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Aims

Compute observables in statistical mechanics
e.g. QCD mass gap
.
Determine representation theory of Brauer algebra
e.g. representation theory of the symmetric group
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Objectives

Talk aim: relate SM and RT in such a way that they significantly inform
each other.
Our first job is to unpack the terms (in the title) sufficiently.

• (Micro course in) Statistical Mechanics

• Representation theory

• meets

Our summary of SM cannot be entirely superficial, or we won’t have any
concepts to pass over to the other side.
Allow 10 minutes.
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Statistical mechanics tries to model bulk properties
of large collections of interacting microscopic components,
given a model for the microscopic interactions
(such as might come from electromagnetics and quantum mechanics).
Note that a very complete understanding of quantum physics (a complete string theory, say) is of little practical use to humans. It is not

in the business, for example, of telling us that ice will melt.1 This is not a reductive but a cooperative phenomenon.

We ignore microdynamics
instead say probability of finding system in equilibrium in microstate s
depends only on ‘energy’ H(s) of that state, and ‘temperature’∝ 1/β
(no time for heat-bath arguments here).

P(s) =
eβH(s)

ZH(β)
where Z =

∑
s

eβH(s)

〈O〉 =
∑

s

OeβH(s)/Z

1Never mind what consciousness is, say.
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For now, fine details of microscopic interactions are unimportant.
We can stylise the degrees of freedom of our ‘atoms’, and their
interactions.

Let possible state of each of our atoms be labelled by
Q := {1, 2, ..,Q}
and let them interact, pairwise, if they are sufficiently close.

Let adjacency be determined by adjacency on a graph.
(In practice this graph would have very special properties, but it is
convenient to sustain this level of generality for now.)

Notation: S ,T sets, T S := hom(S ,T )
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For each Q and graph G there is a Q-state ‘Potts Hamiltonian’:

H : QVG → < (1)

σ 7→
∑

(i,j)∈EG

δσ(i),σ(j) (2)

Case Q = 2 is Ising Model on G .

E.g. has H = 9
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Z(β) =
∑

σ∈QVG

exp(β
∑

{i,j}∈EG

δσ(i),σ(j))

This is the Potts model partition function.
Idea: ordered states have biggest H, so biggest individual weight;
but many more, typically disordered, states give lower H values.
The winner in this ENERGY/ENTROPY battle for 〈O〉 will depend on β
(inverse temperature).
This seems roughly right. How good is it?
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Our Z is a polynomial in eβ

but we need to model things like:

Very hard to measure close to Curie point experimentally
(critical slowing down),
but this result on Avogadro’s number of atoms is best modelled by
something non-analytic in the thermodynamic limit...
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On a finite square grid the zeros of Z might be distributed like

while in the limit these become continuous distributions, pinching the
real axis at the phase-transition point.
We are interested in computational formalism rather than results today,
but a couple more interesting finite lattice cases follow.
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It looks like it works.
How compute?

Fixing Q and H, we have a polynomial for each graph:

 ZG

Introduce relative Z : ‘partition vector’

 fix configuration s ′ ∈ QVG′ on subset of vertices VG ′

call this (ZG )s′ .
Vector ZG |G ′ := ((ZG )s′)s′∈QV

G′
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ZGG ′′ =
∑
G ′

ZG |G ′ZG ′′|G ′

Further

— data now organised as matrix: iterated composition.
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Example: simple 2D crystal lattice:

Z = 〈|T l |〉

(Note that this grows the graph transversely but not laterally — will
eventually need a separate growth in lateral direction, thus changing T
— and stability with respect to this growth too.)
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Typical observable is correlation function: dependence of correlation
between states of 2 separated atoms on separation
— normally exponential with some decay rate ‘correlation length’,
that can depend on temperature.

So Z ∼ T l .
But T is +ve; so Peron-Frobenius theorem applies;
so large l limit controlled by largest eigenvalue of T .
— gap between this and next (or appropriate) lower eigenvalue
determines a correlation length (and so on).

Upshot: want spectrum of T .
(See later for some necessary refinements, such as lateral thermodynamic limit.)
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Computing spectrum T hard (integrable or not).
Can sometimes express

T = R(t)

representation matrix of (β-dependent) element t of some algebra, in
some big representation R. (No time to explain why — not always the case.)

(NB still holding lateral graph fixed here — will need a new algebra for
each larger lateral size.)

Idea: decompose
R = +iRi

(Ri smaller representations) gives very helpful block diagonalisation.
Helps computationally. Also helps physically — labels i label correlations!
(Masses in Field Theory.)
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TO DO: Universality; Equivalence of models; Examples; dichromatic
polynomials; Effect of Phase Transition; Connection to QFT; lateral
thermodynamic limit;...
...quantum case (e.g. quantum spin chain); quantum group;
renormalisation group; fusion; boundary conditions;...
...but anyway, we are interested now in the Representation Theory of the
Transfer Matrix algebra.

What is the TMA?
Depends on the model.
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What does the physical context tell us about the TMA?

• TMA is sequence of algebras including the lateral thermodynamic
limit.

• labels for simple modules should be associated to correlation lengths
(and hence have some metricity)
coherently through the whole sequence
(Once an observable is defined, it makes sense irrespective of the
size of the system.)
...suggests functors between module categories for algebras in
sequence.

Core properties cf. weight theory and invariant theory in Lie theory.
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Category theory construction

m, n ∈ N0 m
∐

n := m × {1} ∪ n × {0}

P(S) partitions of S

e.g. ∈ P(3
∐

2) {{(1, 1)}, {(2, 1), (1, 0), (2, 0)}, {(3, 1)}}

Consider triple CP = (N0, homP(−,−), ∗)

homP(m, n) = P(m
∐

n)× N0

E.g. A ∗ B =
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CP category, with 1n = (this is case n = 3).
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K a ring
KCP K -linear category
δ ∈ K , define relation ∼δ on KhomP(m, n)

A ∼δ B if δA2(A1, 0) = δB2(B1, 0)

This is congruence, so for each δ, quotient

CP = (N,Khomδ(−,−), ∗)

K -finite category.
‘Partition category’, End(n) = hom(n, n) is n-th partition algebra, Pn.
NB, Khomδ(m, n) is left End(m) right End(n)-bimodule
so get lots of functors between module categories.

F : Pn −mod → Pm −mod (3)

M 7→ hom(m, n)⊗Pn M (4)

(if δ a unit, the ascending ones are full embeddings — thermodynamic
limit)
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Write homl(m, n) for the image ∗(hom(m, l)× hom(l , n)) in hom(m, n).
This is a sub-bimodule. Easy to see that

hom(n, n)/homn−1(n, n) ∼= KSn

Thus simple modules of Pn indexed (for δ a unit) by simple modules of
collection of symmetric groups.
homl(n, l)/homl−1(n, l) is left Pn right Sl module, and projective as
Sl -module, so

M(λ) = homl(n, l)/homl−1(n, l)⊗Sl
∆(λ)

is cellular inflation of Sl cell module, hence Pn cell module.
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Physics: Set

(i : i+1) :=

(i .) := ∈ Pn

(these have n = 7). Then

t = c
∏

i

(1 + v(i .))
∏

i

(v + (i : i+1))

where v = x−1
δ , c scalar,

is t for 2D crystal lattice, δ2-state Potts model. (Now choose a
representation.)
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Subcategories

homB(m, n) ⊂ homP(m, n) — subset such that partition part is a pair
partition
NB closed under *:
CB = (N, homB(−,−), ∗)
δ-quotient:
Brauer category/subalgebra.

homT(m, n) ⊂ homP(m, n) — subset such that partition part is planar:
Temperley-Lieb subcategory.

(Aside: Gram matrices for contravariant forms on cell modules give
access to simple modules — and can sometimes be calculated by
integrable methods...)
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Schur-Weyl duality and representations

What is the representation R?

For N ∈ N let V = K{e1, e2, ..., eN}. Then we have the following
collection of pairs of commuting (indeed centralizing) actions:

GL(V )

##GG
GG

GG
GG

G
Sn

{{wwwwwwwww � _

�
O(V ) //

?�

O

V⊗n Bn(N)oo
� _

�
SN

;;wwwwwwwww?�

O

Pn(N)

ccGGGGGGGGG
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Fix a field k. Then recall that Vect is the category of k-spaces. For G a
group and V a G -module then VectG ,V is the subcategory with objects

k,V ,V 2,V 3, ...

and homs commuting with the diagonal action of G , i.e.

f : V m → V n

such that
f σv = σfv ∀σ ∈ G

This inherits the tensor structure from Vect.
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The following functor

FN : CP(N) → VectSN ,V

is a representation of CP. We begin by giving the images of some
elements (in case N = 2):

homP(1, 0) 3 7→
(

1 1
)

homP(0, 1) 3 7→
(

1
1

)

homP(1, 1) 3 7→
(

1 0
0 1

)

homP(2, 2) 3 7→


1

0
0

1
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homP(2, 2) 3 7→


1

0 1
1 0

1


Note that all the images are invariant under the appropriate S2 action.
We conclude by noting that CP is a tensor category with

and that the examples given above (respectively their direct
generalisations to other N) generate.

Thus we have constructed representation for all the partition algebras
simultaneously. This gives the representation R for any given n.
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—
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Let T = V⊗n with V = K{e1, e2, ..., eN} for some K .
For physics K = C but often a lattice over both.

GL(V )
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contribution)
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Tn(N), Bn(N) and Pn(N) all make sense with N replaced by an
indeterminate scalar (see later).
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Finite dimensional algebra over K

Aims:

1 classify indecomposable projectives (simples)

2 describe blocks

3 give projective decomposition matrices / socle series /...

Often there are intermediate modules
(cell, standard, Specht, over Z)

A = Σλdim(∆λ)∆λ = ⊕λdim(Lλ)Pλ

Combinatorics / Physics
Diagram algebra methods (see later).
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The physical background

• Roughly: Objects on the left are ”symmetries” of lattice models;
objects on the right are building blocks (“Transfer Matrix Algebras”)
of lattice models.

• Tn(N) is “Transfer Matrix Algebra” for many important 2D lattice
models.
Includes ones which satisfy criterion of realism — e.g. predict phase
transitions, observable critical exponents etc. (no time to show how);
and integrable ones (YBE — it is quotient of braid group).
Physically vital question: what is corresponding algebra for 3D (4D)
lattice models?
Answer: a subalgebra of Pn (which is ‘high D’ case).
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For X a set, let QX be the set of functions from X to {1, 2, ...,Q} — the
set of colourings of X from Q colours. For each graph G (vertex set VG ,
edge set EG ) there is a function

ZG (β) =
∑

σ∈QVG

exp(β
∑

{x,y}∈EG

δσ(x),σ(y))

This is the Potts model partition function.
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What we did

Armed with the physical picture...

• For TL: determined 1-3 in characteristic zero.
(char.p done by Arkhipov)

• discovered partition algebra
determined 1-3 in characteristic zero.
(char.p defeated all comers so far)

• For Brauer: (1 known since Brauer, Brown 50s) PPM with Cox,
Devisscher, determined blocks in characteristic zero;
3 is interesting problem.
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Return Sn:
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Return Sn: Bn(N):
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Return

Sn: Bn(N): Pn(N):
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