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Abstract

We explain how various categories arising in statistical mechanics may be
used as tools in algebraic representation theory.

1 Introduction

The idea of a diagram category has not been precisely defined, but it is (for
us) a K-linear category whose object class is naturally a poset, in a way we
describe later; and whose hom sets have bases of certain ‘diagrams’. Dia-
grams may not be planar, but are amenable to physical operations such as
juxtaposition and reversal (related to their role in describing physical con-
figurations in Statistical Mechanics — see later). The composition of two
suitable diagrams may be computed in a way facilitated by juxtaposition;
while the reversal operation gives a self contravariant equivalence. By the
K-linear property a diagram category thus contains a poset of (diagram) al-
gebras as its end(omorphism)-sets. The hom-sets are therefore bimodules for
pairs of diagram algebras (sometimes the same one). These bimodules may
be used to construct functors between the categories of (left) modules for the
corresponding diagram algebras. These functors can be a powerful tool in
representation theory, passing structural data up the poset order. Here we
aim to show how to use this machinery in representation theory, conveniently
unifying and generalising a number of examples in the literature. Indeed we
are interested generally in the utility in algebraic representation theory of
constructing collections of algebras as end-sets in a diagram category.

The structure of the paper is as follows. Our approach is guided, informed
and motivated (in part) by problems in computational Statistical Mechanics.
Accordingly it is appropriate to make some effort to explain this connection.
Our aim in the first part of the paper is to do this. We explain by example the
key ideas of partition function, correlation function, thermodynamic limit and
transfer matrix algebra. In the second part we replace the Physical framework
with a corresponding, but free-standing, abstract categorical setting. In the
final part we introduce some specific categories (again coming from Statistical
Mechanics), and use the tools developed in the previous section to analyse part
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of their representation theory. This brings in further ideas from Schur-Weyl
duality, alcove geometry and monoidal categories.
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1.1 Basic notations

For S a set then E(S) is the set of partitions of S, and P(S) the power set.
If S, T are sets we write T S := hom(S, T ) (so if both are finite |T S | =

|T ||S|). We think of f ∈ T S as a T -valued ‘vector’ with components indexed
by S. If T = Q := {1, 2, .., Q} we abbreviate T S slightly to QS .

A map f ∈ QS we call a colouring of S by Q colours. Thus there is a map
from QS → E(S) given by s ∼f t if f(s) = f(t). Note that the symmetric
group SQ acts on QS by w ◦ f(s) = w(f(s)), and that this action commutes
with the map to partitions.

If G is a simple undirected graph then VG denotes its vertex set; and EG

its edge set, represented as a set of pairs of vertices. Examples: Define graph
Al by VAl

= l and EAl
= {〈i, i + 1〉 | 1 ≤ i ≤ l− 1}. For l > 2 define Âl as the

extension of Al by a further edge 〈1, l〉.
Let G,G′ be undirected simple graphs. Then graph G × G′ is defined by
VG×G′ = VG × VG′ and 〈(v11, v12), (v21, v22)〉 ∈ EG×G′ if 〈v11, v21〉 ∈ EG and
v12 = v22 or 〈v12, v22〉 ∈ EG′ and v11 = v21.
Example: Al,m := Al × Am is a rectangular grid.

Suppose G,G′ are two such graphs, then G\ΓG′ denotes the graph obtained
from G by omitting any edges that it has in common with G′.
Example: Cl := Al,2 \Γ Al,1 is a comb (a ladder with one main strut removed).
More generally, for G a graph as before define

C(G) = (G × A2) \Γ (G × A1).

Thus C(Al) = Cl.

2 Physics background

For reasons that we shall not fully axiomatise here, most of our diagram cat-
egories come from, or have close connections with, computational statistical
mechanics. It is not essential fully to understand this setting to understand
diagram categories, but it is certainly useful to understand some of its math-
ematics. Accordingly we begin with a brief review by example (which the
reader may skip if desired).

It is appropriate to concentrate on the mathematical aspects, and leave
aside such issues as the realm of validity of the basic assumptions of statistical
mechanics (but see [21, 5, 24] for example).
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2.1 The Potts model

In a classical equilibrium statistical mechanical system one computes the ex-
pectation value of an observable as a certain weighted average of its value over
the set Σ of possible states of the system. The weighting is determined by
the Hamiltonian H : Σ → R, which thus defines the model; and the system
temperature. Specifically, if O : Σ → R is an observable then the expectation
value is

〈O〉(β) :=
∑

f∈Σ

O(f)
exp(βH(f))

Z(β)
(1)

where
Z(β) =

∑

f∈Σ

exp(βH(f))

the partition function; and β is an inverse temperature variable (strictly, if T
is temperature then β = 1

kT
, where k is Boltzmann’s constant).

The example we shall use is the Potts model [4, 9, 24]. Let G be a graph
with vertex set VG and edge set EG (we shall assume that G is undirected,
simple, so elements of EG can be represented simply as pairs of vertices). The
Potts Hamiltonian for G may then be introduced as follows.

Fix Q ∈ N. We associate to each i ∈ VG a Q-state Potts variable σi, called
a spin. This is a variable taking values in Q. Thus the set of all possible

configurations of the Potts variables on G is QVG , where for f ∈ QVG we have
σi(f) = fi. Formally then we have Potts Hamiltonian HG : QVG → R, given
by

HG = J
∑

<ij>∈EG

δσi,σj
+ h

∑

i∈VG

δσi,1

Here we shall take coupling constant J = 1 and magnetic field parameter
h = 0. Thus for example if f+ is the configuration in which every variable
takes the value 1 ∈ Q we have HG(f+) = |EG|.

The partition function is now

ZG(β) =
∑

{σi}
exp(βHG) :=

∑

f∈QVG

exp(βHG(f)) (2)

Note that ZG can be viewed as defining a map from graphs to polynomials in
exp(β). However, only certain types of graph are physically interesting, as we
shall see later.

With this Hamiltonian the weighted sum (1) models statistically the com-
peting effects of entropy and energetic factors (respectively the sum and the
weighting) on the outcome of an observation. For example, this might be the
internal energy

U(T ) := kT 2 ∂ln(ZG)

∂T
=

∑

{σi} HG exp(βHG)

ZG

Roughly speaking this works as follows.
When β is large (low temperature) the sum will be dominated by states such
as f+, with the largest possible value of HG. In this sense the model system

3



appears in an ordered or ‘frozen’ state.
When β is small (high temperature) all states contribute to the sum essentially
equally. Neighbouring variables agree only by chance in a random state, and
hence with probability 1

Q
, so the typical value of HG is proportionally smaller.

Thus the system appears in a disordered or ‘hot’ state.
(In practice one is particularly interested in the transition between the cold
and hot phases, but this need not concern us here.)

Other important observables include the spontaneous magnetisation, and
correlation functions (see [5, 24] for more details). But these will only be
definable once we have restricted to suitable types of graph.

The partition function ZG is thus a fundamental component of any physical
computation. The remainder of our physical discussion is motivated purely
by the practicalities of computing ZG, noting that even with Q = 2, for
a macroscopic system the sum in (2) is of order 2αA terms, where αA is
Avogadro’s number (roughly 1027).

2.2 Computational formalism

Fix Q, and set x = exp(β). Note that ZG is an element of Z[x], since our
HG only takes values in the natural numbers. Let V be a subset of VG (we
shall call it the external subset), so that QV is the set of configurations of this
subset of vertices. For each G,V we may define a ‘vector’ ZV

G — an element

of Z[x](Q
V ) whose f -th component is

(ZV
G )f =

∑

g∈QVG s.t. g|V =f

exp(βHG)

where g|V = f means that g agrees with f on the subset V . Thus

ZG =
∑

f∈QV

(ZV
G )f

(2.1) Example. Set Q = 2 and consider the graph

1

2

V

where subset V is indicated, and its vertices have been labeled. Then

ZV
G =

(
(ZV

G )σ1=1,σ2=1, (Z
V
G )σ1=1,σ2=2, (Z

V
G )σ1=2,σ2=1, (Z

V
G )σ1=2,σ2=2

)

where
(ZV

G )σ1=1,σ2=1 = x4 + 3x2

and so on.
(Remark: QV is sometimes called a configuration space or state space, al-
though it is just a set of configurations. It will have a role as a basis for a
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vector space.)
Further, suppose that graph G may be decomposed into graphs G′ and G′′

with vertices V in common, but no edges in common. Then

ZG =
∑

f

(ZV
G′)f (ZV

G′′)f

The computational utility of this simple partition vector formalism is that
we may compute ZG by ‘sewing’ smaller systems together. Suppose that we
partition the set of external vertices V of a graph G into two parts: V =
V1 ∪ V2. Then index f in (ZV

G )f becomes, trivially, a two-component index
(f = (f1, f2), say), and we can think of organising our partition vector as a
matrix (i.e. a two index tensor): (ZV

G )f1,f2
. This is a trivial reorganisation

of the data, but now we can grow partition functions for larger graphs by
iterated sewing:

(ZV13

G )f1,f3
=

∑

f2

(ZV12

G1
)f1,f2

(ZV23

G2
)f2,f3

(3)

(2.2) Example. Consider the comb graph Cm := Am,2 \Γ Am,1, and partition
the complete set of vertices as VCm = V1 ∪ V2 where

Vi := {(v, i) | v ∈ Am}

In particular for m = 2 we have

VV1 2

(1,1)

(2,1)
(2,2)

(1,2)

and with Q = 2, and states ordered as 11,12,21,22:

ZV12

G =







x3 x x x
x2 x2 1 x2

x2 1 x2 x2

x x x x2







The graph C ′
m = Am,3 \Γ Am,2 is isomorphic to Cm, differing only in the

second coordinates of the labels. Thus

ZV1∪V2

Cm
= ZV2∪V3

C′

m

and we have the identity

ZV1∪V3

Am,3\ΓAm,1
= ZV1∪V2

Cm
.ZV2∪V3

C′

m
= (ZV1∪V2

Cm
)2

and indeed
ZV1∪Vl

Am,l\ΓAm,1
= (ZV1∪V2

Cm
)l−1
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and
Z

Am×Âl
= Tr((ZV1∪V2

Cm
)l) (4)

(2.3) Not every graph decomposes into subgraphs in such a way as to make
this approach useful. However not every graph corresponds to an interest-
ing physical system either. In practice it is, fortuitously, the graphs that are
amenable to this approach that are among those of greatest physical interest.
In particular we may consider that the graph represents the crystal lattice,
say. That is, the vertices represent a large regular array of molecules in phys-
ical space; and the edge terms in HG represent nearest neighbour interactions
between them. The objective here, then, is to compute ZG for large ‘transla-
tionally regular’ graphs.

Indeed, the graphs of interest are so very large, that in practice, in most
cases, one must look for stable properties of certain sequences of increasingly
large graphs in a limit of large graphs. The graph of interest is in this sequence,
and one assumes that it is in the stable region. We shall give a concrete
explanation of this process shortly. (It is vital to the relationship between
representation theory and statistical mechanical observation.)

It is easy to see that our example above generalises directly to cases where
G has (‘time’) translation symmetry, i.e. G = G0 × Al or G = G0 × Âl for
some graph G0 and natural number l. That is

Z
G0×Âl

= Tr((ZV1∪V2

C(G0))
l) (5)

Let us set TG0
= ZV1∪V2

C(G0) for simplicity. Then depending on the boundary
conditions

ZG = 〈| T l
G0

|〉 := VT l
G0

V ′ (6)

where V,V ′ are suitable vectors (or ZG is given by a trace as above).
It can be shown that (for real x) TG0

is similar to a real-symmetric matrix,
so it is diagonalisable and has a complete orthonormal set of left and right
eigenvectors. We write these as:

〈i| TG0
= 〈i| λi TG0

|i〉 = λi |i〉 (7)

Thus
ZG =

∑

i

αiλ
l
i

where αi are some coefficients depending on the boundary conditions. Note
by the Perron–Frobenius theorem that TG0

has a unique positive eigenvalue
of largest magnitude. Let us label it as λ0. Then

ZG = α0λ
l
0(1 +

∑

i6=0

αi

α0

(
λi

λ0

)l

)

We can now give an example of a stable property in a limit of large graphs.
Suppose we consider the sequence of graphs (G0 × Al | l = 1, 2, 3, ...). The
free energy is defined as

FG =
1

|VG0
|l ln(ZG)
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so

lim
l→∞

FG =
1

|VG0
| ln λ0 (8)

A detailed illustration of the relationship between λ0 and ZG for large but
finite l is given in [24]. For our present purposes we simply observe that we
have passed from the study of a statistical mechanical model, to the study of
the spectrum of a matrix.
Note also, however, that G0 was held fixed in this exercise. For physics pur-
poses one would require this to grow also, as l does. Thus there is another
limit to come, and we will end up studying the stable properties of the spec-
tra of a sequence of matrices. (These matrices will be associated to algebraic
representations; and the stability to functors between the module categories
for these algebras.)

For convenience of reference we shall call the limit in (8) the Hamilto-
nian limit ([23] we will not justify the name here); and the overall limit the
thermodynamic limit.

(2.4) For physical computation the matrix organisation of the data described
above is the most useful (it is the transfer matrix formalism, see below).
However we shall also see later that the following ‘tensor’ generalisation is of
interest (see also [24]).

Let U be a universe of graph vertex labels (so that every VG ∈ P(U)). For
any graph G, each partition p of a subset of U restricts to a partition pG of
a subset of VG. For any partition p write p = ∪ipi (the flattening of p). For
given p,G the set pG is called the set of external vertices of G. The partition
tensor Zp

G is simply the organisation of the partition vector ZpG

G such that the
index f is a multi-index, with one component for each part in pG. A surgery
generalising (3) pertains in the obvious way.

2.3 Correlation functions

As we have seen, we are interested physically in graphs embedded in metric
spaces, so that there is a notion of distance. An important observable is then
the dependence of the correlation of two or more spins on their separation.

In the transfer matrix formalism above the simplest notion of separation
on G0×Al is to separate the spins with respect to the Al-coordinate (using the
obvious notion of distance on Al). Thus we can define an observable function

c(r) = δσa,i,σa,i+r

(labeling spins by graph coordinates, with a ∈ VG0
any vertex). This example

also serves to explain the notion of correlation (in general it depends on the
nature of the interactions in the Hamiltonian — the delta function corresponds
to the delta functions in H).

So how do we compute expectations in the transfer matrix formalism?
Suppose for example that we want to compute the expectation of δσa,i,1. That
is, the expectation that we will find the spin at the vertex with coordinates
(a, i) taking value 1. (The answer here is obvious on symmetry grounds, but
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the mechanics of the example will serve.) In the notation of (6) we have

〈δσa,i,1〉 =
VT i

G0
XaT l−i

G0
V ′

VT l
G0

V ′

Here Xa is a diagonal matrix with diagonal entry 1 if the layer configuration
has spin with label a taking value 1; and zero otherwise.

The computation of separated correlations is rather more subtle in general,
but in essence we compute objects of the form

〈c(r)〉 ∼
VT l1

G0
XaT r

G0
XaT l−l1−r

G0
V ′

VT l
G0

V ′ (9)

Using (7) we can expand

Xa =
∑

ij

αij |i〉〈j|

so
T l1

G0
XaT r

G0
XaT l−l1−r

G0
=

∑

ijk

αijαjkλ
l1
i λr

jλ
l−l1−r
k |i〉〈k|

Now recall that λ0 > λi6=0. It follows that, unless α00 = 0, then in the limit
of large l this sum is dominanted by i = j = k = 0, i.e. by a term like λl

0.
Since the denominator in (9) is also like λl

0 there is no non-trivial dependence
on r. Thus we are interested in Xa such that α00 = 0. Then supposing that
α01 = α10 6= 0 we get

〈c(r)〉 ∼
(

λ1

λ0

)r

= exp(−r/η)

where η = 1/(ln(λ0) − ln(λ1)). Explicit examples can be found in [27], but
for our purposes the point is that the observable decay length scale (the cor-
relation length) η depends on the gap between λ0 and a subsequent element
of the spectrum. Once again then, we may bypass the Hamiltonian limiting
process (as in (8)) by attending to the spectrum directly.

We shall see shortly that TG0
can be expressed as a representation matrix

for an element of an algebra, AG0
say. The irreducible decomposition of this

representation is thus part of the spectral decomposition of TG0
, and hence

tied to the correlation length observables of the model. That is, we may
label the spectrum of correlation lengths, at least in part, by the irreducible
representations of AG0

(or if you prefer, we may label the irreducibles by
correlations).

The correlation length η (and other such) should again have a stable limit
as G0 is taken suitably large, and it should certainly be possible to define a
given correlation function (the correlation of a single spin with a single spin,
say) throughout the sequence. By the correspondence above this tells us to
expect that the sequence of algebras is unified by having fibres of irreducible
representations running through it. That is, a fibre picks out the representa-
tion from each algebra associated to a given correlation.
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In Section 6.1 we shall see that there are functors between the module cat-
egories for these algebras which precisely fix such fibres, and lead to beautiful
global limit algebras.

The kind of different correlation functions that arise turn out to come from
observing the r-dependence in correlations involving multiple different spins in
each layer (cf. the one spin in each layer case in (9)) [27]. Further structure is
then revealed by noting that a trivial difference between the thermodynamic
limit and a finite ‘width’ lattice is that, on a finite lattice there are only
finitely many spins in a layer to be observed — so only finitely many spin
correlations can be observed. Later we shall consider what we expect to
observe on composite lattices (of varying width) such as

r

where a many-spin correlation can be observed, but the bottleneck prevents
this from being independent of lower correlations; and give this a representa-
tion theoretic and categorical interpretation.

2.4 The Potts model/dichromatic polynomial paradigm

We now need to recast the partition function in a different form. Expanding
the exponential

ZG(β) =
∑

{σi}

∏

<ij>∈EG

exp(βδσi,σj
) =

∑

{σi}

∏

<ij>∈EG

(1 + vδσi,σj
)

where v = exp(β) − 1. Expanding this we have

ZG(β) =
∑

{σi}

∑

G′∈P(EG)

∏

<ij>∈G′

vδσi,σj
=

∑

G′∈P(EG)

v|G
′|Q#(G′) (10)

where |G′| is the number of edges and #(G′) is the number of connected
components of G′ regarded as a subgraph of G in the obvious way. Example:
Figure 1(i) shows a subgraph G′ on a square lattice, with #(G′) = 12.

Equation (10) holds for any given Q, but we can now consider the RHS
of (10) in its own right, as a ‘dichromatic’ polynomial in variables v and Q.
Example:

ZA2
= Q2 + vQ

The objective now is to compute ZG in this form, for the same kind of
large graphs as before. The exercise, therefore, is to construct a transfer
matrix formulation in which to compute it, analogous to the fixed Q example
above. That is, we seek a matrix T such that

ZG(β) = Tr(T l)
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generalising (4) and (5). Passing to T , where possible, allows us to study ZG

by studying eigenvalues of T :

Tr(T l) =
∑

i

λl
i

(There are several reasons for casting the partition function in the dichro-
matic form. For our purposes the point is that it has a T , and a particularly
mathematically interesting one.)

We also require, for ZG to be physically interesting, that G embeds in
some Euclidean space and that its edges, and hence the Potts interactions,
are local. That is, the terms δσi,σj

in HG connect near neighbour vertices in the
Euclidean embedding. (NB, This is exemplified by the graph in equation (4),
with Am × Âl embeddable in R

2 in an obvious way (perhaps using cylindrical
boundary conditions).) It is this locality which moderates the size of the state
space QV . However even this local graph embedding is not enough to make
the interactions in the dichromatic polynomial formulation local, since #(G′)
is not local. Instead we need to introduce an entirely different state space (cf.
QV ).
Although the restriction is not necessary, for the sake of simplicity we will
describe this by considering the example of the m-site wide square lattice:
the graph Am × An.

In adding an extra layer to this graph/lattice, i.e. going from graph Am ×
An to Am × An+1, say, we are adding 2m − 1 edges. As ever in a transfer
matrix formalism, the problem is to find a set of states which keep enough
information about the old lattice G to determine #(G′) for the new one. It
will be evident that each state must record which of the last layer of vertices in
G are connected to each other (by some route in G — cf. Figure 1 (i), (ii) and
(iii)). Neither the details of the connecting routes nor any other information
is needed, thus our state set is simply contained in the set of partitions of the
last layer of vertices (Figure 1(iii)). It is straightforward to see that (in the
square, or otherwise plane, lattice case) precisely the set of ‘plane’ partitions
are needed. These are the partitions realisable by noncrossing paths in the
interior when the vertices are arranged around the edge of a disk.

In other words the partition vector for graph G and exterior vertex set V ,
which we shall denote ZV

G (Q), has entries (ZV
G (Q))c, where c is a partition of

the vertices in V . The c-th entry

(ZV
G (Q))c =

∑

G′∈P(EG) | G′∼c

v|G
′|Q#c(G′)

is a relative version of ZG(Q) (in the final form in (10)), including only sum-
mands in which vertices in V appear in the same connected component pre-
cisely when they are in the same part in c; and where #c is a version of #
that does not count the components involving vertices in V .

(2.5) Example. The labelled graph in Example (2.1) now has a 2-component
state set: v1, v2 connected; v1, v2 not connected. The (now Q-dependent)
partition vector relative to this set is

ZV
G (Q) = (v4 + 4v3 + 3v2Q + vQ2, 3v2 + 3vQ + Q2)
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(i)

(iii)

Figure 1: (i) A subgraph of a square lattice and an extra layer. (ii) The corre-
sponding new subgraph. (iii) A sequence showing: the connectivity of the original
subgraph (running # = 12); the connectivity after adding the new horizontal edges
(running # = 12+3); the connectivity after adding the new vertical edges (running
# = 12 + 3 − 2).

Figure 2: Mapping planar Whitney diagram to TL diagram.
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where the first element is ZG with the condition that v1, v2 are connected to
each other, and we do not yet count this connected component in #(G); and
the second element is ZG with the condition that v1, v2 are not connected to
each other, and we do not yet count either connected component in #(G). In
other words

ZG(Q) = ZV
G (Q)

(
Q
Q2

)

We can even grow the graph one edge at a time:

1 11

2

1−

2−

(
v 1

)
(

v 1
0 v + Q

)

︸ ︷︷ ︸

“

v2 2v + Q
”

0

@

Q
Q2

1

A=Qv2+2vQ2+Q3

(
v 1
0 v + Q

)(
v + 1 0

v 1

)

Here the first (vector) factor is associated to the first vertical edge, with the
column position determining whether the two vertices are connected or not.
The second (matrix) factor is for the first horizontal edge. In this matrix the
11 position is ZG with the contraint that both v1−, v2− (the vertices at the
‘trailing’ end of the graph) and v1, v2− (the vertices at the ‘leading’ end of the
graph) are connected; and so on.
Note that any partial computation may be completed to give a partition
function by post-multiplying by the appropriate column vector to take account
of the components in #(G) not included in #c(G). Thus the final equality
above computes ZG(Q) for the leftmost of the graphs shown.

The labelled graph

G′ =

2

V’

1’

has
ZV ′

G′ (Q) = ZV
G (Q).ZV ∪V ′

edge (Q)

= (v4 + 4v3 + 3v2Q + vQ2, 3v2 + 3vQ + Q2)

(
v 1
0 v + Q

)

= (v(v4+4v3+3v2Q+vQ2), v4+4v3+3v2Q+vQ2+(v+Q)(3v2+3vQ+Q2))
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1

2

3

1

2

3

Figure 3: TL identity diagram, diagram D1, and a diagram with different numbers
of in and out-vertices.

(2.6) Pictures of partitions as collections of paths as in Figure 1(iii) are called
Whitney diagrams [24]. If instead we represent plane partitions by bound-
aries of connected regions (see Figure 2 for an example) these diagrams be-
come Temperley–Lieb (or boundary) diagrams on the disk. Note that these
are plane pair partitions (of double the number of vertices). Note that the
original lattice itself has all but disappeared from the state space (replaced
by a topological/combinatorial construct).

(2.7) Finally we note that in order to compute correlation functions some
further information must be retained (essentially the details of connections
also with the vertices on the left-hand side of the graph in Figure 1). This
corresponds to Temperley–Lieb diagrams on the rectangle – i.e. with both in-
vertices and out-vertices. See Figure 3 for examples — these are, specifically,
two (10, 10)-diagrams followed by a (10, 6)-diagram. These diagrams may be
composed by juxtaposition at one edge of the rectangle when the number of
states agrees. With an appropriate reduction rule for interior loops (replace by
a factor δ =

√
Q) this becomes the Temperley–Lieb algebra (indeed category,

indeed monoidal category — see later).
NB, casting the state space in this form is certainly beautiful and compu-

tationally convenient (see [27]), but it is not the same as integrability. Since
the Potts model is integrable under certain conditions solutions to the Yang–
Baxter equations can be constructed using Temperley–Lieb diagrams, but
such exercises will not be our focus in the present paper.

(2.8) The following set of Temperley–Lieb diagrams generate the Temperley–
Lieb algebra on n vertices (i.e. n in- and n out-vertices). The identity diagram
is the rectangle in which each in-vertex is connected to the corresponding out-
vertex. The diagram Di is like the unit except that in-vertices i and i + 1
are connected, and out-vertices i and i + 1 are connected. (See Figure 3.)
The generators are D1, ..,Dn−1. As already noted, composition B ◦ C is by
juxtaposition so that the out-vertices of B meet the in-vertices of C (becoming
internal points in the new diagram). Thus for example

Di ◦ Di =
√

QDi (11)

The state space we have constructed induces a representation R of these
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elements. The transfer matrix is then

T =
∏

i

(1 +
v√
Q

R(D2i)
∏

i

(
v√
Q

+ R(D2i−1))

and
Z(β) = Tr(T n)

Finally, the trace can be decomposed into the irreducible representations
in R (amongst other partial diagonalisations). The close relationship this
engenders between representation theory and correlation functions (see e.g.
[27]) survives passage from our chosen example up to a considerable degree of
generality.

Since we need to be able to understand correlation functions stably in the
thermodynamic limit we need to be able to understand representation theory
in an analogous limit. This leads us to consider towers of algebras with suitable
stable limits. One (algebraic) notion of stability here is provided by functors
between module categories built from bimodules (see later).

A natural setting in which we find towers of algebras and bimodules is K-
linear categories, such as diagram categories. Accordingly we are now ready
to introduce and study some more general diagram categories.

3 General category notations

We assume familiarity with some category theory basics. See [1, 3, 15, 20, 29].
In this section however we recall a few points, in order to establish some
general notation. In section 3.2 we develop one or two notions specific to
diagram algebras.

(3.1) A category C = (OC ,homC , ◦) is a triple consisting of a class of objects
OC ; a class of homs consisting of a set homC(s, t) for each pair s, t of objects;
and for each triple s, t, u of objects a composition ◦,

◦ : homC(s, t) × homC(t, u) → homC(s, u) (12)

(f, g) 7→ f ◦ g (13)

obeying
f ◦ (g ◦ h) = (f ◦ g) ◦ h

and such that every (homC(s, s), ◦) is a monoid and f ◦ 1s = f , 1t ◦ f = f
whenever defined [3, §0.11].
(N.B. Here we use diagram rather than function order for the objects labeling
a hom set in this notation. This suits diagram categories, where composition
is by diagram juxtaposition, but not necessarily categories whose homs are
set maps. In practice it will be clear from context which notation is being
used.)
We sometimes write EndC(s) for homC(s, s), and write 1s for the identity
element in EndC(s).
We shall assume (merely for notational simplicity) that all our categories are
small.
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(3.2) Example. Category S is the category of sets, set maps and map com-
position [3, §0.11Ex(1)] (we say that there is a unique map from ∅ to any set).
Category SF in is the full subcategory on the class of finite sets.

(3.3) A functor F : A → B is

• full (resp. faithful) if all hom-set maps

F : homA(S, T ) → homB(FS,FT )

are surjective (resp. injective);

• isomorphism dense if for every object T in B there is an object S in A
such that F (S) is isomorphic to T ;

• an embedding if injective on homs;

• an equivalence if it is full, faithful and isomorphism dense [1].

(3.4) Definition. A skeleton for a category is a full, isomorphism dense
subcategory in which no two objects are isomorphic [20, Ex4.1][1].

(3.5) Example. The assembly of sets in SF in into cardinality classes induces
a corresponding set of isomorphisms between hom sets.

fS : S
∼→ S′

f : hom(S, T ) → hom(S′, T ′) (14)

g 7→ fT ◦ g ◦ f−1
S

Associate a representative element of each class to each cardinality (n to n,
say). We may then construct a category whose objects are the set N of finite
cardinals, and with Hom(m,n) = hom(m,n). The functor which takes object
n to n and identifies the corresponding hom sets is obviously isomorphism
dense and full. This is thus a full subcategory of SF in, from which the rest of
SF in may be constructed. We have:

Proposition. This (N,Hom(−,−), ◦) is a skeleton for SF in. 2

(3.6) Let K be a ring (respectively a field). A K-linear category is a category
in which each hom set is a K-module (respectively a K-vector space) and the
composition map is bilinear.
A basis for a K-linear category C = (OC ,homC(−,−), ◦) is a subset homo

C of
homC such that

homo
C(m,n) = homo

C ∩ homC(m,n)

is a basis for homC(m,n). (For flexibility we may sometimes write homo
C when

C may be K-linear or not. In case it is not we shall intend homo
C = homC .)

Any category C extends K-linearly to a K-linear category KC.
Let R be a ring in K. An R-calculus for a K-linear category is a basis such that
every composition has structure constants in R, with at most one non-zero.
Example. I) Fix a ring (respectively field) K. Then K − mod (respectively
Vect) is the category of left K-modules (respectively K-vector spaces).
Example. II) Fix K and δ ∈ K. Category

CT (δ) = (N,homT (δ)(−,−), ◦)
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Figure 4: Composition by concatenation of a (16,8)-diagram and an (8,2)-diagram
in the LR Brauer category.

is the K-linear category with a calculus of TL diagrams as discussed in
Section 2. Here homT (δ)(m,n) is the K-space with basis the set of (m,n)-
Temperley–Lieb diagrams (without loops).
Example. III) An (m,n)-Brauer diagram is a diagram of a pair partition
of m + n vertices like a Temperley–Lieb diagram except that crossings are
allowed (that is, the restriction to plane pair partitions is removed). The
composition of Temperley–Lieb diagrams generalises in the obvious way to
Brauer diagrams, giving rise to the Brauer category CB(δ).
Example. IV) An LR Brauer diagram is a Brauer diagram that is invariant
under reflection in a line connecting the edges of the diagram on which the
vertices reside (such as in figure 4). Such diagrams generate a subcategory
CB′(δ) of CB(δ).

(3.7) If C is a K-linear category then each EndC(s) is a K-algebra. Further
homC(s, t) is a left EndC(s)-module and a right EndC(t)-module. Thus for
each pair of objects s, t we may construct functors

Fs,t : EndC(s) −mod → EndC(t) − mod

M 7→ homC(t, s) ⊗EndC(s) M

Note [13] that Fs,t is right exact, and exact if homC(t, s) is a flat (e.g. projec-
tive) EndC(s)-module.

This idea has been used for studying diagram categories for some time (see
[24, §9.5] for example). On a more basic (but still useful) level studying the
modules sMt = homC(s, t) directly is itself a way of studying the structure
of EndC(s). We have an EndC(s)-module for each object, and in particular
if there is an object ω such that EndC(ω) is scalar then we have an inner
product on homC(ω, s) via homS(ω, s) × homC(s, ω) → homC(ω, ω) (and the
opposite isomorphism). If the latter map is surjective (as it usually is — see
later) the EndC(s)-module sMω is even indecomposable projective.

We can generalise this considerably as follows.
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(3.8) Let C, C′ be categories. The functor category (C, C′) is the category whose
objects are functors from C to C′, and whose homs are natural transformations.
Example. Note for any category C and object F in C that the hom functor
homC(F,−) takes objects to hom sets, and so is an object in the functor
category (C, S). The action of homC(F,−) on a hom f ∈ homC(A,B) say is
to take it to a set map homC(F,−)f in homS(homC(F,A),homC(F,B)) given
by:

homC(F,−)f(F
u→ A) = A

f→ B F
u→ A = F

fu→ B

Note that homs is C, such as u, f , are not necessarily set maps, but we have
used function notation for the sake of definiteness.

Recall that the Yoneda embedding (see e.g. [20]) identifies Cop with the
category of hom functors within (C, S). This is via the functor h− given by
h−(F ) = homC(F,−) and, for f ∈ homCop(F,G) say

h−(f) : homC(F,−) → homC(G,−)

is given by
h−(f)(A) = homC(−, A)f

that is
h−(f)(A) : homC(F,A) → homC(G,A)

u 7→ uf

regarding f as being in homC(G,F ).
By the preceding remark, if C is K-linear (so its hom sets are K-modules)

then the embedding h− : Cop → (C, S) is actually into (C,K − mod).
Specifically consider CT . An object F is mapped to a functor homCT

(F,−).
And a hom d in homCT

(F,G), such as a diagram: for each object A this
maps to a K-module (indeed right End(A)-module) morphism constructed
by attaching the diagram f to the F ‘end’ of each diagram in hom(F,A).

3.1 Representation theory

(3.9) By the remarks at the end of the previous section we are interested
in the representation theory of certain K-linear categories. Let C be such a
category. Then in the most general case we are interested in (C, C′), where C′

is some other category. Again from the previous section we are interested in
particular in the simple representations, over various fields, of the algebras of
endomorphisms in C (what might be called reductive representation theory).
In practice, to gain access to these representations, it is useful to use the
methods of K-orders and K-lattices [13] where K is a ring ‘common’ to all the
fields of interest. That is we are interested in the functor category (C,K−mod).
Here functors between K-linear categories will be assumed to be K-linear, so
that they only need to be defined on generators.

(One could analogously assume that if C is a tensor category [10] then
functors are monoidal, but this is too restrictive for reductive representation
theory. However monoidal functors do play an interesting role, as we shall see
later.)
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Example. As noted, the subcategory of C with a single object N , call it C|N ,
will be a K-algebra, and the restriction (C|N ,K−mod) will be the category of
representations of this algebra. That is, each functor has a single K-module
as object image, and a set of endomorphisms of this module as hom (i.e. al-
gebra element) images. (And the natural transformations will be intertwiners
between such KC|N -modules.)

(3.10) Let d ∈ homC(x, y) a hom in some category C. A factorisation of d in
C is any composition d = d1 ◦ d2 ◦ ... ◦ dl. The set of all homs di appearing
in factorisations of d in this way are the factors of d in C. The ideal in C
generated by d is the set of homs containing d as a factor.
Example. In the TL category CT (δ) homomorphism Di ∈ End(l) (as defined
above) is not a factor of the identity diagram 11l′ in any End(l′) with l′ ≥ l.

(3.11) Note that if F ∈ (C,K−mod) takes a hom d to the zero morphism
then it takes the entire ideal generated by d to (the various) zero morphisms.
If C is K-linear then the relation on homs given by d ∼ d′ if F(d − d′) = 0
is a congruence. In this way every C-representation may be associated to
a quotient category — a category that the representation functor F factors
through. (Of course other representations factor through the same quotient,
including those whose images are direct sums of copies of the original image
module.)

Suppose we have a representation of only the part of a K-linear category
associated to a single object T , say, (i.e. of a single end-set – a single algebra).
This defines a local kernel, that is, the collection of end(omorphism)s d such
that F(d) = 0. This kernel in turn generates an ideal in the category, and
congruence modulo this ideal defines a category congruence, and hence a
quotient category. The ideal in the category may intersect the original end-
set in an algebra ideal larger than the original local kernel, but if not then
any C-representation that factors through the quotient (possibly restricting
at T , as it were, to the original representation) is called a C-extension of the
original representation.

(3.12) A K-ideal I in a K-linear category C is a collection of homs that is
closed in the obvious sense under category composition; and that intersects
each hom-set in a K-submodule.

The relation of congruence modulo I is a congruence on the category C,
and hence defines a quotient C/I.

If I and I ′ are ideals then so is I ∩ I ′, so that there is a well defined
smallest ideal containing any given collection of homs. If X is a collection of
homs (or a single hom) we write IX for the smallest ideal containing X. For
F an object define

IF = I1F

Example. In the TL category I0 is the ideal spanned by diagrams with no
propagating lines.

3.2 Some more terminology of our own

By historical convention there is no formal definition of diagram category.
Here we shall consider the underlying idea of correlation functions, explained
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in Section 2, to be fundamental to the notion of diagram categories (along
with the closely related idea of a diagram calculus). Accordingly, following
[24, 27], we shall give the following useful partial axiomatisation the handy
name of propagating category.

(3.13) For any poset (T,≤) and map f : homC → T we say that C is fil-
tered by f if for each composable pair of homs D,D′ we have f(D ◦ D′) ≤
f(A) for A ∈ {D,D′}.
(3.14) Example. For D ∈ homo

T (δ) the propagating number #(D) is simply
the number of components of D that meet both boundaries of the diagram.
We have

#(D ◦ D′) ≤ min(#(D),#(D′))

so CT (δ) is filtered by # (with ≤ the natural order on N). In a K-linear
category with a given collection of bases we will adopt the convention that such
a filter, if defined on the bases, takes the lowest value on linear combination
X from the basis elements with finite support in X.

(3.15) The utility of such a filter is that it breaks each algebra EndC(n) into
a nested sequence of ideals, the individual sections of which are generally
easier to analyse. This raises the question of how to find such filters. A
physical clue to this is given by the bottleneck picture in Section 2.3. There
we see (at least heuristically) that it is not the homs that determine the filter
but the transverse layers — which correspond to the objects in the category.
Accordingly we are guided to make the following series of definitions.

(3.16) Definition. A morphism D in a category C = (SC ,homC(−,−), ◦)
factors through object F ∈ SC if D = D′ ◦ 1F ◦ D′′ for some D′,D′′.
If C a K-linear category we say D factors K-linearly through F if it can be
decomposed as a K-linear combination of morphisms each of which factors as
above.

Thus D factors K-linearly through F if and only if D ∈ IF .
Example. (I) Diagram D1 ∈ homT (δ)(4, 4) factors through 2 since

= ◦ (15)

(II) In homT (δ)(3, 3) combination

+

factors K-linearly through 1 (since each diagram individually factors through
1), but does not itself factor through 1.

(3.17) Definition. For each category C define a relation on SC by F ≥p F ′

if the map

homC(F ′, F ) × homC(F,F ′) → homC(F ′, F ′) (16)

(A,B) 7→ A ◦ B (17)
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is surjective.

Proposition. That is to say, F ≥p F ′ if 11F ′ factors through F . 2

(3.18) Definition. For each K-linear category C define a relation on SC by
F ≥K

p F ′ if 11F ′ factors K-linearly through F .

If the relations ≥p and ≥K
p agree on a K-linear category we call this a

precious category.
Such categories are not ubiquitous but they do exist, as the following pair of
propositions shows.

Proposition. If C is the category of finite K-vector spaces then F ≥p F ′ if
dim(F ) ≥ dim(F ′); but F ≥K

p F ′ for all F,F ′.
Proof: For the first of these note that the rank of a composite map cannot
exceed the rank of any factor. For the second note that any vector space
map can be decomposed as a linear combination of projections onto one-
dimensional subspaces. 2

(3.19) Proposition. For CT (δ) (i) the relation ≥p is the usual natural order
on the natural numbers, discarding pairs that are not congruent mod.2. (ii)
the category is precious.

Proof: To see that m ≥p m′ when m > m′ (m,m′ congruent mod.2) consider
the following factorisation of 14:

14 = (18)

(This also shows that m ≥K
p m′ when m > m′.) When m < m′ note that

since the total number of propagating lines in a diagram cannot increase in
composition then 1m′ cannot factor through m. This proves (i). Any K-linear
factorisation would be a combination of diagrams with the same problem. 2

(3.20) Proposition. The relation ≥p is reflexive and transitive, for any cat-
egory, but not in general antisymmetric.
In particular, ≥p is a partial order only if C is a skeleton (a category in which
hom(F,F ′) contains an isomorphism only if F = F ′). 2

If ≥p is antisymmetric we call the category C a propagating category, and
poset (SC ,≥p) the propagating order on C. We shall also assume that

SC(F ) := {F ′ ∈ SC | F ′ ≤p F}

is finite for every F . We say propagating category C is terminal if every SC(F )
has a unique lowest element GF , say, and every hom(GF , GF ) is scalar (i.e.
has a basis consisting only of 1GF

).
Example. In CT (δ), if n is even then Gn = 0; if n odd then Gn = 1.

We shall see later that in a K-linear category the order ≥p can play a sig-
nificant role in the structure of the algebras End(F ). Accordingly it behooves
us to study it.
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(3.21) Definition. (i) For each partial order � on object set SC then #�(D)
is the set of �-lowest objects in SC that D factors through.
(ii) We say category C is filtered (respectively weakly filtered) by � if F ∈
#�(D◦D′) implies F � F ′ (respectively F ′ 6≺ F ) for all F ′ ∈ #�(D)∪#�(D′).
(iii) If C is a propagating category then an element of #D := #≤p(D) is
called a propagating index of D.
(iv) If D ∈ hom(F,F ) has F as a propagating index it is said to be loaded.
The subset of loaded homs is denoted hom−t(F,F ).

Proposition. In a propagating category (i) every isomorphism is loaded; but
(ii) the converse need not be true; (iii) no D ∈ homC(F,F ) has a propagating
index F ′ >p F .
Proof: (i): Every D ∈ hom(F,F ) factors through F . Suppose D also factors
through F ′. Then 1F also factors through F ′ (since D an isomorphism), but
then F ′ ≥p F . Thus #≤p(D) = {F}. (N.B. In particular, 1F is loaded.)
(ii): But a loaded hom need not be an isomorphism. For example, if we
consider the subcategory of TL excluding the object 2 then the diagram on
the left in equation (15) has object 4 as a propagating index, but the diagram
is not an isomorphism.
(iii): Evidently there exists F ′′ ∈ #D such that F ≥p F ′′. But then F ′ >p F
implies F ′ >p F ′′ by transitivity, so no such F ′ can be a propagating index.
2

(3.22) In light of the example in (ii), we shall call a category object rich if
every loaded hom is an isomorphism.

Object richness implies a particularly simple structure in representation
theory. However a K-linear category containing hom sets with more than one
linearly independent isomorphism contains loaded non-invertible idempotents,
so will not be object rich. In this case one can look for ways to add more
objects to the category (a good idea if one has left some out, as in our TL
example above, but a search in uncharted territory in general); or simply drop
the category into its much larger ‘categorical’ module-category (C,K −mod)
by the Yoneda embedding (a well-defined procedure, but passing to an object
which is, in general, very complex). Here we will follow a hybrid approach.

Proposition. A propagating category C is weakly filtered by ≥p. A sufficient
condition to be filtered by ≥p is if ≥p is a total order. 2

Example. Category CT (δ) is filtered by ≥p (in the sense that the odd and
even subcategories are so filtered, while the objects of the other parity are all
zero-objects relative to each of these subcategories).

(3.23) Definition. A hom D ∈ homC(F,F ′) is full on F (respectively F ′)
if there exists an element D′ ∈ homC(F ′, F ) such that D ◦ D′ (respectively
D′ ◦ D) is an isomorphism.
We write homC,F (F,F ′) (respectively homC,F ′(F,F ′)) for the subset full on
F (respectively F ′).
Example. The left-hand diagram in equation (18) is full on 4.

3.3 On K-linear structure

(3.24) Definition. Let C be a K-linear category. Write homG
C(F,F ′) for
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the subset of homC(F,F ′) of homs that factor through G, and the K-span
thereof. (N.B. This is, by construction, the same as the subset of homs that
factor K-linearly through G.)
Example.

hom1
T (δ)(3, 3) = K






, , ,







The following are obvious from the construction:
homG

C(F,F ′) has a basis of elements that factor through G;
homF

C(F,F ′) = homF ′

C (F,F ′) = homC(F,F ′).

(3.25) Proposition. Recall that if C is a K-linear category then homC(F,F ′)
is a left-homC(F,F )-module and a right-homC(F ′, F ′)-module, each by the ac-
tion of composition in the category.
We have that homG

C(F,F ′) is a left-homC(F,F )-submodule, and a right-homC(F ′, F ′)-
submodule.

Proof: Let a ∈ homC(F,F ) and m ∈ homG
C(F,F ′). We require to show that

a ◦ m ∈ homG
C(F,F ′), i.e. that a ◦ m factors K-linearly through G. But m so

factors, so let
∑

i αim
l
i ◦ mr

i be a factorisation (i.e. ml
1 ∈ homC(F,G) and so

on). Then
∑

i αi(a ◦ ml
i) ◦ mr

i is a factorisation of a ◦ m. 2

(3.26) Proposition. If G ≥p G′ then homG
C(F,F ′) ⊇ homG′

C (F,F ′).

Proof: m ∈ homG′

C (F,F ′) implies that m is a linear combination of homs that
factor through G′; thus 1G′ can be inserted in each of these factorisations.
But if G ≥p G′ then 1G′ factors through G. 2

(3.27) Definition. If C has a propagating order then

hom=G
C (F,F ′) := homG

C(F,F ′)/
∑

H

homH
C (F,F ′)

where the sum is over all H below G in the order.
Note that hom=G

C (F,F ′) has a basis of elements that factor through G and
nothing below G in the order; and that hom=G

C (F,F ′) = 0 if G >p F or F ′.

(3.28) A propagating category C is balanced if for each pair of objects x,L,
there is Mx(L) a finite set, and SL is a finite set (a basis of hom=L

C (L,L); and
in particular independent of x), and Γ a map such that

Γ : ∪L≤x,yMx(L) × SL × My(L) → homo
C(x, y)

is a bijection.
(Since this includes the case x = y, and Mx(L) does not depend on y, we

can potentially infer a lot about Mx(L) from its role in the contruction of the
regular module for the homC(x, x) K-algebra.)
Example. Consider the category CT whose homs are TL diagrams, with the
usual TL composition except that closed loops are ignored. Then Mx(l) =
homT (x, l) = homo

T (δ)(x, l) and Sl = {1l}, and the map takes (a, b, c) to abct
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where ct is the image of c ∈ homT (y, l) under the map −t : homT (y, l) →
homT (l, y) which simply flips the diagrams.

In the next section we shall introduce several further examples of bal-
anced propagating categories; and in section 6.1 we shall use the hom spaces
introduced above to analyse the representation theory of these categories.

(3.29) A balanced propagating category can also be regarded as a version of a
cellular or tabular category (an obvious generalisation of a cellular algebra in
the sense of [16, 22], or tabular algebra in the sense of [18, 19]). We postpone
details of the utility of this remark to a separate work.

We now turn to the construction of some concrete examples.

4 Graph categories

4.1 Set and Partition algebra notations

Recall that n = {1, 2, ..., n} and let ni = n × {i}. For S a set, E(S) is the set
of partitions of S [25, 27]. Examples:

E(2) = E({1, 2}) = {{{1}, {2}}, {{1, 2}}}

E({1, 2, 3}) = {{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}}, {{1, 2, 3}}}
In this section element p ∈ E(S) may appear either as a partition or as an
equivalence relation, depending on context (from which the form used will be
clear), via the natural bijection. The next paragraphs have some examples.

Every function f : S → T defines an element pc(f) ∈ E(S) by s ∼pc(f) s′

if f(s) = f(s′). A function f such that pc(f) = q ∈ E(S) is called a colour
function for q.

(4.1) We also use a diagrammatic realisation for partitions of S. Let Γ(S)
denote the set of loop free undirected graphs on vertex set S. Let

p : Γ(S) → E(S) (19)

denote the map which takes graph g to the partition into connected compo-
nents. In particular, to depict a partition in E(m1 ∪ n0) we draw a row of m
and a row of n vertices, and draw enough edges between them to indicate the
partition. For example, in E(31 ∪ 20) the diagram

(1,1) (2,1) (3,1)

(1,0) (2,0) (20)

denotes the partition {{(1, 1)}, {(2, 1), (1, 0), (2, 0)}, {(3, 1)}}.
Of course different graphs can have the same image under p. For example

replacing any connected component by any spanning tree does not change
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the partition. Write gen(g) for the maximum number of edges that can be
removed from g without changing the partition. Evidently

gen(g) = |edge(g)| − (|g| − |p(g)|)

(4.2) Each reflexive relation ρ on set S to itelf has a symmetric, transitive
closure. That is, a smallest element of E(S), regarded as a relation, which
contains ρ as a subset. Define TC(ρ) ∈ E(S) as this closure.

If ρ ∈ E(S), ν ∈ E(T ) are two equivalence relations, then ρ∪ν is a reflexive
relation on S ∪T but is not transitively closed in general if S and T intersect.
Define

ρ ∗ ν = TC(ρ ∪ ν) ∈ E(S ∪ T ).

If p ∈ E(S) and T ⊆ S then p|T denotes the restriction of p to T . That is,
the largest element of E(T ) which is (as a relation) a subset of p.

If p ∈ E(S) and T a set, then #T (p) denotes the number of parts of p
which contain only elements of T .

For each bijection f : S → T there is a map

f : E(S) → E(T )

by applying f to parts.
If S is a set then Si is the image of S in S × Z under s 7→ si = (s, i), and

σ1 : S × {0, 1} → S × {1, 2} (21)

(s, i) 7→ (s, i + 1)

σ2 : S × {0, 2} → S × {0, 1} (22)

(s, 2) 7→ (s, 1)

(s, 0) 7→ (s, 0)

Thus for ρ ∈ E(S0 ∪ T 1) and ν ∈ E(σ1(T
0 ∪ U1)) we have

ρ ∗ ν ∈ E(S0 ∪ T 1 ∪ U2).

4.2 The graph category

We now recall the definition of the graph category from [28] (one should also
compare this construction with the tangle category [10]). Let g be a graph.
In this section we will write edge(g) for the edge set of g, and usually confuse
g notationally with its vertex set.

(4.3) Let S be a set as before. By an S-graph we mean a finite graph g
together with a ‘structure’ map

λg : S → g

(this can be any map). Note that if S′ ⊂ S then each S-graph g restricts to
an S′-graph g|S′ by restricting the structure map.
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(4.4) There is a map pλ from S-graphs to E(S) which puts s, t in the same
part if they label vertices in the same connected component. For example if
g is the unique loop-free graph on one vertex then there is only one possible
structure map and pλ(g) is the partition of S with only one part, for any S.

This should be contrasted with the map p : Γ(S) → E(S), in which all
graph vertices are labeled, so graphs are not regarded as equivalent under
graph isomorphism. They coincide only when λg is the identity map.

There is an infinite fibre p−1
λ (q) of S-graphs over any q ∈ E(S). This fibre

contains a graph ω(q) with no edges and |q| vertices, in which the underlying
labels on the vertices can be considered to be the parts of q, and the structure
map assigns each s ∈ S to the vertex whose label contains s.

(4.5) By an (S, T )-graph we mean an (S1∪T 0)-graph. In this case we refer to
the vertices labeled from S1 as outputs and those labeled from T 0 as inputs.
(This notation comes from the physical context described in Section 2.) By
an (n,m) − graph we mean an (n,m)-graph.

For example, the graph shown in equation (20) is a (3, 2)-graph with a
bijective structure map.

Write homΓ(S, T ) for the set of (S, T )-graphs, regarding any vertices not
in the image of the structure map as unlabeled (so elements are strictly iso-
morphism classes with respect to the set of graph morphisms which commute
with the structure map). That is, homΓ(S, T ) is a certain set of partially
labeled graphs (some vertices may have multiple labels). Let σ1, σ2 act on
such a partially labeled graph by changing the labels in the obvious way.

(4.6) For g, g′ graphs, define the composite g∪Γ g′ to be the graph with vertex
set g ∪ g′ and edge set the (disjoint) union of the edge sets. Define a product

◦ : homΓ(S, T ) × homΓ(T,U) → homΓ(S,U)

by
g ◦ g′ = σ2((σ1(g) ∪Γ g′)|S2∪U0)

This amounts to drawing the two graphs one on top of the other, with the
vertices whose T -label (as it were) coincide identified; and then stripped of
their T -label.
Example:

(2,0) (3,0)

(1,1) (2,1)

(1,0)

(1,1) (2,1) (3,1)

(1,0) (2,0)

(1,0) (2,0)

(1,1) (2,1)

(1,0) (2,0)

(1,1) (2,1)

Consider the element of homΓ(S, S) with no edges, and |S| vertices, each ver-
tex with two labels: s0 and s1 for some s ∈ S. It follows from the concatena-
tion picture (or otherwise) that this is the identity element in (homΓ(S, S), ◦).
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(4.7) Proposition. The triple Γ = (SF in, homΓ(−,−), ◦) is a category.

Proof: It remains to show associativity. Considering the concatenation pic-
ture we see that computation of (g◦g′)◦g′′ involves the same stack of diagrams
as g ◦ (g′ ◦ g′′); and that the order of ‘internalisation’ of the middle layers is
unimportant. 2

Note that any graph in homΓ(S, T ) with no edges for which the structure
map restricts to a bijection on each of S1 and T 0 is an isomorphism. This
construction requires that |S| = |T |, whereupon there are |S|! such graphs.
The construction includes the identity if S = T . The composition then closes
on this set of isomorphisms to form a submonoid that is isomorphic to the
symmetric group Sn.

It follows that

(4.8) Proposition. The subcategory ΓN with object set N and hom sets homΓ(m,n)
is a skeleton in Γ.

4.3 On graph invariants

One interesting way to proceed at this point is as follows. First extend ΓN

to a K-linear category. Then for example homKΓN
(0, 0) is the free K-module

with basis the set of all finite loop-free graphs (strictly speaking, isomorphism
classes thereof). The aim is to find quotient relations in this category such
that hom(0, 0) is reduced to scalars — the scalar image of each graph thus
being its invariant under this reduction. Both the invariant and the quotient
category are potentially interesting.

A set of quotient relations that gives rise to chromatic [8] and dichromatic
polynomials as invariants is described in [28] (these relations are an extension
to the categorical setting of relations used, for example, in [5] and references
therein). For the category as a whole this quotient passes to the partition
category. To introduce this we first adopt quotient relations that give rise to
much more trivial invariants (but the same categorical structure).

(4.9) We may regard (N0,+) as a category with one object. Thus Γ×N0 is a
category. We will consider it to have the same object set as Γ. We can consider
Γ×N0 ×N0 similarly. Now define homΓ+(S, T ) = homΓ(S, T )×N0 ×N0 (the
second component can be called the weight and the third the overflow). Let
b(g) be the number of connected components of g having no labeled vertices.
Define a relation on homΓ+(S, T ) by

(g,m, n) ∼ (g′,m′, n′)

if pλ(g) = pλ(g′) and b(g) + m = b(g′) + m′ and gen(g) + n = gen(g′) + n′.
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Example:














(1,1) (2,1)

(1,0) (2,0)

, 0, 0














∼














(1,0) (2,0)

(1,1) (2,1)

, 1, 1














∼














(1,1) (2,1)

(1,0) (2,0)

, 1, 2














∼
(

(2,0)

(2,1)

(1,0)

(1,1)

, 1, 2

)

(4.10) Proposition. (i) The relation ∼ is a congruence relation on the cat-
egory Γ × N0 × N0.
(ii) The quotient category

P
+ := Γ × N0 × N0/ ∼

has homs that are equivalence classes of (g,m, n)-triples. Each such equiva-
lence class has a representative element whose first component g is of form
ω(q).

Proof: (i) Suppose g ∼ g′ and h ∼ h′. We RTS that g ◦ h ∼ g′ ◦ h′.
The picture for g ◦ h produces connections between vertices in the same way
as g′ ◦ h′, so pλ(g ◦ h) = pλ(g′ ◦ h′). The second component works similarly.
For the third component note that gen(g ◦ h) = gen(g) + gen(h) + X(g ◦ h),
where X is the number of occurences of pairs of vertices that are connected
in both the g part and the h part of g ◦ h. Since the connected components
of (the labeled vertices of) g and g′ (respectively h and h′) agree we have
X(g′ ◦ h′) = X(g ◦ h). Thus

gen(g ◦ h) = gen(g′) + g′2 − g2 + gen(h′) + h′
2 − h2 + X(g′ ◦ h′)

so
gen(g ◦ h) + g2 + h2 = gen(g′ ◦ h′) + g′2 + h′

2

(ii) The example above is sufficiently generic. 2

(4.11) Proposition. The restriction P
x of P

+ to the subclass of finite cardi-
nals is a skeleton.

Let K be a ring and C a category. Recall that KC is the K-linear category
extending C.

(4.12) Suppose that δ, κ ∈ K and define a relation ∼δ on K homPx(m,n) as
follows. For A,B ∈ homPx(m,n) set A ∼δ B if

δA2κA3(A1, 0, 0) = δB2κB3(B1, 0, 0)

and extend linearly.

(4.13) Proposition. The relation ∼δ is a congruence on KP
x, so for each

δ, κ we have a quotient

CP(δ,κ) = (N0,homP(δ,κ)(−,−), ◦)
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a K-finite category. Each homP(δ,κ)(m,n) has a basis of partitions E(m1∪n0).
The specialisation κ = 1 is the partition category CP(δ), and Pn = EndP(δ)(n)
is then the partition algebra. (We shall recall the definition of the partition
category [25] shortly.)

Note that homP(δ)(m,n) is a left-EndP(δ)(m)-right-EndP(δ)(n)-bimodule.
Thus we have lots of functors between module categories. These functors were
used to determine the structure of the partition algebra for K = C in [26].
(The structure over fields of finite characteristic is largely an open problem.)

5 The partition category

The partition base category P
◦ is constructed as follows. Set OP◦ = OS. Then

homP◦(S, T ) = E(S1 ∪ T 0) × N0

(so homP◦(∅, ∅) ∼= N); and composition is partition algebra composition.
That is:

homP◦(S, T ) × homP◦(T,U) → homP◦(S,U) (23)

(f, g) 7→ f ◦ g

has f ◦ g given as follows.

(f ◦ g)1 = σ2(σ1(f1) ∗ g1|S2∪U0) (24)

(f ◦ g)2 = f2 + g2 + #T 1

(σ1(f1) ∗ g1) (25)

(5.1) Example. Using the diagram realisation in (4.1), the first step is to
concatenate the two diagrams in the product, as shown on the left here in
case S = 3, T = 3, U = 2:

(2,1) (3,1)(1,1)

(1,0) (2,0)

=

,0

,3
1

,4

0+3+1

The second (integer) component of the new hom is the sum of the second
components of the factors, plus the number of ‘interior’ components of the
concatenated diagram.

Noting that every hom in P
◦ is a pair consisting of a partition and a

number, then by convention, if the number is zero we may refer to the hom
simply as a partition. The second (number) component is sometimes called
the ‘vacuum bubble’ index, or the weight.

(5.2) Proposition. The triple P
◦ = (OS, homP◦, ◦) is a category.
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Proof: The unit in homP◦(S, S) is the (weight 0) pair partition

1S = ({..., {(s, 0), (s, 1)}, ...}, 0)

It is an exercise to check associativity. 2

Note that the set of homs of form






(1,1) (2,1) (3,1)

, N0







is central in EndP◦(3) (and similarly for any EndP◦(S)).
Note that if f : S → T is an isomorphism then

f ′ = ({..., {(s, 0), (f(s), 1)}, ...}, 0)

is an isomorphism in homP◦(S, T ). Every isomorphism can be constructed in
this way. Thus

(5.3) Proposition. The restriction of P
◦ to the subclass of finite cardinals is

a skeleton for the restriction P
◦
F in (given by OP◦

F in
= OSF in

).

We denote this category as

CP = (N0,homP(−,−), ◦)

where
homP(m,n) = E(m1 ∪ n0) × N0

(5.4) Let K be a ring. Then KCP is the K-linear category extending CP.
Suppose that δ ∈ K and define a relation ∼δ on K homP(m,n) by A ∼δ B if

δA2(A1, 0) = δB2(B1, 0)

if A,B ∈ homP(m,n), and so on.
This is a congruence, so for each δ we have a quotient

CP(δ) = (N0,homP(δ)(−,−), ◦)

a K-finite category. By construction homP(δ)(m,n) has basis E(m1∪n0). This
is the partition category [25], and Pn(δ) = EndP(δ)(n) is the partition algebra.

5.1 Subcategories

(5.5) The subcategory S
◦ of S in which only homs which are bijections are

retained is a subcategory of P
◦ by identifying the object classes between S and

P
◦ and taking f ∈ homS(S, T ) to the pair partition with pairs {s0, f(s)1}.

(5.6) The partition part of the partition product takes pair partitions to pair
partitions, so that the subcategory B

◦ of P
◦ in which only homs which are
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pair partitions are retained is well defined, and is the Brauer base category.
We have the factoring

S
◦ →֒ B

◦ →֒ P
◦

The Brauer skeleton category is the skeleton of B
◦ with object set the finite

cardinals. The hom set between cardinals n and m is denoted homB◦(n,m)
or homB(n,m).

The congruence ∼δ may be applied to define the Brauer category:

CB(δ) = (N0,homB(δ)(−,−), ◦)

(5.7) Further, homT (δ)(m,n) ⊂ homB(δ)(m,n) is obtained by restricting to
plane pair partitions. The corresponding category CT (δ) may be identified with
the ordinary TL category discussed in Section 2 (Figure 3), in case δ =

√
Q.

(The diagrams are the same, although we have rotated through 90o compared
to the figures in Section 2.)

≡

(26)

(5.8) Similarly we may define homT(m,n) ⊂ homP(m,n) as the subset such
that A ∈ homT(m,n) implies that A1 is a plane partition. Example:

As the figure illustrates, a plane partition may be thickened, leading to a kind
of TL diagram (see also Section 2). Then the congruence ∼δ defines the even
TL category CT(δ).

Note that there are some significant differences between these two con-
structions, homT (m,n) and homT(m,n). For example we have a homomor-
phism from homT(δ2)(n,m) to homT (δ)(2n, 2m) illustrated by

7→ δ

(27)

7→ 1
δ

That is, the number of vertices is doubled, the parameter changes, and the
diagrams must be rescaled.
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6 Representations: Schur-Weyl duality

For N ∈ N let V = K{e1, e2, ..., eN}. Then we have the following collection
of pairs of commuting (indeed centralizing) actions:

GL(V )

$$HHHHHHHHH
Sn

{{vv
vv

vv
vv

vv
� _

�
O(V ) //

?�

O

V ⊗n Bn(N)oo
� _

�
SN

::vvvvvvvvv?�

O

Pn(N)

ccHHHHHHHHH

(28)

Fix a field k. Then recall that Vect is the category of k-spaces. For G a
group and V a G-module then VectG,V is the subcategory with objects

k, V, V 2, V 3, ...

and homs commuting with the diagonal action of G, i.e.

f : V m → V n

such that
fσv = σfv ∀σ ∈ G

This inherits the tensor structure from Vect.

(6.1) The following functor

FN : CP(N) → VectSN ,V

is a representation of CP. We begin by giving the images of some elements (in
case N = 2):

homP(1, 0) ∋ 7→
(

1 1
)

homP(0, 1) ∋ 7→
(

1
1

)

homP(1, 1) ∋ 7→
(

1 0
0 1

)

homP(2, 2) ∋ 7→







1
0

0
1







homP(2, 2) ∋ 7→







1
0 1
1 0

1






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Note that all the images are invariant under the appropriate S2 action. We
conclude by noting that CP is a tensor category with

A B = A B

and that the examples given above (respectively their direct generalisations
to other N) generate.

(6.2) Example. Keeping with F2:

=

7→













1
0

0
1













1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1













1
0

0
1












⊗

(
1 0
0 1

)

=







1 1
0 0
0 0

1 1






⊗

(
1 0
0 1

)

(omitted entries zero); while N = 3 gives

. . . =

















1 1 1
0 0
0 0 0
0 0 0 0
1 1 1

0
0

0
1 1 1

















⊗





1 0 0
0 1 0
0 0 1





(6.3) A tensor representation of a tensor category is a representation (a map
to a tensor category) that commutes with the tensor operation.

Suppose C a tensor category and X is an element of homC(l,m) then for
each n we associate an ideal in homC(l ⊗ n,m ⊗ n) to X by

In
X = End(l ⊗ n)(X ⊗ 1n)End(m ⊗ n)

Example. In TL we have the case with X ∈ hom(2, 0) given by

X ⊗ 12 =
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in which the ideal contains elements like

In this case it will be evident that In
X = homC(2 + n, n).

Indeed the tensor structure on C defines an embedding of hom(l,m) in
hom(l + n,m + n) by X 7→ X ⊗ 1n (along with other such embeddings). This
gives us a way to interpret End(l + n) as a left End(l)-module. For l = m we
call the associated functor from End(l+n)−mod to End(l)−mod restriction:
resl+n

1 −. If Mn is the representation of End(n) in a tensor representation then
resn

n−1Mn
∼= M1(1) ⊗ Mn−1.

By a similar token

hom(n, n + 2) ⊗End(n+2) Mn+2
∼= Mn (29)

(the key point being that rank(FN (X)) = 1).

(6.4) These FN are called N -state Potts functors (because of their physi-
cal origin [24]). They restrict to representations of the Brauer category and
Temperley–Lieb category. In the Brauer algebra case this is the representation
associated to the action on tensor space in the Schur-Weyl duality diagram
above.

In the Temperley–Lieb case we have described two possible restrictions.
One is given by the example above (the particular example is the representa-
tion of D1, via (26)). The other is (combining (27) with FN ), in case N = 3,

D1 7→ 1√
3





1 1 1
1 1 1
1 1 1



 ⊗ 13 ⊗ 13 ⊗ ...

D2 7→
√

3

















1
0 0
0 0 0
0 0 0 0

1
0

0
0

1

















⊗ 13 ⊗ ...

and so on. Note that this is a representation of EndT (
√

3)(2n), whereas the
other construction gives rise only to representations for integral δ values.

6.1 On module structure

The following analysis can be implemented for any of the algebras we have
introduced, but here we use TL as an illustrative example (see [12] for the
Brauer case; [26] for the partition algebra case; and many other references).
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Fix δ and let An be the K-algebra EndT (δ)(n). As noted in (3.7) above
we may define a functor

F : mod − A2n → mod − A2n−2

by M 7→ Hom(2n − 2, 2n) ⊗A2n
M ; and a functor

G : mod − A2n−2 → mod − A2n

by M 7→ Hom(2n, 2n − 2) ⊗A2n−2
M . Unless δ = 0 and n = 1 we have that

Hom(2n − 2, 2n) ⊗A2n
Hom(2n, 2n − 2) ∼= End(2n − 2) = A2n−2 (30)

as an A2n−2-bimodule. (By Proposition 3.19 the category composition gives
a surjection from left to right. An inverse is defined (for example when δ 6= 0)
on diagrams as follows: equate the diagram to a suitably rescaled one with a
loop added close to the right hand edge of the diagram; cut the diagram from
side to side through its propagating lines and this loop.) We have further that
Hom(2n, 2n − 2) is a projective left Hom(2n, 2n)-module; that

Hom(2n, 2n − 2) ⊗A2n−2
Hom(2n − 2, 2n) ∼= hom2n−2(2n, 2n) (31)

and that
A2n/hom2n−2(2n, 2n) ∼= K (32)

as a vector space.
One may use the functors F ,G to define a set of modules for each An

that are a complete set of standard modules, in the sense that (i) they have a
standard construction independent of δ and yet (ii) give rise to a basis for the
Grothendieck group. That is, we may express the character of any module M
as a combination of standard characters. For a given set of standard modules
the collection of coefficients in this combination is called a Grothendieck vec-
tor, and here denoted Gr(M).
Further (iii) Each standard module for An has simple head and is taken by
F either to zero or else to a standard module for An−2 (cf. [17, §6]). That is
to say, the Grothendieck vector for the image FM of a module M is simply a
localisation of Gr(M) (i.e., a copy of Gr(M) in which some of the coefficients
have no role, since there is no corresponding standard module). Hereafter we
assume that Gr(M) is embedded in the global limit space (the space of the
large n vector), thus

Gr(FM) = Gr(M)

It follows from (30)-(32) (under the projective condition) that a labeling
scheme for the standard modules of An is {∆(λ) | λ ∈ N; 0 ≤ λ ≤ n; λ ≡
n mod.2} (when the projective condition fails we just have one too many
labels). Thus N may be used as a labeling scheme for the entries in the
Grothendieck vector Gr(M) for any An (with some redundant entries).
It also follows that ∆(λ) is simple whenever An is semisimple. Thus in par-
ticular:

(6.5) Proposition. Entries in Gr(M) lie in N0 whenever An is semisimple.
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Consider the construction in (6.1) and Example (6.2) as providing a rep-
resentation Mn of EndT (δ)(n) (with δ = N); and that in (6.4) as providing

a representation M2n of EndT (δ)(2n) (with δ2 = N). Then both satisfy the
conditions in (6.3) and we have, by (29),

(6.6) Proposition. For n > 1

FMn = Mn−2 FM2n = M2n−2

2

This implies that the Grothendieck vector for Mn can be considered as
independent of n (or more precisely, as depending on it only though a lo-
calisation). It turns out that this is enough to determine the Grothendieck
vector.

One proceeds as follows. First note that restriction provides another kind
of functor between these categories. Its action on the Grothendieck vector
is governed by the standard restriction rules. For the TL algebras these are
resAn

An−1
∆0

∼= ∆1 and otherwise

resAn

An−1
∆λ

∼= ∆λ−1 + ∆λ+1

Note that
resAn

An−1
Mn

∼= 1N ⊗ Mn−1 (33)

and
resA2n

A2n−2
M2n

∼= 1N ⊗ M 2n−2 (34)

It follows that
XGr(M−) = δ Gr(M−) (35)

where

X =








0 1
1 0 1
0 1 0 1

0 0 1
. . .








That is the Grothendieck vector is an eigenvector of this infinite matrix. We
obtain immediately

Gr(M−) = (1, δ, δ2 − 1, δ(δ2 − 2), δ4 − 3δ2 + 1, . . .)t (36)

in either case (for M− only the odd entries are relevant). This simple result
is quite revealing. Reparameterising δ = q + q−1 = [2] we get

Gr(M−) = (1, [2], [3], [4], [5], [6], . . .)t

and although we have only constructed Mn for δ = N ∈ N and M2n for
δ2 = N ∈ N this can be applied to determine representation theory of An in
all specialisations. For example, when [3] = 0 (δ = N = 1) we have [4] = −1:

Gr(M−)|δ=1 = (1, 1, 0,−1,−1, 0, . . .)t
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It follows from this (and Proposition 6.5 above) that An is not semisimple
when δ = 1 and n > 2. Similarly when [4] = 0 (δ2 = N = 2) we have
[5] = −1; and when [6] = 0 (δ2 = N = 3) we have [7] = −1.

A negative λ-th entry in Gr(M) implies that some standard module earlier
in the labeling scheme with a positive entry (∆(µ) say) contains (at least the
head of) ∆(λ); and that the module M contains the quotient of this standard
by (the head of) ∆(λ). In other words, although the character for M formally
contains the character for µ, this is an overcount, and the character for λ
must be subtracted to correct this. In other words a negative λ-th entry is a
signal of a homomorphism from ∆(λ) to ∆(µ). By property (iii) of standards
this says that λ and µ are in the same block. In our δ = 1 example the first
negative entry is at λ = 3, and the only possible homomorphism is to µ = 1.
These labels are in the same orbit of an A1 affine reflection group action, and
more generally these orbits describe the blocks of the algebra (when K = C).
We can visualise this with the following picture, which shows the labels λ
embedded in the real line, with the affine reflection points represented by
vertical dashed lines; and the reflections by curved arrows:

2 6

0 −1 0 1 0

0 1 3 4 5

−1 111

We also show in the figure that the Grothendieck vector comes from evaluating
a sine curve (with origin set to the boundary of the ‘dominant region’) at
the integral points. Thus our solution to the eigenvalue problem, which is
essentially by fourier transform with a node at the origin (note that if q =
exp(iγ) then (1, [2], . . .) = 1

sin(γ)(sin(γ), sin(2γ), . . .)), is a signal of an alcove
geometric description of the block structure.

The representation theory of the Brauer algebra is much more complicated
(see [11]), and the representation discussed above does not seem to provide
sufficiently many constraints for its complete analysis. We now analyse a
generalisation of the representation discussed above (due to Benkart [6, 7])
which turns out to be useful in this regard.

6.2 Generalisations

Returning to FN , we could have implemented the TL part categorically as

7→
(

1 1 1 1
)







1
0

0
1







=
(

1 0 0 1
)
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This says that the two vertices at the ends of each edge must be the same
colour — the Potts condition: Hij = δσi,σj

from Section 2. Organised as a

matrix this is H i
j =

(
1 0
0 1

)

ij

or for general N , H i
j = (1N )ij . Instead we

could have used the flip condition

H i
j =

(
0 1
1 0

)

ij

(this is case N = 2 again), giving

D1 7→







0
1 1
1 1

0







(6.7) Remark. This specific case coincides with the KSn action in the top
row of (28). The Temperley–Lieb algebra does not appear in this Schur-Weyl
duality diagram, but the Temperley–Lieb algebra with δ = 2 is a quotient of
KSn and we have

σ1 7→ (1 − D1) 7→







1
0 −1
−1 0

1







It is this action which may be q-deformed to give the dual action to that of the
Uq(sl2) quantum group. (The deformation deforms δ = N = 2 to δ = q + q−1

without changing N .)

(6.8) For N > 2 our flip construction no longer commutes with the SN action
on the bottom left side of (28). Consider now the case N even, and the Sp(N)
(instead of O(N)) action inside the GL(N) action on the left side of (28). The
Sp(N) action does not contain the SN action permuting basis elements (as
O(N) does). Instead it can be chosen to leave the form

H i
j =

(
0 −1
1 0

)

ij

(this is case N = 2 again) fixed. Note that this gives δ = −2 (and δ = −N in
general).

More generally we could have used a mixed condition such as

H i
j =





0 1 0
−1 0 0
0 0 1





ij

This last does not make sense physically (where terms require a probablistic
interpretation), but is fine in representation theory. Indeed the extension to
the Brauer algebra is introduced in [7], where it is shown that this commutes
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with an OSp(l, 2m) action (our example is OSp(1, 2)). In both Brauer and
TL cases it gives

δ = l − 2m

(so in our example δ = −1).
Here we conclude by using the theory explained in the previous section to

determine the Grothendieck vector for the TL action in the most general case.
These actions have received renewed attention recently in the Brauer case, as
a possible device for proving decomposition matrix conjectures (results in [11]
show that the Brauer decomposition matrices are highly non-trivial, even in
characteristic zero). We will return to the Brauer case elsewhere. The TL case
is a useful paradigm since, as in the Brauer case, the Potts representation of
δ = 1 is rather trivial (it is 1-dimensional for all n). It is useful to have a
suite of tensor space representations for δ = 1 large enough to capture a much
larger proportion (perhaps all) of the algebra structure.

In the TL case the algebra with parameter δ is isomorphic to that with
parameter −δ, so we have two sequences of representations informing the
study of δ = 1. That is l − 2m = 1 and l − 2m = −1. The former sequence is
(m, 2n) = (1, 0), (3, 2), (5, 4), ... and the latter (1, 2), (3, 4), ....

Following the notation of Section 6.1 let us denote by M l,m
n the represen-

tation of EndT (δ=l−2m)(n) at hand. We again have

FM l,m
n = M l,m

n−2

Note from (33) that the standard ‘multiplicities’ (in the sense of section 6.1)
depend on N = l + 2m, rather than depending on l,m separately. That is,
the Grothendieck vector is

Gr(M l,m
− ) = (1, N,N2 − 1, N3 − 2N, . . .)t (37)

cf. (36). We have the following table of explicit Grothendieck vectors case by
case:

λ : 0 1 2 3 4 ...

N = 2 l,m = 0, 1 δ = −2 1 2 3 4 5 ...
N = 3 l,m = 1, 1 δ = −1 1 3 8 21 55 ...

N = 4 l,m = 2, 1 δ = 0 1 4 15 56 ...
N = 5 l,m = 3, 1 δ = 1 1 5 24 115 ...

(N.B. In the δ = 0 case the λ = 0 and λ = 2 labelled ‘standard’ modules
coincide, so if we retain this labeling then (a,−, b, . . .) ∼ (a + b,−, 0, . . .) ∼
(0,−, a + b, . . .) are equivalent Grothendieck vectors.)

(6.9) Proposition. (i) In case l = 2, m = 1, the representation M l,m
n is

non-semisimple for every even n; and (ii) in case l,m > 1, the representation

M l,m
n contains at least one copy of every simple for every n.

Proof: (i) A simple way to see this is first to note that J = D1D3 . . . D2n−1

lies in the radical of the algebra (it generates a nilpotent double-sided ideal)
when δ = 0 as here. Then note that J is represented by a non-zero matrix in
M2,1

2n .
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Alternatively, we can note that in particular, in case l = 2, m = 1, n = 2,
the non-zero block of the representation of D1 is

Ũ =







−1 1 −1 −1
1 −1 1 1
1 −1 1 1
1 −1 1 1







Jordan7→







0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0







(the representation is 16-dimensional overall, but all other entries are zero).
Thus there is a non-split extension (of course this is implicit in the already
noted fact that D1 lies in the radical). Since F is exact there is an indecom-
posable summand of M2n whose image under F is this non-split submodule.
But if this indecomposable summand of M2n were simple its Grothendieck
vector would have non-zero entries of magnitude 1 and alternating sign (we
invoke this standard TL result over C for the sake of brevity).

(ii) For the simple multiplicities note that the decomposition matrix for
standard modules (into simple composition factors) is upper triangular. Thus
if the Grothendieck vector is positive then so is the vector of simple composi-
tion multiplicities. 2

This very simple result nicely illustrates the point. Firstly, there is no
ordinary Potts δ = 0 representation (since it would have N = 0). Secondly,
the ordinary Potts representations are all semisimple, even in the cases when
the algebra itself is not; whereas our n = 2 example is already manifestly non-
semisimple (indeed it contains a copy of the two-dimensional indecomposable
regular representation). Thirdly, the multiplicities in our table may here be
interpreted as follows. In the δ = 0 case the ‘standard’ modules ∆0 and ∆2

are isomorphic, so we can consider 16 copies to be distributed as 1+15 (with
the 1 glued over one of the 15).

Actually a stronger result follows by combining the Temperley–Lieb struc-
ture theorem from [24] with a result on tensor ideals in [14], but we shall
report on the non-semisimple structure of these representations in general
elsewhere. As already noted a bigger (and open) question is the structure
of the corresponding representations of the Brauer algebra. And for an even
more thorough exercising of the techniques touched on here, see [2].
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