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Abstract We prove that an N-state vertex model representation of
the A, Hecke algebra quotient NH,(q) is faithful for all . We use the result
to examine the indecomposable content of these representations, and hence the
structure of the centraliser algebra, which is generically a quotient of Ugsl{N),
at ¢ a root of unity. We achieve a complete analysis in the case N = 2, finding
a number of Morita self-dual algebraic structures.

1 Introduction

It is well known, and a straightforward combinatorial proof exists, that a given
quotient of the A, type Hecke algebra over the complex numbers H,(q) (called
NH,(q) - see section 2) and an appropriate quotient of the so called quan-
tum group Ugsl(V) (Jimbo 1985, Drinfeld 1986) are in Schur-Weyl duality on
@1V if ¢ is not a root of unity. We will briefly review these results shortly.
For an introductory review see, for example, Martin (1991).

The simple proof does not work for the physically crucial (and mathemat-
ically most interesting) case of ¢ a root of unity, even though the actions of
both algebras remain well defined (care must be taken with the definition of
Uysl(N) - see appendix A). The key issue in this case is the faithfulness of the
representation of NH,(g). It is important to know if this result holds in order
to compare our partial knowledge of the structures of the two algebras (see e.g.
Dipper and James 1989, Lusztig 1989). Our main result in this paper (section 3)
is that it does! ‘

In order to illustrate the importance of this result explicitly we then consider
some aspects of the mechanism of its application (section 4). In the process we
find that, in all the cases we can check, i.e. all of N = 2, the 2 algebras remain
Schur-Weyl dual for all ¢, and furthermore are Morita equivalent (for a general



reference on Morita equivalence try Pierce 1982). This is a trivial result for all
N for generic g, but is very strong, if true, in general.

The faithfulness result, and the techniques involved in its proof, are also
crucial for the computation of the spectrum of quantum spin chains at ¢ a root
of unity, and in providing the means to analyse H,(q) through other sequences
of quotients besides NH.(q), as we will see in a subsequent paper (Martin and
Rittenberg 1991).

Let A° be an associative algebra over the complex numbers and M a finite
dimensional left A°-module. Then B = Enda.(M) is the centraliser algebra of
A° on M (that is, the algebra of endomorphisms of M which commute with the
action of A°), and A = Endg(M) and B are said to be in Schur-Weyl duality
on M. That is

.W = @ﬁ&hammﬁguﬁgv.

In this case A and B are sometimes called a dual pair (see e.g. Zelevinskii 1987)
or a Howe pair on M.

Let K be the smallest double sided ideal of A° such that M is a faithful
A°/K module {i.e. K = annsM). Then A D A°/K, and in general we have a
composite morphism

A° - A°JK — A

For example, if A°/K gives all upper triangular matrices on M then B is just
scalars and A is all matrices on M.
We say that A° itself has a Schur-Weyl dual on M if and only if

A°/K = A.

A sufficient, but not necessary, condition for this is that A°/K is semi-simple
(this happens in our case when ¢ is not aroot of unity). We will discuss necessary
conditions in section 4.

If A° = H,(¢q) and M is the usual N-state vertex model representation (see
section 2), then B is generically a certain (n-dependent) quotient of U sl(N)
(section 4.2), called U'sl(N), and A°/K = A = NH,(q). The representation
M of NH,(q) is block diagonal for all ¢, with the blocks being ¢-permutation
modules in the sense of a g deformation of the symmetric group permutation
modules (see section 4). This means that the indecomposable content of these
modules is known generically, and in particular that some of them are themselves
faithful representations of the algebra (see Robinson 1962 for example). It
is the multiplicities and morphisms of the indecomposables which tell us the
structure of the centraliser algebra in general, so these are crucial results. We
can construct a counterexample (see section 4) showing that the faithfulness of
generic blocks is not necessarily preserved in the case ¢ a root of unity! The
faithfulness of the whole representation is thus by no means a trivial result,

giving an important clue to its indecomposable and irreducible content (which
will be discussed, and in some cases determined, using this property).

In the next section we define NH,(g) and the action of H,(q) on M =
@"L@N. We then establish our main result - that this gives a faithful rep-
resentation of the algebra NH,(g). In the following section we illustrate the
use of these results with some applications. We determine the structure of the
U,sl(2) quotient from that of 2H,(g), and note in particular a Morita equiva-
lence. In appendix A we define (from Jimbo 1985, Drinfeld 1986, Lusztig 1989)
the appropriate action of Uysl(N) on @"+'@", and note commutativity with
the representation of NH,,(g). Finally appendix B contains a technical remark.

2 Hecke algebra

The main result of this section is a theorem given on page 7.

Following existing notation (for a recent introductory review and full refer-
ences see, for example, Martin 1991 -hereafter called I, or Westbury 1990) we
rme.mu

Definition 1 (Hecke algebra) For n a positive integer, ¢ € € — {0} and

\ VQ=q+q!

H,(q), or simply Hy, is the unital associative algebra over T defined by gener-
ators {U; :1=1,2,..,n} and relations

Uil = QU; (1)
UUist Uy = Uy = Uiga UiUizy — Usq (2)
UillUiy; = UigilUs G#1) (3)

Proposition 1 There is an tsomorphism of right H,_, modules

n m
HoZHaa @ @ﬁ =1 sztl.
m=1 i=1

Proof: By induction: The proposition holds at level n = 1. Now suppose the
proposition is true at level n, then trivially there is a natural mapping

H, — M.M:IH & H, 1 UpnHp

(remark: this is an isomorphism of H,_; bimodules) so, using this and the
defining relations,

m‘:Q:+Hm=Q3+wm.a l Nwﬂ3Q.a+u .m.: + m.:



whereupon
m3.—+H - .m.: 57] m:Q.=+Hm=.

This may now be combined with the proposition at level n to give the inductive
step to level n + 1.

Corollary 1.1 The proposition also holds with U; replaced by Ul = o + 8U;,
for any complez number a and non-zero compler number §.

Proof: as above.
We immediately obtain a well known result:

Corollary 1.2 The dimension of Ha(q) is (n+1)!, and if {b; : i =1,2,..,n!}
is a basis for H,_1 then

{0, 6 U 0 UL UL o, 0 UL UL U i =1,2,.,n!)
s a basis for Hy.

Definition 2 Let B,(U') be the basis of words in {U]} obiained by iterating
this process from Bo(U') = {1}.
Remark 1 The words in B,(U’) cannot be written as shorter words in {U!}

by applying the defining relations.

Outline proof: Suppose true for n — 1. The only relation which can shorten
every word in the output is the first, but each new word has at most one factor
of Uy, and at least one factor of U; between each factor of U;_; by construction.

Corollary 1.3 Words in B,(U") of length I or less span all such words in {U]}.

For many purposes we break the analysis of H,(¢) down through a sequence
of quotients NH,(g). To define these we need first to define some special ele-
ments of H,(g) (which will generate the kernels of the these quotients).

2.1 Special elements of H,(q)

This subsection is taken from Martin and Westbury (1991) and references therein.

Definition 3 (Idempotents) For each m = 1,2,3,..,n+2 define an idempo-
tent Ep, € Hu(q) by
mw = m.m =1

and then
En € .m.ilwﬁnu - .m.zmmv

and

and fori=1,2,..,m—2

There can be at most one such element, since if m,avm_?.m Hy—2(q) both have

the above properties then E, E!, = E,, = E/,.

Let us consider the existence of such an element. We need

Definition 4 For each positive infeger n define k,, a function of Q, by ky =0

and
knt1 = 1/(v/Q — kn).
Definition 5 For s an inieger and g given

¢ —-q
5 = ——————_——
e q—gq7?!

and for N a posttive integer

For example, with \/Q = ¢ + ¢~! as before:
[0]=0
=1

[&=vQ
Bl=@-1

and
S k|

[n]

from definition 4.
Definition 6 Define I[m — 2] € Hy,_2(q) by I[0] = 1 and
I[m—2] = I[m — 3](1 — km—1Um-2)I[m — 3]

The existence of I[m — 2] for a given value of ¢ is guaranteed unless some k,
required in its construction has a pole at that point.

Proposition 2 (see I) If I[m — 2] ezists then

Ep=1Im -2



Under the automorphism D : Hy,(gq) — Hn(q) defined by

Ui — ,\mlw ~U;
we have another idempotent
D(Ep) = Fr.
For X € Hp(g) we define X® e H,..:(g) by the translation
U = Uiy

Definition 7 Forn>b>a >0 and c =3 —a+b define Fup € Ha(g) by

Pi= @._Malb.
Consequently, if @ < ¢ < b then
U; Fap = Fas Us = /Q Fas. 4
For example,
By =
/(@)
UU.U, = U
Fiyp= 1Usl, 1

VR(@Q-1)

With ¢ = 3 — @ + b again, we similarly define
.m_s.w, = .m_mnld

so that
Ui Eqp =Eap U; =0
if a <i<b. For example E; _1 = L.

Note that, as with F;;, Fy; may not be well defined for all @ (consider our
examples). However, note the following

Definition 8 For n a positive integer and Y1 =1

n

Yosr ==l =1Y +Ya [ D [m—2 (UnUn1.-Unm)

m=1

The element Y41 € H, is clearly finite for all @, with the coefficient of the
longest word (c.f. proposition 1) equal to one. It is established in Martin and
Westbury (1991) that

Y, = E Fay1 Amu

2.2 The quotient algebras NH,(q)

We define a sequence of quotient algebras of Hy(q) as follows. The quotient
NH,(q), or simply NH,, is obtained by imposing the quotient relations

Yn41=0.

For example, with @ # 0 then 1H,(¢) can be obtained by putting F; =
U,/+/@ = 0, whilst with @ = 0 the quotient relation is /@ Fiu = U1 =0
(the first expression is, of course, purely formal at @ = 0). Note that the case
N = 2 corresponds to the Temperley-Lieb algebra. The case NH,(1) is the
quotient of the group algebra of the symmetric group on n +1 objects to ex-
clude irreducible representations with Young diagrams of more than N rows
(c.f. Robinson 1962).

HVHOﬁOmm&nE 3 For q a monzero complez number the dimension of NHy(q)
equals the dimension of NHy(1).

We prove this proposition in the course of proving our main theorem.

2.3 Representations

Let Vv = {1,2,.., N} be shorthand for the standard ordered basis for @V, and
Iy be the N x N identity matrix, and M the N? x N? matrix with action on
VZ given by -

M (a,b) =0 T o o= (6)

and otherwise, with p = sign(b — a),
M (a,b) = ¢* (a,b) + (b,a). Q)

Then for N < n and V the space spanned by SM.:L we can check by direct
computation that there is a representation Ry : Hn(q) — Endg(V') given by

mzﬁqn.vHMZ@HZ@:.@E@:.@NZ

where M appears in the i** position in the product.
Note that the objects Rpar(Us), with P + M = N, defined by replacing
equation 6 by

M (a,b) = g + ¢ (a,b) if a=b>P (8)

if a=b> P (so Ryo = Rn), provide a host of useful representations, which
are studied in Martin and Rittenberg 1991.

Theorem 1 (Main theorem) RyH,(q) is a faithful representation of NHn(q)
for all q.



3 Proof of the Theorem

3.1 Part 1: Ry a representation

We need to show that Rn(Fn42) = 0 when ¢ is an indeterminate (this is
sufficient, since Ry (kFny2) = kRn(Fn42) and k = [N + 1] is well defined in
any specialisation). We proceed by induction.

The result is true for N = 1 by equation 6. If true for N = m then for

ce vt
Rmi1(Fmts) a = Bmy1(Fn4aFmys) 6 = Rmy1(Fmis)Bmi1(Fngz) a (9)

can only possibly be non-vanishing if aya;...¢m 11 are distinct (and azas...amyy
distinct, by symmetry), so @1 = amy2. We then have

Rns1(Fm43) 0= Rmi1(FniaU1/V/Q) @
which, using equation 7 becomes

®=+Hﬁﬁ3+wv hwm -+ QNQHDmQA...93+HQH...v ‘

Since the second through (m+2)** components of the latter vector are no longer

distinct it is killed by the Fr43 (= m.3+mﬁ_mm.w as above) leaving

Rpni1(Fngs) a= WS+HA~.._3+WV%9 =0,

Q.ED.

3.2 Part 2: Ry faithful

We construct a basis for NH,(q) and prove explicitly that every element is
distinct in Rpy.

We will need some properties of Ry(Fn41). Note from equations 6 and 7
that each U; mixes between basis vectors in V' with a fixed number of 1’s, 2’s, ...,
N’s appearing as its components. Consequently the representation Ry is block
diagonal up to permutations of the basis, and equivalence classes of the direct
summand representations may be associated with a subset of the partitions (see
e.g. Macdonald 1979, James and Kerber 1981) of n + 1.

Definition 9 Define the set @W“ of partitions of n + 1 inlo at most N paris,
as N-tuples of non-negative integers

o= (a1, 0,..,0N8)

with the properties
o >ap =) >

MFH;#L.
i

Define a total order on 7Y by a > 8 if there exists mteger 7 such that

and

oy =

for N>i>j, and
Qu.lhu,ﬂo.

This is the L! order defined in Macdonald 1979. For example, the N-tuple
vy =(1,1,1,.,1)

is the least element and (N,0,0, ..,0) the greatest in this order in the set of all
partitions of N, DY _,.

We will regard DM C DY for M < N by extending the M-tuples to N-tuples
by adding zeros on the right.

For given n and N, and a € DY, we define R%, or simply R%, as the
representation on subspace with basis vectors containing a; 1’s, ay 2’s, and so
on. For example, R§'"™) has basis {123,213,132, 312,231, 321}

Proposition 4 The matriz elements of RYY (V) = R[N En 1) are all in-
teger powers of ¢ (and hence finite, i.c. non-zero, for all non-zero 7).

Proof:
It follows from the defining relations 1- 3 and corollary 1.2 that RY is the
regular representation of Hy_1(g) (see I for details). The relations

Ui [N)FN 41 = [N]Fy 41 Us = /Q [N]Fnpy
then imply
rank(Ry ([N]Fy41)) = 1

(consider the action of [N]Fy4; on each element of the algebra). The ma-
trix R ([N]Fn41) is also symmetric by construction, so there exists some row
vector h such that

RYY (kFy i) = B*h.

The relations above then further imply that in this representation

U; :“Hz\mru.



Now U; mixes basis vectors in pairs so this may be broken up into sub-equations
of the form
g 1 S\ _ 84
(15)(5)=va(s)

5 = m.wu..

which implies

Using all the U;’s all the components of the vector are connected in this way.
Finally, from definition 8 note that [N]Fy41 # 0. This completes the proof of
proposition 4.

To review, we have seen that with p;; C V  the subset of basis vectors
{p € q\hi © Pi,Pit1, -, p; distinct elements of Viv}, and introducing bra and
ket notation to make row vectors easier to spot, then

Ry (kFij)la) =0 if ae Vgt —p; (10)
so By 15 a representation of NH,,, and from proposition 4 that
Ry([j—i+2Fy)lp) = 3 /@ r) if pep; (1)
rEpi;

where f is a finite integer. We do not need to know this integer for our purposes,
it is given in appendix B.

In what follows we will use the notion of standard tableau (see e.g. James
and Kerber 1981). These are the insertions of numbers 1,2, ..,n + 1 into the
Young diagrams of partitions of n + 1 such that each row and column has the
natural order.

Definition 10 For « a partition define D(a) as the set of standard tableau of
shape «.

If {s} is a standard tableau with i in a lower row than i + 1, and the tableau
obtained by interchanging 7,7+ 1 in {s} is standard, then this tableau may be
called {s'}.

Definition 11 Define a partial order on standard tableau {s} in D(a) by
{s} <{t}
if and only if {t} can be obtained from {s} by a sequence of moves of the form
{s} = .= {v} = {¥'} = ... - {8}

The lowest sequence in the partial order in D(a), call it {e,}, is the unique
standard tableau with unit increases down the columns.
The poset is a lattice.

10

Definition 12 Define a partial order on all standard tableaw of n + 1 bozes
by the total order on partitions if the shapes are different, and by definition 11
otherunse.

Definition 13 Define P(«) as the set of pairs of standard tableau ({s}, {t}) for
all {s},{t} € D(a). :

Definition 14 Define PV (n) as the disjoint union of sets P(a) over all values
of « € DY.
3.2.1 A basis for NH,(q) -

Let us adept the convention that Fj; may beregarded as a word in the generators
of Hn(q), and that for W a word in H,(¢q) then W7 is obtained by writing
the generators in reverse order (note that Fj; = .ﬂwv. We need the following
definitions:

For each partition « let us define elements (e, 0 e,) € H,(¢q) iteratively by

(eq0eq)=1

if @ = (n + 1), and then for @y = a4 vy by

transiation

—
(eay ©€ay) =Yni1 (aoeq) (M H#1]

This means that
Ui(egoey) = /\@Amq cey)
if ¢ is above i + 1 in the standard tableau {e,}. For example,
(e(s.3,1) © €(5,3,1)) = QVQ(Q — 1) Fiz Faq Feg
= Aq_.qMO_.H —_ qmv QA Q.m .
Note that (ey 0 e,) = 0 in NH,(g) if o has more than N rows.

Definition 15 If ({s},{t}) is in PN(n), the set of pairs of standard tebleau of
the same shape and at most N rows, then (s ot) is a word in the generators of
Hy(q) (counting Fi; as a word) obtained iteratively from (eq © €q) as follows:
(s 0ot)=U;i (s ot) (12)

and
(tos)=(sot)T. (13)

If (tos) is obtained from (e4 0 e,) in this way we call (e 0e4) the root of (tos).
For example, (e(,1y o e(3,1)) = Uy is the root of (U;)Us.

11




Proposition 5 (see I) The set of ‘words’ in definition 15 spans NH,(q).

In fact it is proved in I that these words form a basis, but we will of umnwmm:%
prove linear independence in what follows, so it is sufficient to note that this m.mﬁ
has order dim(NH,(1)). Since we show linear independence for each NV then in
particular the large N limit (i.e. N > n+1) shows that overall we rmmm A.:+ C_
linearly independent elements and hence a basis for H,(g). But S;rﬂ this
full basis (n + 1)! — dim(NHn (1)) linearly independent elements are 38.:.?&@
taken to zero under the Yy4; = 0 quotient (by definition 15, and specifically
the definition of (e, 0 €q)). Overall then

dim(HnYn41Ha) 2 (n+ 1) — dim(NH,(1)).

Meanwhile dim(NH, (1)) = order(NP(n)) elements will be shown linearly inde-
pendent in NH,(g) so that dim(NH,(¢)) > dim(NH,(1)). Clearly the bounds
are saturated. This also proves proposition 3.

3.3 Proof of faithfulness (conclusion)

For given N and n, the set of words in NH,(q) from definition 15 will be nm.:m.m
Sw. Then with w,v € <h+~ and W € Sw we write W, for the w, v matrix
element of Ry(W). For example, if w = v = 1111 (we supress all commas and
brackets for brevity) then Wy, = 0 unless W = 1.

Note that
(w]lv) = bwo
and
Wue = (w|Rn(W)[v).
Then ;
Ry (U)|v) =0 if v =vip1 (14)
and with v! = v except for .
v = Vigl
and .
F_.t =
we have
i . &
Ry(Us)|v) = g5 [o) + |v') if v > vig. (15)

Definition 16 Define a function
F ”@AD& — M\%ﬁ.—+u
b
; a— Fa

where (Fa); is the number of the row in which the number i appears in standard
tableau a.

12

For example, {e(1,1,1)}, the unique (1?) standard tableau, gives F'a = 123. Note
that F' is not surjective unless n = 0 and N = 1, but is injective. If 7 is in a row
above i +11in a then we say Fa has a maximum at i. We also take the partial
order on D() over onto F(D(a)).

Definition 17 We define

gdw“,mf\lﬂ\
by
Pr:(aoh)— Fb
and ;
.Th“.m«_&\la\
by

Pp:(aob)— Fa.
Definition 18 Define a function
_w. Sw—=VxV

by
(a0 b)— (Fa, Fb).

For example, with n = 3, f F,U; = (1231,1213). Note that f is injective.
Definition 19 Let (w,v) € V x V, then define a set
Jww)y ={W € Sw : Wy, #0}.
Definition 20 Define a partial order (Sw,>) by
(aobd) > (cod)
ffa>cand b>d.

Note that this is a lattice.

Here are some illustrative examples of the above ideas:
Example 1. n=1

Here H,(q) is spanned by {1,U:} and

fl=(11,11)

fUL = (12,12)
In ={1}

Jro, = {1, U1}

(note that 1 > U;).

13




Example 2. n=2

Here Hy(q) is spanned by {1 > Uz > U1 U>,UsU; > Uy > Fiz} (we have also
given the order) and

f1=(111,111)

fUy = (112,112)
fUL U, = (121,112)
FULUL = (112,121)
fUy = (121,121)

fFi2 = (123,123)

I ={1}
.NHQ.... = A““Hu Q.ww
Jivu, = AQN.Q‘HQNW
and so on.
Proposition 6 For any partition a € DY let E = (e, 0 e,). Then:
Eelg.
Proof:
Up to constants E is of the form

E=][F;

W.wa_ = Nuhm, = Hmw...awHMM...QMHMN:.QW....

for some @) > az > az > ... Making repeated application of proposition 4 (as
in equation 11) we see that E;g is a finite power of q.

S0

Proposition 7 Let u € F(D(a) — {ea}), then
Ry (E)|u) =0.
Proof:

Here Ry(E)|u) # 0 implies ujuy...u,, distinct, and so on, by equation 10.
But » € F(D(«)) implies u; = 1 and that no number can appear as a component
of u until every lower positive integer has appeared at least once more often.
The only possibility for u € D(a) is F{e,} = PrE.

More generally we have:

14

Proposition 8
w! = ..NHS\ = w! |V| W.

Proposition 9
Wediw.

These last two propositions imply the theorem. To see this, suppose Sy is
not linearly independent. Then there exists

X = M aiW; =0
W.eSw

with some «; non-vanishing. Consider in particular a maximal W; in the lattice
(Sw, >) such that a; # 0. Then
N‘:«: ﬁqa”mu.w M Quﬁgu.uuvﬂ.. Ena.wﬁ.ruq Q%E\mvus_ =0,
Wi2W;
so
@; = 0
by proposition 10, giving a contradiction. Therefore Sy is linearly independent
m our representation.

Proof of proposition 8:

There are two cases to consider. Either W and W' have the same root, or
they do not.

In the latter case the proposition follows from the observation that kFj; is
zero on any basis vector in which the i** to j** entries are not all distinct, so
that, from their definitions, the roots of all words W' are already zero on the
whole subspace containing v = PgW if W/ < W. To see this explicitly first
note that each root E takes the form

m
E= m.mw.n.. Gip1—2
i=1
where a; = 1 and
aQjp1 — U4 Vn..-.+H|Qu. Hva.A.m..
The first Fj; in the product tells us that for E|v) # 0 the components of v
Va,Vay+1---Vay—1

must be distinct (i.e. v is associated to the partition of n 4+ 1 whose Young
diagram has as its left hand edge a column of boxes of length at least ay — 1 ).
Without loss of generality we can make these components of v

12...a;—1.

15




The next Fy; in E tells us that
VayaVag41---Yaz—1

are distinet. It follows that the partition associated to v satisfying E|v) # 0
will be the lowest possible in the total order if in fact

_ch_p; Uaa+1y enulmw - A: 2..ay— :.

{ie. v has partition with second column at least this length). Iterating we
obtain the desired result. In fact we obtain the stronger result that R*(E,) # 0
only if (), @) appears in the natural (partial) order of partitions (c.f. Dipper
and James 1989},

In the former case we want to prove that Wiy, = 0 for all W’ 2 W (but
with the same root). We can work by an induction on the sublattice (P(«), >).
Consider a word Y, and assume that the proposition is true for all W’ < Y with
all W (it is true for W’ = E, the root of any W, by proposition 7). Without
loss of generality we may assume that this includes W' = Y. < ¥ such that
Y.U; =Y. We want to establish now that ¥ € Jyw implies ¥ > W for all W,
ie. Yo =01 Y 2 W, so it is sufficient to consider W £ Y . Note that this
gives W £ Y. < Y . Then with fW = (w,v) and writing Ry(H)|z) as H|z) for
for brevity

(w|YJv) =0

by assumption. Now we want
(wlY|o) = (wlY-Vilo)

which vanishes by equation 10 unless ¥ has a maximum or minimum at 7. In
the latter cases it takes the form

(w|Y.Us|v) = ¢t (w]Y|v) + (w]Y.|v') = (w|Y.]v')

where |v') is |v) with 2 components interchanged. If it was a minimum then
(w,v") = fZ for some Z > W such that Z = WU; and since Z V.S and
W £ Y. then Z £ Y., and the proposition is true by assumption. If it was a
maximum then (w,v") = fZ for some Z < W such that ZU; = W,so Y 2 W
implies Y. # Z and again the proposition is true by assumption.

This completes the proof of proposition 8.

Proof of proposition 9: .
We again proceed by induction using the (P(«), >) sublattice. Let E be the
root of some W > E and assume the proposition is true for W’ < W (it is true
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for the universal lower bound W’ = E by proposition 6). By symmetry, there
is no loss of generality in assuming the proposition true for W’ = W. such that
W.< W and W.U; = W for some ¢. Then with fW = (w,v) and writing W;w
for Wy, we have the inductive assumption

W.yw. # 0.

Noting that W = W.U; implies |v) = |PrW) has a maximum at ¢ we have, from
equations 14 and 15, :
Wlvy = W. (¢ |v) + |PrW.))
so that
Wiw = (w|Wv) = q{w|W.|v) + W .

The first term on the right vanishes by proposition 8, so we have
Wiw =Wyw =Eg £0

where we have used proposition 6 at the last step.
This completes the proof of proposition 9 and the main theorem.

4 Applications

To review: with A° = H,(q), M = V the A°-module defined above, B =
Endq.(M), and A = Endg(M), we have established that A°/K = NH.(q) so
NH,(g) € A for all g. The next question is ... Are there any other matrices
which commute with B in End(M)? Clearly not for q indeterminate. We will
see shortly that, at least for N = 2 there are not for any q. We do this by
computing B from np, M, and thence A. The final question is ... Is B given
by UZsl(N), i.e. by the quotient of Ugsl(N) faithfully represented on M? The
structure of UPsl(N) is known (see Lusztig 1989 and appendix A), so this will
be answered in the process of answering the previous question.

Some Algebra

The abstract algebraic problems associated with centralisers of non-semisimpie
algebras are interesting in their own right. We do not wish to get bogged
down with what are, in the present context, technical details, so we will merely
quote the results applicable here and refer to a companion paper - Martin and
McAnally 1991.

Zognww:wm.?%@.vamammbmmnoEUOmm.Zmbo ?@mﬁ.mvgomimmmﬁamm
(resp. S;) simple A° (resp. B) modules then :

aoM =P m;P;

(see e.g. Curtis and Reiner 1962) implies dim(S;) = m;.
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Let J = rad(B) so B/J is the maximal semi-simple quotient (as an B
module) of B, and B/J C B as an algebra. In the case of B semi-simple
(J =0) then so is A°/K and M may be regarded as a B ® A°/K module

Enm@méw..

In our case each simple and projective module of the algebra B/J may be
associated to some simple B module S;, and

BrigaM =P S; ® P,

where dim(F;) is then the multiplicity of each simple module in g;; M (or g M,
although not in this case as a direct summand). Obviously if A°/K = A =
Endg(M) there is a similar result with A and B interchanged.

These essentially combinatorial results provide the first stage in establishing
the structure of the centraliser from that of yg, M. What remains is the effect
of the internal structure of the indecomposables on the quiver diagram - which
can then be computed up to Morita equivalence. We will give explicit examples
shortly.

4.1 The case N =2

Our main result is that yy, M is faithful. Since we know the structure of 2H,
(we will review it now), the content of M in the case N = 2 can be deduced as
follows:

Recall from I that each block (i.e. each connected piece of the quiver dia-
gram) in 2H, takes the form either of a single simple module or, for some m,
has Loewy structure

51 m 83 Sm+1
sy @ m@ Si-1 Siq1 | D Sm
2 i=2 8§ Sm+1

From the definition M is a direct sum of permutation modules (see I - taking
the large imaginary limit of z in the definition there, or Dipper and James
1986,1989), and these may be written as a nested sequence of invariant subspaces
M D My D M;... such that M;/M;,, is a given Specht module (a module with
Si
Sit+1
which has this property must contain at least one copy of each indecomposable
projective except possibly the leftmost one above (in order that the glue between
copies of s; be represented). The faithfulness, the symmetric property of the
generators in M, and the defining relations, ensure that indecomposables must

structure in the labelling convention above). A faithful representation
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look the same (in Loewy decomposition) upside down, so no other glue can be
omitted.

On the other hand a simple counting argument shows that s,,41 is also a
direct summand of M. This means that there are at least as many inequivalent
indecomposables as simples in g, M.

The symmetry and Specht properties allow no other indecomposable con-
figurations. We see that M is ‘almost projective’, consisting of a direct sum of
51
S2
copies of 5,41 type modules, which alone are not projective. Note that these
could be quotiented out without destroying the faithfulness property, so that
M/ L for some (known) invariant subspace L is a faithful projective module.

These observations determine the NH, module content of M completely.
We are now in a position to read off the structure of the centraliser algebra.

almost all indecomposable projectives (only type of multiplicity zero) plus

4.2 Examples

The situation is best illustrated by some examples. We write ¢ = *™/"_ In fact
the situation differs in no qualitative way for different rational r values within
N = 2, so any one well illustrates the procedure. Here are the first few cases
for N=2,r=4:

The successive rows of the table below give the generic irreducible dimensions
of 2H, for n =0,1,2, .., 8 respectively.

il
1 1
2 1
2 3 1
5 4 1
5 9 5 1
14 14 6 1
14 28 20 i 1
42 48 27 8 1

Next we give the (corresponding) dimensions for the various ‘permutation’
modules in the representation Rj;. The representations down the left hand
spine of the diagram occur only once (equal numbers of 1’s and 2’s in the basis
vectors), all the others twice in each R, (so dim(R3) = 2"*1). Note that each
representation generically contains the corresponding irreducible in the table

above plus a copy of each irreducible to the right in that row (see e.g. Robinson
1962).
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2 1
3 1
6 4 1
10 5 1
20 15 6 1
35 21 7 1
70 56 28 8 1
126 84 36 9 1

The following table gives the indecomposable content of each of the blocks
above for r = 4, as forced by the symmetry, faithfulness and Specht conditions:

241 1
1 S
24+ 2 2 .
1 1
1
a4 4 441 1
1
5 1 5
4+ 4 i +1 541 1
5 1 [
6
144 8 41 14+ 6+ 1 641 1
6
20 8 20 i 1 1
5 + 81 +1 8 + 6 20+ 6 s 1
20 6 20 1 1 1
26 1 1
484+ 16 1 +8+1 8+8+ 126 84 26 841 ¥
26 1 1

Note that the n = 7 spine block is not faithful, and that quotienting by the
trivial representation in the larger algebra followed by a vertical move is identical
to the action of the standard Morita equivalence functor from 2H, ., — 2H,
(from Martin and Westbury 1991).

Finally, in the following table we form the centraliser structure corresponding
to that in the diagram above (in the form (multiplicity).(dim. of indecompos-
able)). The dimensions of simples come from the multiplicities of indecompos-
ables in the diagram above using the results quoted in the previous section (not
forgetting that each block has multiplicity 2 unless on the left hand spine), and
so on. The structures of the indecomposables come from the observation that
the quiver blocks of yg, M from above contain indecomposables with Loewy
structure

m EH Sm41
m@ §i—1  Sit1 D Sm D Smi1-
i=2 S5 Sm+41

We thus read off the non-trivial morphisms between the indecomposables P; C
ot M (which commute with the action of 2H, and are in the radical of B) as
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(ignoring multiplicities - see Martin and McAnally 1991)

agz a3 om Cm41
— - — —
~UM B2 &Uw Ba Bm ‘van_uu lw..:.fu M\BATH
— —_ —_— —
where
@i =vip1 £ 0 i=23,.,m
Bici = #0 1=2,3,..m+1

and all other composite morphisms are zero. Altogether this glues the simples
in B together as follows (with the multiplicities now forced)

1 3
2.2 1.4
3
2.1 2.3 1. 2
3
2
4.2 4.4 1. 4
2
3 1
4.1 4.3 5. 2 1. 6
3 1
2
8.2 14.4 6. 4/ 1.8
2
3 1 6
8.1 8.3 20. 2 6. 6 L. 13
3 1 6
2 4/
16.2 48.4 26. 4/ 8.8 1.2 6
2 4’

This is the structure of U;sl(2) on M (c.f. Lusztig 1989 and appendix A).
It is a straightforward combinatorial exercise to check that the correspondence
continues for higher n. Note that the centraliser algebra U7sl(2) is Morita
equivalent to the original algebra 2H,(g), so the centraliser of the centraliser is
the original algebra and the pair are in Schur-Weyl duality.
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Appendix A: Quantum s/(N) . .
Here we briefly review the properties of Uysl(N) for comparison with the
results of section 4.

Definition 21 For N a posilive integer and ¢ an indeterminate define Uysl(N
as a unital associative bialgebra over Tg*'] with generators 1,e;, fi, k;
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1,2,.,N — 1) in the following way: Firstly, there exisis a left Uysl(N) module
with basis {v1,va,..,un} and action of Uysi(N) given by:

€ V; = .m&lp_cu.lH

fi vje1 = 810y
Waé_u. = Tm-um -+ m&iﬂmluv vj.
All finite dimensional indecomposable representations appear as constituents of

those generated from this one by use of the coassociative comultiplication, which
s given by .

mie;)) =e; @1+ k; @e;
m(fi)=fi®k +1® f;
EQQ.V = _wnn. ® m.....

Truncating this procedure at the n** comultiplication gives the quotient
algebra U'si(N).

For example, for N = 2, the complete list of finite irreducible representations
is as follows. There is a one dimensional represenation e = f = 0,k =1,
and then one of each dimension, p, called rp—1, with the action on a basis
{v1,vs,.., 0} given by

(e) vi =[i — 1] vy

(f)wvi= FI& Vit1
(k) v = g+ .

Note that | is our defining representation. It follows that

TL®Tm = Tm—-1D rmy1 (18)

and the content of the various comultiplications of 7, can be deduced from this.

The above definitions hold for ¢ specialised to any non-zero complex number
other than a root of unity. There are some inequivalent choices available for
the definition of U,sl(N) in the specialisation to g a root of unity. The one
appropriate for its roll as a centraliser algebra (but which excludes the so called
cyclic representations, ¢.f. Date et al 1990) is the following.

Definition 22 For g = ¢'™/™ and r integer we define Ugsl(N) as before, except
to include additional generators

o

ei/Ir]!

and

Il

£ =

where it is to be understood that r is taken to its specialisation after reducing
the ratio 1o its lowest form.
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Note that in the specialisation to r integer equation 16 does not generally
hold. However Uysl{N) is in fact a Hopf algebra, which ensures that the product
of any module with a projective module is projective.

Proposition 10 [n the specialisation to r tnteger the representations r, remain
well defined and indecomposable, but develop an irreducible invartant subspace
with basis

{viz1 : 1=0,1,2,..,(p — Dmodr mod.r}

and irreducible quotient. For p+ 1 = mr 4+ k the quotient is isomorphic to the
invariant subspace for p+1 = mr — k.

Proof: In this case it follows from the definition of r, and [s] that all actions
are zero except

e v; o Vi1 (i #1 mod.r)
I oK Wit1 (p—1#0 mod.r)
elr) Vipqa & Vi1 (i=1 mod.r)

Dy x viga (p—1i=0 mod.r).

The representations are thus block upper triangular in two blocks when written
with the specified basis elements first. The irreducibility and indecomposability
properties follow from continuity with the generic case.

For example, with r = 4 we have the following table: The top line gives the
generic irreducible dimensions and below are the non-generic Loewy decompo-
sitions into simple modules:

p+1: 1 2 3 4 5 6 7 & 9 .mr mr+l mr + 2

rpr 123 4 3 2 1 8 6 ..mr m(r—1) m{(r—2) ..
2 4 6 3 m+1  2m+1)

where the top representation is isomorphic to the first one of that dimension
found by moving to the left, and the invariant subspace is not isomorphic to
any representation to the left.

Note that r.,, (m a natural number) remains irreducible in proposition 10,
so it will also be projective.

It is the representation on M = @"+t'@" (obtained, up to isomorphism,
by repeating the comultiplication in definition 21  n times) which commutes
with the action of H,(g). Strictly speaking the action of H,(g) required is
the isomorphic action obtained from equation 7 by replacing 1 — —1 in the
off-diagonal elements. This may be readily verified by direct computation. In
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particular note that the additional generators in definition 22 must be included
in the centraliser algebra B.

Appendix B: The vector h

Definition 23 For each non-negative inleger m define an m—+1 component row

vector
m . m=-1

b = (@™ 0™ ord?)-

and then s € V' by
s = Qpzihm.

Remark 2 There is an ordering of the vy basis such that R (Yn) = s's.

To see this introduce a basis B for the N! dimensional space L = ®%_, Gy,
(isomorphic to the vy subspace of V, which we will call VV¥~) as follows:

B = {{a1e5...an) : a; €{0,1,2,.,7—1}}.
The isomorphism is given by
J: V'Y S L

defined on the given bases by
J:a—a
where
a;i = No(ajei st aj > o).
Definition 24 Define a length function
I:B—=17

by

(a)=N-) a.

We will also write {(a) for & € V¥V to mean I(J(a)).
Then for a € B and i = 1,2, .., N — 1 define matrices M; € Endg(L) by
b

e

M;a = qa+(aas...a;i—1 aiy1 a; + l..ay) Q.wlavmi > (Il

a

E..@ = ml:v + Awpmﬁ:.wmlu m:.+u. -1 @-@7@ .
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It follows by direct computation that

Ryt Hy-1(g) = Endg(L)

is given by
R (U) = M,

and the remark follows from this.
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Corrections to RIMS-782

Page 10:

The partial order in Definition 11 should be denoted < and not <.

We use another partial order. Let a sequence of moves from s tot in Defi-
nition 11 be recorded by ¢ = s¥1/2m e,

P e ghiainm

then:

Definition 11b Define a partial order (D(a), <) by {s} < {t} iff for some lis
iyig.im such thatt = elia-= there exists a sublist, say ij,ij,-4j, (k < m) with
j1 < j3 < - < ju and such that s = et P,

Page 11:

Definition 12 applies to the partial order in Definition 11b.

Section 3.2.1: Clarification of definition of (eq,s). For each partition o
of k+ 1 let us define elements (e4,¢q) € Hi(g) iteratively as follows. Firstly
take (e(1), eqy) = 1 and suppose (ea_,ea_) defined for all . partitions of k or
less. For each « a partilion of k + 1 there is some o a partition of | <k +1
obiained from a by removing the first column of partition shape ov. This column
has length m = k + 1 —1 (note that m > (a.)}, the length of the first column
ino.). Then

(¢asta) = Ym anu.nn-v?d

(recall that X denotes the translation of X by Ui+ Uiym).
Definition 15 Equation (12): let g; = 1 — qU;, then

T.wo& =gi(sot).

Correspondingly we must replace U; by g; in examples on pages 11,13,14.
Page 13: Definition 20 no longer gives a lattice. Correspondingly on page 15
(line 8) we have only a poset (Sw,>)-

Page 16: From the modification of Definition 15 we have:

line 15: Y. gi =

line 21: (w|Y{v) = {w|Y. gi|v)

line 26: Z = Wy

line 28: Zg; = W ; and the subsequent implication follows from Defini-
tion 11b.

Page 1T:

line3: W.g; =W

line 6: W = W. g;

line 8: Wlv) = W((1 — ¢*)lv) — q| PRW.))

line 10: similarly;

line 12: Wyw = —qWyw. #0




