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Overview/Aims/Objectives

Aim: Give a quick flavour of the physical setting which seems to be
helpful in my research in Representation Theory
(and how it helps).

relate Representation Theory and Statistical Mechanics in such a way
that they significantly inform each other.

Leeds has strong groups in:
Algebra
Integrable systems
Polymers
Logic
and several others all directly (or potentially directly) relevant to this
activity.
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Statistical mechanics models bulk properties
of large collections of interacting microscopic components
given a model for microscopic interactions
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Aim: model phenomena like Curie point transition:

How?
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Idea: Ignore microdynamics
probability of finding system in equilibrium in microstate s
depends on
‘energy’ H(s) of state, and ‘temperature’∝ 1/β

P(s) =
eβH(s)

ZH(β)
where Z =

∑
s

eβH(s)

Expected result of observation: weighted average

〈O〉 =
∑

s

O eβH(s)

Z

What is H?...
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Use stylised degrees of freedom of ‘atoms’,
and interactions.

Possible state of each atom labelled by
Q := {1, 2, ..,Q}

S: Set of all possible states of whole system.

let atoms interact, pairwise, if sufficiently close.
(adjacency described by adjacency on graph G )

H : S → <

Example

H : σ 7→
∑

(i,j)∈EG

δσ(i),σ(j)

...bigger probability for ordered states.
H = 9
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Altogether

〈O〉 =
1

Z(β)

∑
σ∈S

O exp(β
∑

{i,j}∈EG

δσ(i),σ(j))

‘Ising/Potts model’

Idea:
ordered states have biggest H, so biggest individual weight eβH ;
but many more, typically disordered, states give lower H values.

The winner in this ENERGY/ENTROPY battle for 〈O〉
will depend on β (inverse temperature).

This seems roughly right. How good is it?
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Our Z is polynomial in eβ

but recall need to model things like:

Very hard to measure close to Curie point experimentally
(critical slowing down),
but this result on Avogadro’s number of atoms best modelled by
something non-analytic in thermodynamic limit...
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On finite grid, complex zeros of Z distributed like

in the limit these become continuous distributions, pinching real axis at
phase-transition point.
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So it works!
How compute?
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Computation

Fixing Q and H, we have a polynomial Z in eβ for each graph G :

 ZG =
∑

s∈S eβH

Introduce relative Z : ‘partition vector’

 fix configuration s ′ ∈ S ′ on subset of vertices VG ′ ,
sum only over configurations in S having this subconfiguration,
call this partial sum (ZG )s′ .

Vector ZG |G ′ := ((ZG )s′)s′∈S′
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ZGG ′′ =
∑
G ′

ZG |G ′ZG ′′|G ′

Further

— data now organised as matrix: iterated composition.
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Example: simple 2D crystal lattice:

Z = 〈|T l |〉 =
∑

i

αiλ
l
i = α0λ

l
0

(
1 +

∑
i>0

αi

α0

(
λi

λ0

)l
)

(Note that this grows the graph transversely but not laterally — will
eventually need a separate growth in lateral direction, thus changing T
— and stability with respect to this growth too.)



Preamble Statistical mechanics Representation theory

Example: simple 2D crystal lattice:

Z = 〈|T l |〉 =
∑

i

αiλ
l
i = α0λ

l
0

(
1 +

∑
i>0

αi

α0

(
λi

λ0

)l
)

(Note that this grows the graph transversely but not laterally — will
eventually need a separate growth in lateral direction, thus changing T
— and stability with respect to this growth too.)



Preamble Statistical mechanics Representation theory

Example: simple 2D crystal lattice:

Z = 〈|T l |〉 =
∑

i

αiλ
l
i = α0λ

l
0

(
1 +

∑
i>0

αi

α0

(
λi

λ0

)l
)

(Note that this grows the graph transversely but not laterally — will
eventually need a separate growth in lateral direction, thus changing T
— and stability with respect to this growth too.)



Preamble Statistical mechanics Representation theory

Example: simple 2D crystal lattice:

Z = 〈|T l |〉 =
∑

i

αiλ
l
i = α0λ

l
0

(
1 +

∑
i>0

αi

α0

(
λi

λ0

)l
)

(Note that this grows the graph transversely but not laterally — will
eventually need a separate growth in lateral direction, thus changing T
— and stability with respect to this growth too.)



Preamble Statistical mechanics Representation theory

Example: simple 2D crystal lattice:

Z = 〈|T l |〉 =
∑

i

αiλ
l
i = α0λ

l
0

(
1 +

∑
i>0

αi

α0

(
λi

λ0

)l
)

(Note that this grows the graph transversely but not laterally — will
eventually need a separate growth in lateral direction, thus changing T
— and stability with respect to this growth too.)



Preamble Statistical mechanics Representation theory

Example: simple 2D crystal lattice:

Z = 〈|T l |〉 =
∑

i

αiλ
l
i = α0λ

l
0

(
1 +

∑
i>0

αi

α0

(
λi

λ0

)l
)

(Note that this grows the graph transversely but not laterally — will
eventually need a separate growth in lateral direction, thus changing T
— and stability with respect to this growth too.)



Preamble Statistical mechanics Representation theory

Example: simple 2D crystal lattice:

Z = 〈|T l |〉 =
∑

i

αiλ
l
i = α0λ

l
0

(
1 +

∑
i>0

αi

α0

(
λi

λ0

)l
)

(Note that this grows the graph transversely but not laterally — will
eventually need a separate growth in lateral direction, thus changing T
— and stability with respect to this growth too.)



Preamble Statistical mechanics Representation theory

Example: simple 2D crystal lattice:

Z = 〈|T l |〉 =
∑

i

αiλ
l
i = α0λ

l
0

(
1 +

∑
i>0

αi

α0

(
λi

λ0

)l
)

(Note that this grows the graph transversely but not laterally — will
eventually need a separate growth in lateral direction, thus changing T
— and stability with respect to this growth too.)



Preamble Statistical mechanics Representation theory

In summary, Z computed by computing T l .

But T is +ve;
so Peron-Frobenius theorem applies;
so large l limit of Free Energy Density

1

l .m
ln(Z )

controlled by largest eigenvalue λ0 of T .

— gap between this λ0 and next (or appropriate) lower eigenvalue
determines a correlation length1 (and so on).

Upshot: want spectrum of T .

1Typical observable is correlation function: dependence of correlation between
states of 2 separated atoms on separation
— normally exponential with some decay rate ‘correlation length’,
that can depend on temperature.
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Computing spectrum T hard.

Can sometimes express
T = R(t)

representation matrix of (β-dependent) element t of some algebra A,
in some big representation R.
(NB still holding lateral graph fixed here — will need a new algebra for
each larger lateral size.)

Idea: decompose
R = +iRi

(Ri smaller representations) gives very helpful block diagonalisation.
Helps computationally.
Also helps physically — labels i label correlations!
(Masses in Field Theory.)



Preamble Statistical mechanics Representation theory

Computing spectrum T hard.

Can sometimes express
T = R(t)

representation matrix of (β-dependent) element t of some algebra A,
in some big representation R.

(NB still holding lateral graph fixed here — will need a new algebra for
each larger lateral size.)

Idea: decompose
R = +iRi

(Ri smaller representations) gives very helpful block diagonalisation.
Helps computationally.
Also helps physically — labels i label correlations!
(Masses in Field Theory.)



Preamble Statistical mechanics Representation theory

Computing spectrum T hard.

Can sometimes express
T = R(t)

representation matrix of (β-dependent) element t of some algebra A,
in some big representation R.
(NB still holding lateral graph fixed here — will need a new algebra for
each larger lateral size.)

Idea: decompose
R = +iRi

(Ri smaller representations) gives very helpful block diagonalisation.
Helps computationally.
Also helps physically — labels i label correlations!
(Masses in Field Theory.)



Preamble Statistical mechanics Representation theory

Computing spectrum T hard.

Can sometimes express
T = R(t)

representation matrix of (β-dependent) element t of some algebra A,
in some big representation R.
(NB still holding lateral graph fixed here — will need a new algebra for
each larger lateral size.)

Idea: decompose
R = +iRi

(Ri smaller representations) gives very helpful block diagonalisation.

Helps computationally.
Also helps physically — labels i label correlations!
(Masses in Field Theory.)



Preamble Statistical mechanics Representation theory

Computing spectrum T hard.

Can sometimes express
T = R(t)

representation matrix of (β-dependent) element t of some algebra A,
in some big representation R.
(NB still holding lateral graph fixed here — will need a new algebra for
each larger lateral size.)

Idea: decompose
R = +iRi

(Ri smaller representations) gives very helpful block diagonalisation.
Helps computationally.
Also helps physically — labels i label correlations!
(Masses in Field Theory.)



Preamble Statistical mechanics Representation theory

TO DO: Universality; Equivalence of models; Examples; dichromatic
polynomials; Effect of Phase Transition; Connection to QFT; lateral
thermodynamic limit;...
...quantum case (e.g. quantum spin chain); quantum group;
renormalisation group; fusion; boundary conditions;...

...but anyway, we are interested now in the Representation Theory of the
Transfer Matrix algebra.

What is the TMA?
Depends on the model.
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What does the physical context tell us about the TMA?

• TMA is sequence of algebras including the lateral thermodynamic
limit.

• labels for simple modules should be associated to correlation lengths
(and hence have some metricity)
coherently through the whole sequence
(Once an observable is defined, it makes sense irrespective of the
size of the system.)
...suggests functors between module categories for algebras in
sequence.

Core properties cf. weight theory and invariant theory in Lie theory.
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Summary:

• Statistical Mechanics gives us lots of algebras to study
together with lots of representations for each.
(As we’ll see, if there is time.)

• Some of these algebras are new;
some are established objects for study.

• The new representations give us new ways to study these algebras.
In some cases they give us access to a rather complete picture.
What does this mean?...
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Recall group/algebra representation theory

Group G :
ρ : G → GL(V )

is representation if it preserves multiplication.
(example of algebra (i.e. associative algebra) is group algebra over field
(C) — space with basis G and multiplication linearly extending
G -multiplication)

• Given rep ρ, conjugating all images by invertible matrix M gives
another ‘isomorphic’ rep ρM .

• Given ρ, ρ′, then ρ⊕ ρ′ (corresponding to matrix direct sum) is also
rep.
but one with invariant subspaces.

• Irreducible representation Li is one with no proper invariant
subspace.
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For any t
spec(ρ⊕ ρ′(t)) = spec(ρ(t)) ∪ spec(ρ′(t))

spec(ρ(t)) = spec(ρM(t))

spec(R(t)) ⊆ ∪i spec(Li (t))

Consider spec to encode both spectrum and multiplicities (i.e. as
characteristic polynomial), then even

spec(R(t)) = ∪imi (R)spec(Li (t))

multiplicities mi (R) indep of t.
Called simple composition multiplicities of R.

Big challenge RT1: classify representations Li up to isomorphism.
Big challenge SM1: classify spectrum of T .
We now see that these are closely related!
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Finite dimensional algebra A is acted on by itelf by (say) left
multiplication
hence induces rep, called regular representation R.
Let R = ⊕iPi be complete direct-sum decomposition of R.
For group algebra over C the sets {Pi} and {Li} coincide up to
isomorphism.
More generally, matrix

C = (mi (Pj))ij

core data of algebra.
(For various reasons) index set for irreducible representations of A often a
set of lattice points in some space (Z in R, say).
Thus for each point i there is subset of lattice points j s.t. Cij 6= 0.
Shape of this subset in space is one way to visualise core data.
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also see webpage...
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To compute C we now go back to Statistical Mechanics.
Algebra A associated to model for given system — say 1013 atoms wide.
(A bit more if it is an iceberg!)
Physically expect 1013 + 1 atom system similarly behaved.
...but different algebra of course.
so guess these algebras nicely related.
To be specific: group S1013 of permutations of 1013 objects site nicely in
S1013+1 — just don’t perm the last atom.
unfortunately this relation rather weak in representation theory
not enough to unify physics OR determine irreducible representations.
Need another relation — leads to algebras naturally embracing changing
n — called linear categories. (no time for this now)
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Category theory construction

m, n ∈ N0 m
∐

n := m × {1} ∪ n × {0}

P(S) partitions of S

e.g. ∈ P(3
∐

2) {{(1, 1)}, {(2, 1), (1, 0), (2, 0)}, {(3, 1)}}

Consider triple CP = (N0, homP(−,−), ∗)

homP(m, n) = P(m
∐

n)× N0

E.g. A ∗ B =
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CP category, with 1n = (this is case n = 3).
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K a ring
KCP K -linear category
δ ∈ K , define relation ∼δ on KhomP(m, n)

A ∼δ B if δA2(A1, 0) = δB2(B1, 0)

This is congruence, so for each δ, quotient

CP = (N,Khomδ(−,−), ∗)

K -finite category.
‘Partition category’, End(n) = hom(n, n) is n-th partition algebra, Pn.
NB, Khomδ(m, n) is left End(m) right End(n)-bimodule
so get lots of functors between module categories.

F : Pn −mod → Pm −mod (1)

M 7→ hom(m, n)⊗Pn M (2)

(if δ a unit, the ascending ones are full embeddings — thermodynamic
limit)
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Write homl(m, n) for the image ∗(hom(m, l)× hom(l , n)) in hom(m, n).
This is a sub-bimodule. Easy to see that

hom(n, n)/homn−1(n, n) ∼= KSn

Thus simple modules of Pn indexed (for δ a unit) by simple modules of
collection of symmetric groups.
homl(n, l)/homl−1(n, l) is left Pn right Sl module, and projective as
Sl -module, so

M(λ) = homl(n, l)/homl−1(n, l)⊗Sl
∆(λ)

is cellular inflation of Sl cell module, hence Pn cell module.
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Physics: Set

(i : i+1) :=

(i .) := ∈ Pn

(these have n = 7). Then

t = c
∏

i

(1 + v(i .))
∏

i

(v + (i : i+1))

where v = x−1
δ , c scalar,

is t for 2D crystal lattice, δ2-state Potts model. (Now choose a
representation.)
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Subcategories

homB(m, n) ⊂ homP(m, n) — subset such that partition part is a pair
partition
NB closed under *:
CB = (N, homB(−,−), ∗)
δ-quotient:
Brauer category/subalgebra.

homT(m, n) ⊂ homP(m, n) — subset such that partition part is planar:
Temperley-Lieb subcategory.

(Aside: Gram matrices for contravariant forms on cell modules give
access to simple modules — and can sometimes be calculated by
integrable methods...)
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Schur-Weyl duality and representations

What is the representation R?

For N ∈ N let V = K{e1, e2, ..., eN}. Then we have the following
collection of pairs of commuting (indeed centralizing) actions:

GL(V )

##GG
GG

GG
GG

G
Sn

{{wwwwwwwww � _

�
O(V ) //

?�

O

V⊗n Bn(N)oo
� _

�
SN

;;wwwwwwwww?�

O

Pn(N)

ccGGGGGGGGG
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Fix a field k. Then recall that Vect is the category of k-spaces. For G a
group and V a G -module then VectG ,V is the subcategory with objects

k,V ,V 2,V 3, ...

and homs commuting with the diagonal action of G , i.e.

f : V m → V n

such that
f σv = σfv ∀σ ∈ G

This inherits the tensor structure from Vect.
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The following functor

FN : CP(N) → VectSN ,V

is a representation of CP. We begin by giving the images of some
elements (in case N = 2):

homP(1, 0) 3 7→
(

1 1
)

homP(0, 1) 3 7→
(

1
1

)

homP(1, 1) 3 7→
(

1 0
0 1

)

homP(2, 2) 3 7→


1

0
0

1


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homP(2, 2) 3 7→


1

0 1
1 0

1



Note that all the images are invariant under the appropriate S2 action.
We conclude by noting that CP is a tensor category with

and that the examples given above (respectively their direct
generalisations to other N) generate.

Thus we have constructed representation for all the partition algebras
simultaneously. This gives the representation R for any given n.
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