brought into the form:

H = ǫ0η
†
0η0 +

L−1∑

k=1

(x− 2 cos(πk/L)) a†kak (16)

where

{a†m, an} = δm,n, {am, an} = 0 (m,n = 1, 2, .., L− 1) (17)

{η†0, η0} = 1, {η†0, am} = {η0, a†m} = {η0, η0} = 0 (18)

and ǫ0 = 0 (null mode). The existence of a null fermionic mode makes all
the irreducible representations 2 dimensional: d(Y ) = 2 irrespective of Y . We
can now give the relation between the super-Young tableau and the fermionic
description. In the (1/1) case the allowed tableaux for a chain with L sites are
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only of the type (r, 1s) with r + s = L. The D(r, 1s) dimensional vector space

is built with the help of s creation operators a†k:

a†k1
a†k2

... a†ks
|0 > . (19)

Note that the tableau (1L) has to be written (1, 1L−1). We will give as an
example the case L = 4. Since the Hamiltonian 16 is already in the diagonal
form we can read off the eigenvalues directly:

(4) (no fermions): 0
(3, 1) (one fermion): (x, x±

√
2)

(2, 12) (two fermions): (2x, 2x±
√
2)

(1, 13) (three fermions): 3x.
As expected we obtain the same results as for the (2/1) chain for the same
tableau (see section 4).

We would like to mention that the special chain described by equation 1
(one has in general

H =

n∑

i=1

giU
(P/M)
i

with gi variable) can have degeneracies larger than d(Y ) even for generic q ! For
the (1/1) chain this can easily be seen by noticing that the two fermion excita-

tions a†ka
†
L−k|0 > give the same contribution (2x) to the spectrum, independent

of k.

Appendix B: The (2/1) chain

We consider for simplicity the case q = 1. We also regard the problem
from a different viewpoint, namely that of the general representation theory26,
which does not use super-Young tableau but rather branching rules and Clebsch-
Gordan coefficients. This approach might be useful since the Clebsch-Gordan
coefficients are known analytically for q = 1 and can easily be extended to q 6= 1.

The superalgebra is defined through eight generators, which satisfy commu-
tation (anti-commutation) relations:

[I3, I±] = ±I±, [I+, I−] = 2I3, [B, I±] = [B, I3] = 0

[I3, V ±] = ±1/2 V ±, [I3,W±] = ±1/2 W±,

[I±, V ∓] = V ±, [I±,W∓] = W±,

[I±, V ±] = [I±,W±] = 0, [B, V ±] = 1/2 V ±,

[B,W±] = −1/2 W±,
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{V ±, V ±} = {V ±, V ∓} = {W±,W±} = {W±,W∓} = 0

{V ±,W±} = ±I±, {V ±,W∓} = −I3 ±B. (20)

The Cartan subalgebra contains two generators B and I3 which we take diago-
nal:

B|b, I >= b|b, I >; I3|b, I >= I|b, I > .

In the chain (2) one takes on each site a copy of the nontypical irreducible
representation [1/2]+. A nontypical representation [I]+ contains 4I + 1 states,
with eigenvalues in the Cartan subalgebra given by:

|I, I >, |I, I − 1 >, ..., |I,−I >,

|I + 1/2, I − 1/2 >, |I + 1/2, I − 3/2 >, ..., |I + 1/2,−I + 1/2 > .

In the tensor product

[1/2]+ ⊗ [1/2]+ ⊗ ...⊗ [1/2]+

one finds not only the nontypical representations [I]+ but also the typical rep-
resentations [b, I]. A typical representation contains 8I states, with eigenvalues
in the Cartan subalgebra given by:

|b, I >, |b, I − 1 >, ..., |b,−I >,

|b, I − 1 >, |b, I − 2 >, ..., |b,−I + 1 >,

|b+ 1/2, I − 1/2 >, ..., |b+ 1/2,−I + 1/2 >,

|b− 1/2, I − 1/2 >, ..., |b− 1/2,−I + 1/2 > .

The tensor product of two nontypical representations is:

[I1]+ ⊗ [I2]+ = [I]+ ⊕
(

2Imin−1⊕

n=0

[(I + 1/2), (I − 1/2− n)]

)

(21)

where
I = I1 + I2, Imin = min(I1, I2).

The tensor product of a typical and a nontypical representation is:

[b1, I1]⊗ [I2]+ = θ(I1 − I2)[b, |I1 − I2|]⊕
(

2Imin−1⊕

n=0

[b, I − n]

)

⊕
(

2Imin−1⊕

n=0

[b+ 1/2, I − 1/2− n]

)

(22)

where
b = b1 + I2.
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Let us consider as an example the (2/1) chain with 4 sites. Using equations 21
and 22 we find

[1/2]+ ⊗ [1/2]+ ⊗ [1/2]+ ⊗ [1/2]+

= [2]+⊕3.[5/2, 3/2]⊕2.[5/2, 1/2]⊕3.[3, 1]⊕ [7/2, 1/2].
(23)

We can easily check that there is the following correspondence between the
super-Young tableau and the irreducible representations described above:

(4) = [2]+, (3, 1) = [5/2, 3/2], (2, 2) = [5/2, 1/2], (2, 1, 1) = [3, 1], (14) = [7/2, 1/2].

Equation 23 describes the results of section 4 (page 13) from a different per-
spective.
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