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Chapter 2

Brauer diagram ategory

onstrution

Here K is a ommutative ring, and we de�ne the Brauer algebra [2℄ as an End-set in

a suitable K-linear ategory. This Brauer diagram ategory is a natural subategory

of a partition ategory (see e.g. [8℄). We reall the de�nition of the partition ategory

and onstrut the Brauer ategory from this.

We then disuss the onstrution of spei� elements of these algebras, suh

as idempotent elements of the entre. (This is related to Gram matrix problems

disussed in Setion ?? and `disriminant' problems as disussed, for example, in

[?, 5℄. We mainly follow [11℄.)

We begin in x2.1 with some set theory notation.

2.1 Preliminaries

2.1.1 Set notation

For n 2 N let n = f1; 2; :::; ng, n

0

= f1

0

; 2

0

; :::; n

0

g and so on. Write

I

0

: n [ n

0

[ n

00

[ : : :! n [ n

0

[ n

00

[ : : :

for the map whih adds a (possibly further) prime to eah element; and I

�

for the

map whih removes a prime, or leaves a symbol unhanged if it is unprimed.

(2.1.1) For S a set, write P(S) for the power set of S. We regard this as a (hyper-

ubial) lattie in the usual way. Thus P(S � S) is the set of relations on S. If T is

a set and � 2 P(S � S) then write �j

T

for the (possibly empty) restrition of � to a

relation on S \ T .

(2.1.2) If S is a set then P(S) is the set of partitions of S, and E (S) the set of

equivalene relations. We will onfuse these sets via their natural equivalene.

By onvention, if we write A [B for two partitions we shall intend the union of

their images as (equivalene) relations. This will be a relation but not an equivalene

relation in general (but see later).

(2.1.3) A relation on S may be representated as a direted graph on vertex set S

(the details of the graph edge set from vertex to vertex are irrelevant exept if the

3



4 CHAPTER 2. BRAUER DIAGRAM CATEGORY CONSTRUCTION

edge set is empty or not). The union A[B above then orresponds to the union of

edge sets and of vertex sets.

(2.1.4) We have

E (S) � P(S � S)

De�ne

TC : P(S � S)! P(S � S)

by setting TC(R) to the smallest element of E (S) ontaining R.

The union of A 2 E (S) and B 2 E (T ) is a relation (but not generally an

equivalene) on S [ T .

(2.1.5) For A 2 P(S) de�ne � = jjAjj as the integer partition of jSj suh that �

i

is

the degree of the i-th longest part of A. Thus �

0

1

= jAj.

For example,

jjff1; 2g; f3ggjj = (2; 1):

We all jj � jj : P(S)! �

jSj

the shape funtion.

(2.1.6) Every map f : S ! T indues a map f : E (S) ! E (T ) and similarly on

partitions. In partiular the map

op : n [ n

0

! n [ n

0

is the one that toggles the prime (i$ i

0

).

(2.1.7) Note that if f : S ! T is a bijetion then jjf(A)jj = jjAjj.

2.1.2 Young diagrams

We onfuse Young diagrams and integer partitions in the usual way. The set of all

suh is denoted �. We write �

�

for � exluding the empty integer partition. Write

�

n

for the subset of partitions of n.

(2.1.8) A multipartition is an ordered list of integer partitions, i.e. an element of

hom(N ;�) (or of hom(n;�) for some n).

An unordered multipartition is an equivalene lass of multipartitions under the

ation of reordering the list; i.e. a list of distint partitions and multipliities; i.e.

a map from the set of partitions to the set of natural numbers | an element of

hom(�;N

0

).

(2.1.9) Let � be an unordered multipartition. We say that a Young diagram � is

�-tilable if it has a sequene of subdiagrams

� = �

0

� �

1

� :::�

l

= ;

suh that eah skew �

i

=�

i+1

is a diagram in � and eah suh diagram ours as

many times in the �ltration (�

0

=�

1

; �

1

=�

2

; ::; �

l�1

=�

l

) as in �.

Write �

�

for the set of �-tilable partitions.

For example:

�

((2)

3

)

= f(2; 2; 2); (4; 2); (6)g
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2.2 Aside: Representation theory generalities

Here are some useful reminders, from Brauer [3℄, Curtis and Reiner [4℄ and Benson

[1℄.

A f.d. algebra A over �eld k is Frobenius if there is a linear map L : A! k, suh

that ker(L) ontains no left or right ideal.

That is, A is Frobenius if there is L 2 A

�

suh that L(ab) = 0 for all a 2 A implies

b = 0.

Note that eah L 2 A

�

de�nes an assoiative bilinear form b

L

: A � A ! k via

b

L

(a; b) = L(ab).

Here assoiativity means b

L

(ab; ) = b

L

(a; b).

Let R be the left regular representation of A. The bilinear form b

R

(a; b) =

Trae(R(ab)) = Trae(R(a)R(b)) is assoiative.

Theorem 1. Let ideal H in ring A be nilpotent, and e

2

= e 2 A=N . Then there is

an idempotent f 2 A whose image in A=N is e.

2.3 The partition algebra

We reall the de�nition of the partition algebra and ategory from [8℄ (see also, e.g.,

[10, 7℄).

(2.3.1) Fix a ring K and Æ 2 K. The partition algebra P

n

= P

n

(Æ) has a basis of

partitions of two rows of n objets: n [ n

0

. We next desribe the omposition rule.

(2.3.2) We may represent partitions as graphs, with the objet set as verties. That

is, we may represent a partition p by the graph of any relation whose RST losure

gives p.

We adopt the usual onveniene of onfusing a graph with any depition that

enodes that graph. For example then:

1 2 3

1’ 2’ 3’

represents the partition ff1; 1

0

g; f2; 3; 4; 4

0

g; f5; 2

0

g; f6g; f3

0

; 5

0

; 6

0

gg.

This realisation allows onsiderable freedom in the drawing of a typial partition.

However we will adopt the arrangement of verties into rows as drawn in the example

as a rigid onvention. Suh a piture is then alled a partition diagram.

More generally any digraph on a vertex set V together with a map from a set

S to V (let us say an injetive map, although even this an be relaxed) de�nes a

relation and, by losure, a partition on S. In this ase an element of V not in the

image of S is alled internal.

(2.3.3) Note that if we juxtapose two diagrams d; d

0

(eah drawn as in our example)

in a vertial stak, so that the meeting rows of verties oinide pointwise, then we
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have a graph d:d

0

on three rows of verties. This then de�nes a partition on all

three rows, or on any subset, and in partiular de�nes a partition p(d; d

0

) on the

subset onsisting of the new top and bottom rows (relative to whih, the middle row

beomes internal).

The partition algebra produt is de�ned on the basis of partitions:

q:q

0

= Æ



p(d; d

0

)

where d; d

0

are any representatives of q; q

0

and  is the number of onneted ompo-

nents of d:d

0

involving only internal verties.

(2.3.4) The partition algebra P

n

has identity element

1 = 1

n

= ff1; 1

0

g; f2; 2

0

g; :::; fn; n

0

gg

(2.3.5) The partition algebra P

n

is generated by the elements (partitions)

�

ij

= ff1; 1

0

g; f2; 2

0

g; :::; fi; j

0

g:fj; i

0

g; :::; fn; n

0

gg

A

i

= ff1; 1

0

g; f2; 2

0

g; :::; fig; fi

0

g; :::; fn; n

0

gg

A

ij

= ff1; 1

0

g; f2; 2

0

g; :::; fi; i

0

; i + 1; (i+ 1)

0

g; :::; fn; n

0

gg

Equivalent formulations of the multipliation rules are given, for example, in [9℄.

(2.3.6) We de�ne a K-linear ategory

C

P

= (N ;Hom

P

(�;�); Æ)

where Hom

P

(m;n) = KP(m[n

0

) and the omposition is the obvious generalisation

of the algebra omposition.

(2.3.7) For d any partition appearing in the ategory C

P

we write #(d) for the

propagating number | the number of parts that ontain both primed and unprimed

elements. We write P(m [ n

0

)[l℄ for the subset of partitions d with #(d) = l.

2.3.1 The Brauer algebra

(2.3.8) The Brauer algebra B

n

(Æ) is the subalgebra of P

n

(Æ) obtained by restriting

the basis to the set J(n [ n

0

) of pair partitions (de�ne J

n

= J(n [ n

0

) for short).

We write J

n

[l℄ for the subset of J

n

of diagrams with l propagating lines; and

J

n

(l) for the subset of J

n

of diagrams with at most l propagating lines.

We de�ne the speial pair partitions

U

i

= A

i i+1

A

i

A

i+1

A

i i+1

De�ne P(m;n) = P(m[n

0

) and J(m;n) = J(m[ n

0

). Keeping K �xed, the Brauer

partition ategory is the subategory of the partition ategory C

P

given by

C

J

= (N ; KJ(�;�); Æ)
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Automorphisms, arithmeti and idempotents

2.4 Spore funtion on partitions

The subset of generators �

ij

(from (2.3.5)) generate a opy of the symmetri group

S

n

in P

n

(they are the pair permutations in S

n

). Thus P

n

is both a left and a right

S

n

-module by restrition. Indeed P(n [ n

0

) is a left and a right S

n

-set.

(2.4.1) The invertible elements of P(n [ n

0

) in P

n

are preisely the elements of S

n

.

From this we have, immediately, the inner automorphism group of P

n

generated by

these units.

(2.4.2) Write A

S

n

for the orbit of A 2 P(n [ n

0

) under onjugation by S

n

. De�ne

A

�

= A

S

n

�

:=

X

d2A

S

n

d

Examples: note that if A 2 J(n [ n

0

) � P(n [ n

0

) then A

S

n

� J(n [ n

0

); and

A 2 S

n

implies A

S

n

� S

n

. In the latter ase we have the usual observation that

onjugay lasses are indexed by integer partitions of n.

Note that

op(w) = w

�1

for w 2 S

n

.

(2.4.3) De�ne

Sp : P(n [ n

0

)! �

n

by Sp(A) = jj(TC(A [ 1

n

))j

n

jj.

Example:

1 2 3

1’ 2’ 3’

1 2 3

1’ 2’ 3’

(5,1)

There are several more examples in x2.5.

Proposition 1. For all A 2 P(n [ n

0

) and w 2 S

n

:

Sp(A) = Sp(wAw

�1

)

If #(A) = #(B) = 0=1 then A

S

n

= B

S

n

if and only if Sp(A) = Sp(B).

Proof. First part: Consider 2.1.7. Seond part: Exerise.

2.5 Primitive entral idempotents

Our aim here is to ompute the primitive entral idempotents of the Brauer algebra

over the �eld of rational polynomials in Æ. This is for a number of reasons.
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1. primitive entral idempotents determine the bloks of an algebra. The Brauer

algebra over the rational �eld is semisimple, but its idempotents are related (in a

suitable sense [?℄) to the primitive entral idempotents in spei� speialisations of

Æ over other �elds, whih have more ompliated bloks.

2. we hope to gain information about the submodule struture of standard

modules (modules that we shall desribe later, that are simple over the �eld of

rational polynomials in Æ, but not in general).

3. we hope to get lues about analogues for the Brauer algebra of Young's

orthogonal form (we have in mind the form of Ledu{Ram [6℄ and generalisations).

The diÆulty of these problems tells us that onstruting idempotents will also

be hard. However both partition algebras and Brauer algebras are naturally �ltered

by ertain ideals that are easy to onstrut. As a �rst step we an try to onstrut

idempotents assoiated to these ideals.

2.5.1 Splitting idempotents

(2.5.1) Our approah follows [11℄. There it is realled �rstly that if J � A is an

ideal in an algebra A, then the short exat sequene of A-bimodules

0! J ! A! A=J ! 0

splits i� there is an idempotent e

J

2 A with the following properties.

1. e

J

�

=

1 mod. J

2. e

J

J = Je

J

= 0

If e

J

exists then note that e

J

2 Z(A), the entre of A; and e

J

is unique with these

properties.

(2.5.2) For A

0

� A a subalgebra (or indeed any subset), then de�ne Z

A

0

(A) as the

set of elements of A that ommute with A

0

. Obviously Z

A

0

(A) � Z(A). Thus we

an start a searh for elements of Z(A) by looking for elements of Z

A

0

(A).

2.5.2 The Brauer ase

In our ase KS

n

� B

n

, and KS

n

has a nie ation on B

n

, so it is natural to onsider

Z

KS

n

(B

n

). We are interested in elements of B

n

that are invariant under onjugation

by all elements of S

n

. (The setup for the partition algebra is very similar.) Consider

an element of form

x =

X

d2J(n[n

0

)



d

d

x2Z

S

n

(B

n

)

= wxw

�1

=

X

d2J(n[n

0

)



d

wdw

�1

=

X

d2J(n[n

0

)



w

�1

dw

d

where we have used the fat that onjugation by w 2 S

n

is a permutation on J(n[n

0

).

Thus x 2 Z

S

n

(B

n

) implies 

d

= 

wdw

�1

for all w. Evidently for any d

X

w2S

n

wdw

�1

2 Z

S

n

(B

n

)

So (in harateristi 0, where the possible multipliities in this sum are all units)

Z

S

n

(B

n

) has a basis of elements of this form.
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Another basis of Z

S

n

(B

n

) (in arbitrary harateristi) is the set of elements

�

n

= fd

�

j d 2 J(n [ n

0

)g:

Examples: �

2

= f1; �

12

; U

1

g (note that in this ase B

2

itself is ommutative);

�

3

= f1; + + ; + ; + + ;

�

g:

(2.5.3) The next question is how to onstrut this basis �

n

in general. In other

words, what are a set of representative elements of the orbits of J(n [ n

0

) under

S

n

-onjugation?

Firstly note that onjugation does not hange the number l of propagating lines,

so we an work separately in eah setion of the propagating line �ltration. Aord-

ingly let us deompose the basis:

�

n

=

G

l=n;n�2;:::

�

n

[l℄

Within the l setion, we see from Prop. 1 that the basis is partly indexed by possible

images of the Sp map in this ase.

Examples:

Sp(J

2

[0℄) = Sp( ) = (2)

Sp(J

3

[1℄) = Sp(

,

) = f(2; 1); (3)g

Sp(J

4

[0℄) = Sp(

,

) = f(2; 2); (4)g

(the faint lines are a reminder of the omputation of Sp, and an otherwise be

ignored);

Sp(J

5

(1)) = f(2; 2; 1); (3; 2); (4; 1); (5)g

Sp(J

6

(0)) = f(2; 2; 2); (4; 2); (6)g

Exerise: ompute Sp(J

6

(2)) = Sp(J

6

[2℄) [ Sp(J

6

[0℄).

(2.5.4) More generally de�ne

W

r

s

= U

s

U

s+2

:::U

s+2(r�1)

; W =

bn=2

Y

i=1

U

2i�1

n even

= U

1

U

3

:::U

n�1

:

Then for n = 2m we have

Sp(W ) = (2

m

): (2.1)

For � an integer partition of n with eah �

i

even de�ne

W

�

=

Y

i=1

W

�

i

=2�1

2+

P

i�1

j=1

�

i

e.g. W

(6;4)

= W

2

2

W

1

8

= U

2

U

4

U

8

.
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Proposition 2. The image Sp(J

2m+0=1

(0=1)) inludes only those partitions that, in

the sense of (2.1.9), ontain m distint opies of the Young diagram (2). That is

Sp(J

2m+0=1

(0=1)) = �

((2)

m

)

(resp: �

((2)

m

;(1))

)

Proof. For onveniene de�ne �

0;n

= �

((2)

m

)

and �

1;n

= �

((2)

m

;(1))

. The image of

the spore map lies in �

l;n

beause every non-propagating line in d 2 J

2m+0=1

(0=1)

binds preisely two symbols into the same part in Sp(d). The lines `on the top' for

example bind to a shape (2

m

). And the lines on the bottom may then bind further.

For example onsider W in (2.1) above, with Sp(W ) = (2

m

). To see surjetivity

in ase n even (ase n odd is similar) then onsider for example Sp(WW

r

2

), whih

gives (2(r + 1); 2

m�r�1

), and so on; so that Sp(WW

�

) = �. 2

(2.5.5) One sees immediately in these ases l = 0; 1 that they generate bases �

n

(l)

for Z

S

n

(B

n

)\ J for the appropriate ases of J = KJ

n

(l). We write D

�

for the basis

element labelled by partition �, thus

D

(2;1)

=

+ +

D

(3)

=

+
+ 4 others

and �

3

(1) = fD

�

j� 2 �

((2);(1))

g = fD

(2;1)

; D

(3)

g:

(2.5.6) Let us write J

n

(l) for the ideal of B

n

with basis J

n

(l), and write  

n

(l) for

the orresponding splitting idempotent in the sense of (2.5.1). We will see below

(and it is well-known) that this idempotent exists in ase K is the �eld of rational

polynomials in Æ. Assume we work in suh a ase. De�ne X

n

by  

n

(0=1) = 1+X

n

.

Sine X

n

is entral, and hene in Z

S

n

(B

n

), we have

X

n

=

X

�

a

�

D

�

where the salars a

�

are to be determined. By (2.5.1) a neessary ondition is

given by dX

n

= �d for d 2 J

n

(l) | in this ase with l = 0=1. Thus in partiular

for W = U

1

U

3

:::U

n

0

(n

0

the largest odd number below n) a neessary ondition is

WX

n

= �W . Equating oeÆients of W in this identity gives one linear ondition

on the unknowns. Our idea is to equate oeÆients for a transversal of the orbits

under S

n

onjugation. Provided these give independent linear onditions then this

is enough to determine the unknowns. (Sine X

n

exists for our K we do not need

to hek any of the other onditions.)

(2.5.7) Examples: For n = 2 we have W = U

1

and X

2

= a

(2)

U

1

, so a

(2)

Æ = �1 and

 

2

(0) = 1�

1

Æ

= 1�

1

Æ

D

(2)

Remark: of ourse this gives a entral idempotent deompositon of 1: 1 =

�

1�

1

Æ

D

(2)

�

+

�

1

Æ

D

(2)

�

: This is not neessarily primitive. Indeed if 2 is a unit we an deompose

further using the (entral) idempotents in KS

2

| exerise.
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(2.5.8) For  

3

(1) we have  

3

(1) = 1 +X

3

with

X

3

=

X

�2�

((2);(1))

a

�

D

�

= a

(2;1)

D

(2;1)

+ a

(3)

D

(3)

where a

(2;1)

; a

(3)

are to be determined. Requiring dX = �d for d 2 J is satis�ed by

requiring (say) U

1

X = �U

1

, by the S

n

-symmetry. Similarly we need only ompute

the oeÆients of U

1

and of U

1

U

2

. This gives

�

Æ 2

1 Æ + 1

��

a

(2;1)

a

(3)

�

=

�

�1

0

�

and hene

a

(2;1)

=

�(Æ + 1)

(Æ + 2)(Æ � 1)

; a

(3)

=

1

(Æ + 2)(Æ � 1)

Expliitly we have:

X

3

= a

(2;1)

�

+ +

�

+a

(3)

�

+ + + + +

�

U

1

X

3

= a

(2;1)

0

�

+ +

1

A

+a

(3)

0

�

+ + + + :::

1

A

so the oeÆient of U

1

in the ondition U

1

X

3

= �U

1

is Æa

(2;1)

+ 2a

(3)

= �1; and so

on.

(2.5.9) NOTES

1. the denominators of oeÆients in our idempotents tell us a lot of representation

theory! Over the rational polynomial �eld our idempotent is part of a omplete

deomposition of 1 into `ordinary' primitive entral idempotents. By the re�nement

theorem, the primitive entral idempotents of any speialisation of the integral ver-

sion of the algebra are the images of ordinary entral idempotents, hene they are

images of sums of ordinary primitive entral idempotents | the failure of splitting

down to the same level as the ordinary ase being the signal of non-singleton bloks.

This failure of splitting is signalled in the ordinary idempotents by the presene

of denominators whih prevent the speialisation. If a denominator vanishes like

(Æ � Æ



) as Æ ! Æ



then we dedue that there is no suh splitting idempotent at

Æ = Æ



, in other words a non-singleton blok is formed.

2. ases J

n

(l) with l > 1 require an extra layer of sophistiation, whih we shall

address elsewhere.

3. we an read o� the restrition rules for various B

n

-modules restrited to S

n

from

our analysis. we observe that they agree with the known rules.

4. we an develop a version of this programme for the partition algebra. aspets of

this have already been done, but the version of note 3 for the partition algebra is of

urrent interest.

(2.5.10) For omparison we onsider the `natural' ontravariant form on the `Speht'

module �

n

(l) assoiated to this ideal [℄. This enodes a homomorphism from �

n

(l)
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to its ontravariant dual (with respet to the op involution). The form is omputed

via:

M

3

(1) =

0

B

B

�

:::

Æ 1 1

1 Æ 1

1 1 Æ

1

C

C

A

| the gram matrix over the natural basis. We are interested in the rank of the form

(the rank of the matrix) | and hene the rank of the homomorphism whih, on

general grounds, gives the dimension of the simple head when we pass to a ground

ring that is a �eld.

The rank of the matrix is learly full for generi Æ. The non-full ases orrespond

to the zeros of the deteminant:

jM

3

(1)j = (Æ � 1)

2

(Æ + 2)

Ignoring the exponents for a moment, we see that our `splitting idempotent' blows

up at the orret values.

(2.5.11) In order to address note 1 further we now report some more spei� ases.

For n = 5; l = 1 we have U

1

U

3

X

5

= �U

1

U

3

. Equating oeÆients of U

1

U

3

, U

1

U

3

�

4

,

U

1

U

3

U

2

and U

1

U

3

U

2

�

4

�

3

we get

0

B

B

�

Æ

2

4Æ 2Æ 8

Æ Æ

2

+ Æ + 2 2 4Æ + 4

Æ 4 Æ

2

+ Æ 4Æ + 4

1 2Æ + 2 Æ + 1 Æ

2

+ 3Æ + 4

1

C

C

A

0

B

B

�

a

(2;2;1)

a

(3;2)

a

(4;1)

a

(5)

1

C

C

A

=

0

B

B

�

�1

0

0

0

1

C

C

A

This gives (using sage [12℄):

a

(2;2;1)

=

�(x� 1)

2

(x + 2)

2

(x

2

+ 3x� 2)

�

5

a

(3;2)

= a

(4;1)

=

(x� 1)

2

(x+ 2)

3

�

5

a

(5)

=

�2(x� 1)

2

(x+ 2)

2

�

5

where

�

5

= (x� 2)(x� 1)

3

(x+ 2)

3

(x+ 4)

2.5.3 Exerises (and more ases)

(2.5.12) n = 4, l = 0. ... Here we need to determine D

(2;2)

and D

(4)

, using

U

1

U

3

X

4

= �U

1

U

3

. Equating oeÆients of U

1

U

3

and of U

1

U

3

U

2

we get:

�

Æ

2

2Æ

Æ Æ

2

+ Æ

��

a

(2;2)

a

(4)

�

=

�

�1

0

�

This is almost the same as the n = 3 ase | di�ering only by overall fators of Æ.

We get

a

(2;1)

=

�(Æ + 1)

Æ(Æ + 2)(Æ � 1)

; a

(3)

=

1

Æ(Æ + 2)(Æ � 1)
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It is instrutive to onsider the di�erene with the n = 3 ase. Here we have,

nominally, for the `natural' v form on �

4

(0):

jM

4

(0)j = Æ

3

(Æ � 1)

2

(Æ + 2)

This (or rather the assoiated Smith form | exerise) tells us that the natural

form is not well-de�ned when Æ = 0 (or rather it is the zero form, yielding the

zero morphism, whih is the only morphism/form in some ases, but is not the only

morphism/form here). For other Æ values the form is ok and the agreement is as

before. For Æ = 0 we �nd that there is a renormalised form and it has full rank.

However, in this ase J

4

(0) lies in the radial, so there is no splitting idempotent,

in agreement with our alulation.

Remark: How do we know a v form is nonzero unique up to salars? In our

ase the argument for this (essentially it is quasiheredity) does not hold integrally or

in every speialisation. So the form is not neessarily natural integrally or in every

speialisation. It is interesting to onsider if/when the failures an be ast as degen-

erations and so, in this sense, naturality reovered. In the meanwhile our arguments

must make referene to external fats (suh as quasiheredity where appliable).

(2.5.13) n = 6, l = 0. ... Here we need D

(2;2;2)

, D

(4;2)

and D

(6)

, using U

1

U

3

U

5

X

6

=

�U

1

U

3

U

5

. Equating oeÆients of U

1

U

3

U

5

, U

1

U

3

U

5

U

2

and U

1

U

3

U

5

U

2

U

4

(say) we get

0

�

Æ

3

6Æ

2

8Æ

:::

:::

1

A

=

0

�

D

(2;2;2)

D

(4;2)

D

(6)

1

A

=

0

�

�1

0

0

1

A

Exerise: omplete!

(2.5.14) n = 7, l = 1. ... Spores are (2; 2; 2; 1); (3; 2; 2); (4; 2; 1); (5; 2); (6; 1); (7).

(2.5.15) n = 8, l = 0. ... Spores are (2; 2; 2; 2); (4; 2; 2); (4; 4); (6; 2); (8).
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