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On diagram algebras and

statistical mechanics



Workshop: "Cellular and diagram algebras in mathematics and physics’’

Idea: try to discuss relationship

structures of towers of diagram algebras

↔

statistical mechanical models of many body problems (in

which they arise as computational tools)

Aim to discuss in a way which informs problems in

representation theory with something like ‘physical

intuition’. (E.g. ice cubes and icebergs melt at same

temperature  sequences of algebras have global limits.)

To this end, have to start by recalling physical context of

statistical mechanics.



Stat Mech tries to model equilibrium many body problems

by positing a probability distribution on set of possible

states of system under consideration (Gibbs),

such that relative probability of ‘finding’ system in state s

in some epoch of time takes form

exp(−βH(s))

where β = 1
kT

,

H : {states} → R is ‘Hamiltonian’ (absolute probability

exp(−βH(s))

Z

Z =
∑

t exp(−βH(t))).

Depending on axiomatic framework H may have

interpretation of Energy (ergodic hypothesis)

(as in, the more energy required to sustain a state s, the

less likely we are to be in it — idea being that high energy

states are less damped when T >> 0, and there is a lot of

kinetic energy about).

Expectation values of observables are then

〈O〉 :=

∑

sO exp(−βH(s))

Z



Phenomena amenable to Stat Mech - arguably Two types:

I. microscopic constituents

of system practically non-

interacting

II. strong cooperative inter-

action (assumes macroscopic

significance at some Tc)

⇒ thermodynamic func-

tions of macroscopic sys-

tem follow from energy

levels of individual micro-

scopic constituents

⇒ energy levels of macro-

scopic system not directly

related to microscopic con-

stituents - small changes in

T can produce huge changes

in thermodynamic functions

e.g. specific heat of gas,

solid

condensation of ideal Bose

gas

spectrum of black-body radi-

ation

elementary electron theory of

metals

paramagnetism

e.g. condensation of gas

melting of solid

(anti)ferromagnetism

order-disorder transitions in al-

loys

normal material → supercon-

ductor

lattice spacing dependent LGT

→ QFT

...most thermodynamic

functions smooth continu-

ous (in e.g. T )

...discontinuities/singularities

in thermodynamic functions.

Formidable mathematical

problems.
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(NB Inter atomic interaction

important in solids, but po-

sitions don’t vary much so

go to normal coordinates and

treat as practically noninter-

acting SHOs.)
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type II

How model microscopically?

How compute macroscopically in model?

What do we learn?

OK to simplify model a little

(1. necessary; 2. still qual-

itatively interesting; 3. still

quantitatively interesting!)
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Example

Ferromagnetism (directly ports to many other settings)

N site crystal lattice (3D, maybe 2D)

i

j

atom is effective magnetic dipole with magnetic moment µ

of magnitude

gµBj

Lande g-factor

44jjjjjjjjjjjjjjjjjj

Bohr magneton = e~/2mec

OO

j ∈ 1
2N, state quantised to one of 2j + 1 orientations in

space. (Via Dirac (1928) treatment of electron spin and

Pauli exclusion principle.) a

This µ is very small and yet we have a macroscopic effect.

a Iron, nickel, cobalt spontaneous magnetisations fit with j = 1/2

(via e.g. Weiss domain theory (1907)).
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Ferromagnetism
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MODELS:

Pair interaction of spins i, j: quantum Hamiltonian

ǫij = Jijsi.sj so overall H ∼∑

ij Jijsi.sj

‘Exchange coupling’ Jij drops off quickly with distance so

consider only J = Jij nearest neighbours (n.n.) on crystal

lattice.

→ Heisenberg model of ferromagnetism (1928) (back to

this later)

OR quantise along (say) z-axis to get diagonal part

H ∼ J
∑

nn

σiσj

(σi ∈ {1,−1})
→ Ising–Lenz model of ferromagnetism (1920s)

Z =
∑

s

exp(βJ
∑

nn

σiσj)

Can we compute and analyse Z? . . . for 1023 atoms.
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Stat Mech of Ising model

Disregard kinetic energy of atoms on vertices (not relevant

for phase transitions).

Hamiltonian in config {σ1, σ2, . . . , σN}

H({σi}) = −J
∑

nn

σiσj − µB
∑

i

σi

(includes effect of external magnetic field B).

Partition function

Z(B, T ) =
∑

configs {σ}
exp(−βH)

Helmholtz free energy

A(B, T ) = −kT ln(Z)

Internal energy

U(B, T ) = kT 2 ∂ ln(Z)

∂T
=

∑
H exp(−βH)

Z

Specific heat

C(B, T ) = −T
∂2A

∂T 2

net magnetisation

M(B, T ) = −∂A

∂B
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Put Z = Z(0, T ) for now. Put J = 1.

Finite system Z positive integral polynomial in eβ .

NB, Ferromagnet is ∼ 1023 atoms; LGT can be

unboundedly large. N =∞ likely to be a simplification!

What kind of limit makes sense?

What do we expect to happen?

How interpret?
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spontaneous magnetisation

M

T_c

non−analyticity

TRoom temperature

nonanalyticity of this function

⇒
need something dramatic to happen to Z in crossing over

from energy dominated to entropy dominated phase.

This is not crystal melting point.

Tiny microscopically irrelevant change in T produces huge

macroscopic change.

Presumably a cooperative effect.

Does Z model it?
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Energy vs Entropy

At very low T (β >> 0) Gibbs probability e−βH is much

higher for ‘ordered’ states,

so (given spontaneous symmetry breaking) a large net

magnetisation is plausible.

At very high T all states equally likely,

but there are many more ‘disordered’ states (Entropy of

disorder is higher) so their contribution dominates the

state sum in Z.

A low net magnetisation is inevitable.

Our question is about the nature of the crossover between

the ‘energy dominated’ and ‘entropy dominated’ regions.

Smooth or abrupt?
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Perform
∑

s (2D case, see later): x = e2β

Z ∼
N∏

k=0

(
(x + 1/x)2 − 4(x− 1/x) cos(2πk/N)

)

(Caveat: expression is approximate in many senses! See references in [Martin91] for something usable.)

Polynomial: only analytic features are zeros.

1
hot cold

Set κ = 2 sinh(2β)
cosh2(2β)

.

Point where zeros pinch axis is κ = 1.

Internal Energy density (measures amount of correlation of

spins)

U

N
= −2 tanh(2β)− sinh2(2β)− 1

sinh(2β) cosh(2β)

(
2

π
K(κ)− 1

)

where K(κ) is complete elliptic integral of first kind.

I.e. energy∼ (T − Tc) ln |T − Tc| close to κ = 1.

⇒ slope of energy curve (hence heat capacity) infinite.
14



Unfortunately very few 2D models ‘solved’ this way,

none in 3D! (No LGT etc.)

The paradigm has capability to represent critical

phenomena,

but much computation to be done.

How compute?

0. Brute force — no! 21023

states.

1. Formalism

1.1 then brute force

1.2 ‘integrable’ cases.
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Formalism: depends on interaction, but suppose e.g.

Hn.n. = δσi,σj
=







1 σi = σj ∈ {1, 2, ..., Q}
0 o/w

(Q state Potts model (Domb, Potts 1950s)).

Then have map from graphs G to polynomials ZG.

Physically we’re interested in sequences of graphs s.t.

corresponding sequence of polynomials settles down to a

limit (in above sense of limit analytic structure).
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Aside: Here we’re interested in computational formalism,

but before getting into this, here are some examples of

results — the Physics payoff from the mathematical

formalism...

The figures show the roots of the polynomial partition

function ZG in x = exp(β) for:

Q = 3–state Potts model on 12× 13 square lattice.

Q = 3–state Potts model on 12× 13 square lattice

(plotted in exp(−β)).

Q = 3–state Potts model on 12× 13 triangular lattice.

Q = 4–state (3,1,0) clock model (see [Martin91] for

notation) on 10× 13 square lattice.

In each case the scale is set by unit length of the positive

axis, so the first figure (for example) provides evidence of a

phase transition for positive temperature.
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(G is crystal lattice; ZG is partition function.)

Hereafter if G is a graph then VG is vertex set.

For any V ⊆ VG let x denote a particular configuration of

‘spins’ on V .

Let ZG|x be ZG but with V fixed to x.

ZG|x =
∑

s s.t. state s|V =x

exp(−βH)

ZG(V ) is a vector indexed by configurations of V , whose

x-th entry is ZG|x.

‘Partition vector’.

If G = G′ ∪G′′ where VG′ ∩ VG′′ = V

ZG =
∑

x

(ZG′(V ))x(ZG′′(V ))x

Typically G has topological properties, V is a boundary:

G’

G’’

V

V
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Example

V V’ V’ V’’

G G’ GG’

ZG(V, V ′)ZG′(V ′, V ′′) = ZGG′(V, V ′′)

‘Transfer Matrix’ T .

Typical physical system has at least 1 direction translation

symmetry.

G = G1G2G3...GM

ZG(V, V ′) = T M

ZG =
∑

s,t

(T M )st

or, say

= Tr(T M ) =
∑

i

λM
i

λi eigenvalues of T .

T equiv to Hermitian, indeed real symmetric, matrix.
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NB Real β, finite size

⇒ ! λ0 of largest magnitude (+ve)

so Helmholtz free energy ∼ 1
N

ln(Z) ∼ ln(λ0).

NB Correlation functions (see later) require other

eigenvalues.

So investigate spectrum T .

Next step is to break up T into local factors — matrices

accounting for effect of one local interaction at a time:

V’V

G

1

2

3

NB. Large scale structure of G just here for translation

invariance. Could be open chain, ...or arbitrary transverse

graph.
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V’V

G

1

2

3

T = T1T2T3...

T1 =

0

B

B

B

B

B

B

B

B

@

eβ

1

1

eβ

...

1

C

C

C

C

C

C

C

C

A

T = T1

0

B

B

B

B

B

B

B

B

@

eβ

eβ

1

1

...

1

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

@

eβ 0 1

0 eβ 0 1

1 0 eβ

1 0 eβ

...

1

C

C

C

C

C

C

C

C

A

...

Sanity check: rows and columns indexed by configuration of spins

in respective lattice layer. Write 〈111...| for row position

corresp. to spin a in state 1, spin b in state 1, etc.. Then

〈111...|T1|111...〉 = exp(β)

since when spins at ends of edge 1 both in state 1 get

contribution βδ1,1 to H.
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v = eβ−1√
Q

(Q = 2)

T = (1 + vE12)
︸ ︷︷ ︸

T1

(1 + vE23)
√

Q (v1 + E2.)

E12 =
p

Q

0

B

B

B

B

B

B

B

B

@

1

0

0

1

...

1

C

C

C

C

C

C

C

C

A

E2. =
1√
Q

0

B

B

B

B

B

B

B

B

@

1 0 1

1 0 1

1 0 1

1 0 1

...

1

C

C

C

C

C

C

C

C

A

R(U−) = E− representation of Temperley–Lieb

algebra (1971) T2n(q) (q + q−1 =
√

Q).

I.e. T = R(X), X ∈ T2n(q).

⇒ spectrum T , correlation functions etc.

at least partially indexed by simple modules of TLA.

(NB. Independently of temperature.)

(This is elementary. Any ST putting T in upper block

triangular form partitions its spectrum accordingly. If R

reducible such a ST manifests this.)
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Change the model — change the algebra (or rep.)

ZG =
∑

s exp(β
∑

n.n.,ij δσi,σj
)

=
∑

s

∏

n.n.,ij

(
exp(βδσi,σj

)
)

=
∑

s

∏

n.n.,ij

(
(eβ − 1)δσi,σj

+ 1
)

=
∑

s

∑

e∈P (EG)

∏

edges∈e

(eβ − 1)δσi,σj

(P (EG) power set of set of edges of G)

ZG =
∑

e∈P (EG)

Qc(e)(eβ − 1)|e|

(c(e) number of connected components of e)

‘dichromatic’ (or Whitney-Tutte) polynomial.

eβ = 0 case is T = −0  adjacent sites must be coloured

differently: chromatic polynomial (Beraha 1970s etc.)

NB, well defined for any Q.
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NB, require to write this in Transfer Matrix formalism.

(Consider eβ = 0 case.)

Consider graphs built from Transfer Matrix layer of 2 sites

1

2

(for simple concrete example).

Basis should be possible connectivities between first and

last layers of such a graph.

NB, if these layers disconnected then extending graph

cannot connect them so submodule with basis of

connectivities (partitions) of a single layer of 2 vertices:

{{{1}, {2}}, {{1, 2}}}.
I.e. either connected or not.

Focus on this 2d submodule for simplicity.√
QR(U1.) is the ‘hot’ operator, so

√

QRc(U1.) =




Q 0

1 0





And similarly for the cold operator.

actually prefer convenient base renormalisation to

R(U1.) = R(U2.) =

 √
Q 0

1 0

!

R(U12) =

 

0 1

0
√

Q

!
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Tc = (−1+
√

QRc(U1.))(−1+
√

QRc(U2.))(1−
1√
Q

Rc(U12))

=




Q− 1 0
√

Q −1








Q− 1 0
√

Q −1








1 −1/

√
Q

0 0





=




(Q− 1)2 −(Q− 1)2/

√
Q

√
Q(Q− 2) −(Q− 2)





To extract chromatic polynomial need good boundary

conditions!

QR(U1.U2.) completely isolates graph.

Thus R(U1.U2.)TcQR(U1.U2.) = ZGR(U1.U2.)



Q 0
√

Q 0








(Q− 1)2 −(Q− 1)2/

√
Q

√
Q(Q− 2) −(Q− 2)








Q 0
√

Q 0





= (Q(Q− 1)2 − (Q− 1)2)




Q 0
√

Q 0





ZG = Q(Q− 1)3
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Hence “Whitney diagrams” (as in Whitney polynomials)

(i i+1) =

i

(i.) =

i

pictures of partitions of 2n objects.

rotated through 90o cf. previous to save page space.

These are ‘dual’, in physical usage, to “boundary

diagrams”.

Consider Potts spin system (e.g. Ising)

30



(Planar) Connected clusters : Boundary diagrams (as in

boundaries of regions of aligned spins).
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Very many generalisations possible.

---think about boundaries → blob algebra

---think about 3D...

Example: formalism works for arbitrary transverse graphs.

Every algebra arising is subalgebra of partition algebra

(introduced to help address 3D models).

Whitney diagrams generalise immediately.

Boundary diagrams do not!

Transverse graph in 2D is simple chain.

In 3D it is square grid. Harder to treat than complete

graph case.

(This has some lovely properties.)
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Pn(N)
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(here Pn(N) acts in ‘‘Potts’’ way.)
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6-vertex model (Ice-type model)

(Slater 41, TL 71)

In ice Oxygen atom lattice has coordination number 4. Between

each pair a H ion, nearer one end or the other, s.t. for each O,

2 Hs are close. In 2d (!)...

Medial lattice

1

2

1

2

2

degrees of freedom live on edges of medial lattice

Boltzmann weights:...
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1

2

1

2

2

Type 1: 1 1 x1 x1 1 +
x1

q
1 + x1q

Type 2: x2 x2 1 1 x2 +
1

q
x2 + q

Boltzmann weights.
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

















!




























1 0 0 0

0 1 + x
q−1 x 0

0 x 1 + xq−1 0

0 0 0 1










= 1 + xU

U =










0 0 0 0

0 q 1 0

0 1 q−1 0

0 0 0 0









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U =










0 0 0 0

0 q 1 0

0 1 q−1 0

0 0 0 0










...Another representation of T2n(q)

due to TL (1971). Acts on V ⊗2n
2 for any q.

Hn(q)→ V ⊗n
N ← UqslN

NB. No straightforward generalisation to higher D.
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Observables II

A signal of a phase transition is correlation (via local

cooperation) of “spins” over long distances.

Experimentally, degree of correlation of spins

〈σiσi+r〉 ∼ exp(−r/ρ)

away from Tc

— length scale ρ(T ) measured in terms of lattice spacing.

As T → Tc, ρ→∞ (decay of correlations becomes power

law).

[Crucial in Lattice Field Theory — dont want lattice

spacing to provide bogus length scale: ρ→∞, a→ 0

allows keeping ρa fixed
1
ρa

= particle mass (Euclidean → Minkowski)]

38



How compute correlation lengths ρ in TM formalism?

〈σiσi+r〉 ∼
(T N1 σ̂T rσ̂T N2).

(T N1+r+N2).

∼
(

λσ

λ0

)r

= exp(−r(ln(λ0)− ln(λσ)
︸ ︷︷ ︸

1

ρ

))

⇒ want λσ and others.

NB. Labelled by operator content not N .

Shouldn’t depend on N for large N .

NB. this is tricky. See e.g. PPM J Phys A (2000) for some

details.
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Tower properties

Even fixing the physical model, there is a T for each N

⇒ a TMA for each N .

But observables, and hence ‘leading’ spectrum

components, are defined essentially independently of N .

For given N spectrum components are (partly) indexed by

simple modules, thus these can be indexed independently

of N .

Thus “expect” a global limit algebra, and localisation

functors picking out fibres of “physically equivalent”

modules.

UiAnUi
∼= An−1

see Cox’s talk for more.
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Bethe Ansatz

Mild generalisation of Heisenberg ferromagnet (in 1D) is

H =
∑

i

Rice(Ui)

which has the same spectrum as

O =
∑

i

Ui

Consider Tn(q) module with basis

{C1, C2, C3, C4} = {∪ . . .
,
. ∪ . .

,
. . ∪ .

,
. . .∪}

UiCm = (δi,m−1 +
√

Qδi,m + δi,m+1)Ci

Suppose Ov = λv with v =
∑

ajCj

aj−1 +
√

Qaj + aj+1 = λaj 1 ≤ j ≤ n− 1

(a0 = an = 0)
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. . . . ∪ . . . .

→ particle moving in vacuum

∼ translation invariance

 ansatz for v:

aj = exp(ijk)− exp(−ijk) some k

a0 = 0

an = 0 ⇒ exp(2ink) = 1

exp(−ik) exp(ijk)− exp(ik) exp(−ijk)

+
√

Q exp(ijk)−
√

Q exp(−ijk)

+ exp(ik) exp(ijk)− exp(−ik) exp(−ijk)

= λ exp(ijk)− λ exp(−ijk)

λ = 2 cos(k) +
√

Q

“dispersion relation”

relation between energy and momentum of our particle.

We are interested in many (interacting) particles

{ . . . ∪ . ∪ .
,

. . . ∪ ∪ . .
, , etc}
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Some references to this point:
R Baxter, Exactly Solved Models in Statistical Me-

chanics, Academic Press 1982.
P Martin, Potts models and related problems in

Statistical Mechanics, World Scientific 1991.
R Pathria, Statistical Mechanics, Pergamon 1972.
G Wannier, Statistical Physics, Wiley 1966.
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Recall Yang–Baxter equations:

system of equations leading to “integrability” of

corresponding 2D Statistical Mechanical systems.

One form: Operators Ri(θ) (i = 1, 2, ...)

Ri(θ1) Ri+1(θ1+θ2) Ri(θ2) = Ri+1(θ2) Ri(θ1+θ2) Ri+1(θ1)

Ri(θ1) Rj(θ2) = Rj(θ2) Ri(θ1) i−j 6= ±1

Typically Ri(θ) is matrix encoding Boltzmann weights of

site i in 1D transfer matrix (layer of 2D system)

T (θ) =
∏

i

Ri(θ)

YB tells us that transfer matrices with different θ can be

arranged to commute. (Hence simultaneously

diagonalisable — Bethe ansatz.)

How so? and Where do the pictures come in?
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Suppose limθ→∞ Ri(θ) defined, invertible (=: gi)

then YB →
gigi+1gi = gi+1gigi+1

gigj = gjgi i− j 6= ±1

so C〈1, g±1
i | i = 1, 2, ..., n− 1〉 = CBn

Braid group algebra.
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2

2
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1

2
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1

1

1

1

2

2

2
2

2

2

1

1

1

= =

2

2

2

11

1

1

so suitably tracing over boundaries we get [T ′(θ1), T
′(θ2)] = 0.



Thus transfer matrices may be simultaneously

diagonalised, and may use Bethe ansatz for eigenvectors.

Hence find some eigenvalues

(corresponding to free energy and some correlation

functions of the physical system).

Example: Hn(q) = CBn/(gi − q)(gi + q−1)

set Ui = gi + q−1, q = eiµ

Ri(θ) = sinh(µ(θ + i))1 + sinh(µθ)Ui

is meta solution to YB.



That is, every representation of Hn is a solution.

Passing to irreducible representations corresponds to a partial

diagonalisation of T .

Thus equivalence classes of irreducible representations (and

momentum) label physical observables.

Thus want to study representation theory.

NB. Most “observables” not sensitive to whether system size is

n = 1026 or n + 1 (and certainly can make the same kind of

observation on both — e.g. melting point)

thus physics relates representation theory at different n,

and implies stable global limit.

This is not a property of Hn (or CBn), so physics picks special

quotients.



Examples:

Hn(q)

����

##GG
GG

GG
GG

G
UqslN

����

zzttttttttt

V ⊗n
N

HN
n (q)

;;wwwwwwwww

Sq(n,N)

ddJJJJJJJJJ

N = 2: Temperley–Lieb algebra.



Tn:

〈1, Ui | i = 1, 2, .., n − 1〉
UiUi = [2]Ui

UiUi±1Ui = Ui

UiUj = UjUi i− j 6= ±1



Basis:

= [2]



NB Number of “propagating” lines non–increasing in any composition.

Thus with

U1 7→

we have T ⊃ T U1T
︸ ︷︷ ︸

≤n−2 prop. lines

⊃ T U1U3T ...



Recall A an algebra, ee = e ∈ A, B ∼= eAe, then have functors

modB
F−→ modA

M 7→ Ae⊗eAe M

modA
G−→ modB

N 7→ eN

M
F7→ Ae⊗M

G7→ eAe⊗M

∼= M

N
G7→ eN

F7→ AeN

If N is simple AeN is either N or 0.

Thus {simples of A} ↔ {simples of B} ∪. {simples of A/AeA}.



Proposition. [2] 6= 0, U1TnU1
∼= Tn−2.

Proof:



Let Λn = {i ∈ N | i ≤ n, i ≡ n mod.2}
Proposition. Irreducible representations of Tn indexed by Λn.

Proof: by induction. True for T1 = C1.

Suppose true for Tn−2, then enough to show |Λn \ Λn−2| = 1 simples in

Tn/TnU1Tn. But since only basis elements with > n− 2 (and hence

exactly n) propagating lines survive the quotient we have

Tn/TnU1Tn = C1. Done.

Entire qr = 1 and even char.p representation theory may be computed

this way.



Example: Simple with label 0 is

∆0 =

This gives free energy.



Newer Stuff

YB comes with a certain specific treatment of boundaries. Can get

control of these with Reflection Equation:

R1(θ1 − θ2) K(θ1) R1(θ1 + θ2) K(θ2)

= K(θ2) R1(θ1 + θ2) K(θ1) R1(θ1 − θ2)

Ri(θ1) K(θ2) = K(θ2) Ri(θ1) i > 1

+

−

+

−

=



Set T (θ1) =

1

1

1

11

1

1

1

1
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1
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1

1

1

1

1

2

2

2

2

2

2

2

2

+

−

2

2

2

2

−

1

1

1

1

+

2

2

2

2

1

1

1

1

2

2

2

2

2

2

2

2

+

1

1

1

1

1

1

1

1
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Same limθ→∞ process gives B◦
n:

g1g2g1 = g2g1g2

g0g1g0g1 = g1g0g1g0

so we want to study this in the same way.

Realisations:

g1

g0

6
0



Affine Hecke:

����

B◦
n/(g1 − q)(g1 + q−1)

Cyclotomic Hecke, H(n, d) :

����

∏d
i=1

(g0 − λi) = 0

Blob, bn : add e = to Tn.

Basis of T –diagrams as before, but now allow decoration (by blob) of

any line which is “exposed” to left hand edge:

6
1



4
=[2]  [m][m+1]

This solves RE with K(θ) = 1 + b(θ)e (suitable b).

How are the simples indexed?

6
2



• New perspective on (and generalisation of) Soergel’s procedure for

analysing tilting modules (and hence q-group representation theory)

via alcove geometry and parabolic Kazhdan–Lusztig polynomials.

• Partition algebra — generalisation to higher dimensional Statistical

Mechanics and higher dimensional “pictures”.

• Representation theory of affine Hecke algebras.

6
3


