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Chapter 2

Brauer diagram 
ategory


onstru
tion

Here K is a 
ommutative ring, and we de�ne the Brauer algebra [2℄ as an End-set in

a suitable K-linear 
ategory. This Brauer diagram 
ategory is a natural sub
ategory

of a partition 
ategory (see e.g. [8℄). We re
all the de�nition of the partition 
ategory

and 
onstru
t the Brauer 
ategory from this.

We then dis
uss the 
onstru
tion of spe
i�
 elements of these algebras, su
h

as idempotent elements of the 
entre. (This is related to Gram matrix problems

dis
ussed in Se
tion ?? and `dis
riminant' problems as dis
ussed, for example, in

[?, 5℄. We mainly follow [11℄.)

We begin in x2.1 with some set theory notation.

2.1 Preliminaries

2.1.1 Set notation

For n 2 N let n = f1; 2; :::; ng, n

0

= f1

0

; 2

0

; :::; n

0

g and so on. Write

I

0

: n [ n

0

[ n

00

[ : : :! n [ n

0

[ n

00

[ : : :

for the map whi
h adds a (possibly further) prime to ea
h element; and I

�

for the

map whi
h removes a prime, or leaves a symbol un
hanged if it is unprimed.

(2.1.1) For S a set, write P(S) for the power set of S. We regard this as a (hyper-


ubi
al) latti
e in the usual way. Thus P(S � S) is the set of relations on S. If T is

a set and � 2 P(S � S) then write �j

T

for the (possibly empty) restri
tion of � to a

relation on S \ T .

(2.1.2) If S is a set then P(S) is the set of partitions of S, and E (S) the set of

equivalen
e relations. We will 
onfuse these sets via their natural equivalen
e.

By 
onvention, if we write A [B for two partitions we shall intend the union of

their images as (equivalen
e) relations. This will be a relation but not an equivalen
e

relation in general (but see later).

(2.1.3) A relation on S may be representated as a dire
ted graph on vertex set S

(the details of the graph edge set from vertex to vertex are irrelevant ex
ept if the

3



4 CHAPTER 2. BRAUER DIAGRAM CATEGORY CONSTRUCTION

edge set is empty or not). The union A[B above then 
orresponds to the union of

edge sets and of vertex sets.

(2.1.4) We have

E (S) � P(S � S)

De�ne

TC : P(S � S)! P(S � S)

by setting TC(R) to the smallest element of E (S) 
ontaining R.

The union of A 2 E (S) and B 2 E (T ) is a relation (but not generally an

equivalen
e) on S [ T .

(2.1.5) For A 2 P(S) de�ne � = jjAjj as the integer partition of jSj su
h that �

i

is

the degree of the i-th longest part of A. Thus �

0

1

= jAj.

For example,

jjff1; 2g; f3ggjj = (2; 1):

We 
all jj � jj : P(S)! �

jSj

the shape fun
tion.

(2.1.6) Every map f : S ! T indu
es a map f : E (S) ! E (T ) and similarly on

partitions. In parti
ular the map

op : n [ n

0

! n [ n

0

is the one that toggles the prime (i$ i

0

).

(2.1.7) Note that if f : S ! T is a bije
tion then jjf(A)jj = jjAjj.

2.1.2 Young diagrams

We 
onfuse Young diagrams and integer partitions in the usual way. The set of all

su
h is denoted �. We write �

�

for � ex
luding the empty integer partition. Write

�

n

for the subset of partitions of n.

(2.1.8) A multipartition is an ordered list of integer partitions, i.e. an element of

hom(N ;�) (or of hom(n;�) for some n).

An unordered multipartition is an equivalen
e 
lass of multipartitions under the

a
tion of reordering the list; i.e. a list of distin
t partitions and multipli
ities; i.e.

a map from the set of partitions to the set of natural numbers | an element of

hom(�;N

0

).

(2.1.9) Let � be an unordered multipartition. We say that a Young diagram � is

�-tilable if it has a sequen
e of subdiagrams

� = �

0

� �

1

� :::�

l

= ;

su
h that ea
h skew �

i

=�

i+1

is a diagram in � and ea
h su
h diagram o

urs as

many times in the �ltration (�

0

=�

1

; �

1

=�

2

; ::; �

l�1

=�

l

) as in �.

Write �

�

for the set of �-tilable partitions.

For example:

�

((2)

3

)

= f(2; 2; 2); (4; 2); (6)g
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2.2 Aside: Representation theory generalities

Here are some useful reminders, from Brauer [3℄, Curtis and Reiner [4℄ and Benson

[1℄.

A f.d. algebra A over �eld k is Frobenius if there is a linear map L : A! k, su
h

that ker(L) 
ontains no left or right ideal.

That is, A is Frobenius if there is L 2 A

�

su
h that L(ab) = 0 for all a 2 A implies

b = 0.

Note that ea
h L 2 A

�

de�nes an asso
iative bilinear form b

L

: A � A ! k via

b

L

(a; b) = L(ab).

Here asso
iativity means b

L

(ab; 
) = b

L

(a; b
).

Let R be the left regular representation of A. The bilinear form b

R

(a; b) =

Tra
e(R(ab)) = Tra
e(R(a)R(b)) is asso
iative.

Theorem 1. Let ideal H in ring A be nilpotent, and e

2

= e 2 A=N . Then there is

an idempotent f 2 A whose image in A=N is e.

2.3 The partition algebra

We re
all the de�nition of the partition algebra and 
ategory from [8℄ (see also, e.g.,

[10, 7℄).

(2.3.1) Fix a ring K and Æ 2 K. The partition algebra P

n

= P

n

(Æ) has a basis of

partitions of two rows of n obje
ts: n [ n

0

. We next des
ribe the 
omposition rule.

(2.3.2) We may represent partitions as graphs, with the obje
t set as verti
es. That

is, we may represent a partition p by the graph of any relation whose RST 
losure

gives p.

We adopt the usual 
onvenien
e of 
onfusing a graph with any depi
tion that

en
odes that graph. For example then:

1 2 3

1’ 2’ 3’

represents the partition ff1; 1

0

g; f2; 3; 4; 4

0

g; f5; 2

0

g; f6g; f3

0

; 5

0

; 6

0

gg.

This realisation allows 
onsiderable freedom in the drawing of a typi
al partition.

However we will adopt the arrangement of verti
es into rows as drawn in the example

as a rigid 
onvention. Su
h a pi
ture is then 
alled a partition diagram.

More generally any digraph on a vertex set V together with a map from a set

S to V (let us say an inje
tive map, although even this 
an be relaxed) de�nes a

relation and, by 
losure, a partition on S. In this 
ase an element of V not in the

image of S is 
alled internal.

(2.3.3) Note that if we juxtapose two diagrams d; d

0

(ea
h drawn as in our example)

in a verti
al sta
k, so that the meeting rows of verti
es 
oin
ide pointwise, then we
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have a graph d:d

0

on three rows of verti
es. This then de�nes a partition on all

three rows, or on any subset, and in parti
ular de�nes a partition p(d; d

0

) on the

subset 
onsisting of the new top and bottom rows (relative to whi
h, the middle row

be
omes internal).

The partition algebra produ
t is de�ned on the basis of partitions:

q:q

0

= Æ




p(d; d

0

)

where d; d

0

are any representatives of q; q

0

and 
 is the number of 
onne
ted 
ompo-

nents of d:d

0

involving only internal verti
es.

(2.3.4) The partition algebra P

n

has identity element

1 = 1

n

= ff1; 1

0

g; f2; 2

0

g; :::; fn; n

0

gg

(2.3.5) The partition algebra P

n

is generated by the elements (partitions)

�

ij

= ff1; 1

0

g; f2; 2

0

g; :::; fi; j

0

g:fj; i

0

g; :::; fn; n

0

gg

A

i

= ff1; 1

0

g; f2; 2

0

g; :::; fig; fi

0

g; :::; fn; n

0

gg

A

ij

= ff1; 1

0

g; f2; 2

0

g; :::; fi; i

0

; i + 1; (i+ 1)

0

g; :::; fn; n

0

gg

Equivalent formulations of the multipli
ation rules are given, for example, in [9℄.

(2.3.6) We de�ne a K-linear 
ategory

C

P

= (N ;Hom

P

(�;�); Æ)

where Hom

P

(m;n) = KP(m[n

0

) and the 
omposition is the obvious generalisation

of the algebra 
omposition.

(2.3.7) For d any partition appearing in the 
ategory C

P

we write #(d) for the

propagating number | the number of parts that 
ontain both primed and unprimed

elements. We write P(m [ n

0

)[l℄ for the subset of partitions d with #(d) = l.

2.3.1 The Brauer algebra

(2.3.8) The Brauer algebra B

n

(Æ) is the subalgebra of P

n

(Æ) obtained by restri
ting

the basis to the set J(n [ n

0

) of pair partitions (de�ne J

n

= J(n [ n

0

) for short).

We write J

n

[l℄ for the subset of J

n

of diagrams with l propagating lines; and

J

n

(l) for the subset of J

n

of diagrams with at most l propagating lines.

We de�ne the spe
ial pair partitions

U

i

= A

i i+1

A

i

A

i+1

A

i i+1

De�ne P(m;n) = P(m[n

0

) and J(m;n) = J(m[ n

0

). Keeping K �xed, the Brauer

partition 
ategory is the sub
ategory of the partition 
ategory C

P

given by

C

J

= (N ; KJ(�;�); Æ)
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Automorphisms, arithmeti
 and idempotents

2.4 Spore fun
tion on partitions

The subset of generators �

ij

(from (2.3.5)) generate a 
opy of the symmetri
 group

S

n

in P

n

(they are the pair permutations in S

n

). Thus P

n

is both a left and a right

S

n

-module by restri
tion. Indeed P(n [ n

0

) is a left and a right S

n

-set.

(2.4.1) The invertible elements of P(n [ n

0

) in P

n

are pre
isely the elements of S

n

.

From this we have, immediately, the inner automorphism group of P

n

generated by

these units.

(2.4.2) Write A

S

n

for the orbit of A 2 P(n [ n

0

) under 
onjugation by S

n

. De�ne

A

�

= A

S

n

�

:=

X

d2A

S

n

d

Examples: note that if A 2 J(n [ n

0

) � P(n [ n

0

) then A

S

n

� J(n [ n

0

); and

A 2 S

n

implies A

S

n

� S

n

. In the latter 
ase we have the usual observation that


onjuga
y 
lasses are indexed by integer partitions of n.

Note that

op(w) = w

�1

for w 2 S

n

.

(2.4.3) De�ne

Sp : P(n [ n

0

)! �

n

by Sp(A) = jj(TC(A [ 1

n

))j

n

jj.

Example:

1 2 3

1’ 2’ 3’

1 2 3

1’ 2’ 3’

(5,1)

There are several more examples in x2.5.

Proposition 1. For all A 2 P(n [ n

0

) and w 2 S

n

:

Sp(A) = Sp(wAw

�1

)

If #(A) = #(B) = 0=1 then A

S

n

= B

S

n

if and only if Sp(A) = Sp(B).

Proof. First part: Consider 2.1.7. Se
ond part: Exer
ise.

2.5 Primitive 
entral idempotents

Our aim here is to 
ompute the primitive 
entral idempotents of the Brauer algebra

over the �eld of rational polynomials in Æ. This is for a number of reasons.
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1. primitive 
entral idempotents determine the blo
ks of an algebra. The Brauer

algebra over the rational �eld is semisimple, but its idempotents are related (in a

suitable sense [?℄) to the primitive 
entral idempotents in spe
i�
 spe
ialisations of

Æ over other �elds, whi
h have more 
ompli
ated blo
ks.

2. we hope to gain information about the submodule stru
ture of standard

modules (modules that we shall des
ribe later, that are simple over the �eld of

rational polynomials in Æ, but not in general).

3. we hope to get 
lues about analogues for the Brauer algebra of Young's

orthogonal form (we have in mind the form of Ledu
{Ram [6℄ and generalisations).

The diÆ
ulty of these problems tells us that 
onstru
ting idempotents will also

be hard. However both partition algebras and Brauer algebras are naturally �ltered

by 
ertain ideals that are easy to 
onstru
t. As a �rst step we 
an try to 
onstru
t

idempotents asso
iated to these ideals.

2.5.1 Splitting idempotents

(2.5.1) Our approa
h follows [11℄. There it is re
alled �rstly that if J � A is an

ideal in an algebra A, then the short exa
t sequen
e of A-bimodules

0! J ! A! A=J ! 0

splits i� there is an idempotent e

J

2 A with the following properties.

1. e

J

�

=

1 mod. J

2. e

J

J = Je

J

= 0

If e

J

exists then note that e

J

2 Z(A), the 
entre of A; and e

J

is unique with these

properties.

(2.5.2) For A

0

� A a subalgebra (or indeed any subset), then de�ne Z

A

0

(A) as the

set of elements of A that 
ommute with A

0

. Obviously Z

A

0

(A) � Z(A). Thus we


an start a sear
h for elements of Z(A) by looking for elements of Z

A

0

(A).

2.5.2 The Brauer 
ase

In our 
ase KS

n

� B

n

, and KS

n

has a ni
e a
tion on B

n

, so it is natural to 
onsider

Z

KS

n

(B

n

). We are interested in elements of B

n

that are invariant under 
onjugation

by all elements of S

n

. (The setup for the partition algebra is very similar.) Consider

an element of form

x =

X

d2J(n[n

0

)




d

d

x2Z

S

n

(B

n

)

= wxw

�1

=

X

d2J(n[n

0

)




d

wdw

�1

=

X

d2J(n[n

0

)




w

�1

dw

d

where we have used the fa
t that 
onjugation by w 2 S

n

is a permutation on J(n[n

0

).

Thus x 2 Z

S

n

(B

n

) implies 


d

= 


wdw

�1

for all w. Evidently for any d

X

w2S

n

wdw

�1

2 Z

S

n

(B

n

)

So (in 
hara
teristi
 0, where the possible multipli
ities in this sum are all units)

Z

S

n

(B

n

) has a basis of elements of this form.
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Another basis of Z

S

n

(B

n

) (in arbitrary 
hara
teristi
) is the set of elements

�

n

= fd

�

j d 2 J(n [ n

0

)g:

Examples: �

2

= f1; �

12

; U

1

g (note that in this 
ase B

2

itself is 
ommutative);

�

3

= f1; + + ; + ; + + ;

�

g:

(2.5.3) The next question is how to 
onstru
t this basis �

n

in general. In other

words, what are a set of representative elements of the orbits of J(n [ n

0

) under

S

n

-
onjugation?

Firstly note that 
onjugation does not 
hange the number l of propagating lines,

so we 
an work separately in ea
h se
tion of the propagating line �ltration. A

ord-

ingly let us de
ompose the basis:

�

n

=

G

l=n;n�2;:::

�

n

[l℄

Within the l se
tion, we see from Prop. 1 that the basis is partly indexed by possible

images of the Sp map in this 
ase.

Examples:

Sp(J

2

[0℄) = Sp( ) = (2)

Sp(J

3

[1℄) = Sp(

,

) = f(2; 1); (3)g

Sp(J

4

[0℄) = Sp(

,

) = f(2; 2); (4)g

(the faint lines are a reminder of the 
omputation of Sp, and 
an otherwise be

ignored);

Sp(J

5

(1)) = f(2; 2; 1); (3; 2); (4; 1); (5)g

Sp(J

6

(0)) = f(2; 2; 2); (4; 2); (6)g

Exer
ise: 
ompute Sp(J

6

(2)) = Sp(J

6

[2℄) [ Sp(J

6

[0℄).

(2.5.4) More generally de�ne

W

r

s

= U

s

U

s+2

:::U

s+2(r�1)

; W =

bn=2


Y

i=1

U

2i�1

n even

= U

1

U

3

:::U

n�1

:

Then for n = 2m we have

Sp(W ) = (2

m

): (2.1)

For � an integer partition of n with ea
h �

i

even de�ne

W

�

=

Y

i=1

W

�

i

=2�1

2+

P

i�1

j=1

�

i

e.g. W

(6;4)

= W

2

2

W

1

8

= U

2

U

4

U

8

.
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Proposition 2. The image Sp(J

2m+0=1

(0=1)) in
ludes only those partitions that, in

the sense of (2.1.9), 
ontain m distin
t 
opies of the Young diagram (2). That is

Sp(J

2m+0=1

(0=1)) = �

((2)

m

)

(resp: �

((2)

m

;(1))

)

Proof. For 
onvenien
e de�ne �

0;n

= �

((2)

m

)

and �

1;n

= �

((2)

m

;(1))

. The image of

the spore map lies in �

l;n

be
ause every non-propagating line in d 2 J

2m+0=1

(0=1)

binds pre
isely two symbols into the same part in Sp(d). The lines `on the top' for

example bind to a shape (2

m

). And the lines on the bottom may then bind further.

For example 
onsider W in (2.1) above, with Sp(W ) = (2

m

). To see surje
tivity

in 
ase n even (
ase n odd is similar) then 
onsider for example Sp(WW

r

2

), whi
h

gives (2(r + 1); 2

m�r�1

), and so on; so that Sp(WW

�

) = �. 2

(2.5.5) One sees immediately in these 
ases l = 0; 1 that they generate bases �

n

(l)

for Z

S

n

(B

n

)\ J for the appropriate 
ases of J = KJ

n

(l). We write D

�

for the basis

element labelled by partition �, thus

D

(2;1)

=

+ +

D

(3)

=

+
+ 4 others

and �

3

(1) = fD

�

j� 2 �

((2);(1))

g = fD

(2;1)

; D

(3)

g:

(2.5.6) Let us write J

n

(l) for the ideal of B

n

with basis J

n

(l), and write  

n

(l) for

the 
orresponding splitting idempotent in the sense of (2.5.1). We will see below

(and it is well-known) that this idempotent exists in 
ase K is the �eld of rational

polynomials in Æ. Assume we work in su
h a 
ase. De�ne X

n

by  

n

(0=1) = 1+X

n

.

Sin
e X

n

is 
entral, and hen
e in Z

S

n

(B

n

), we have

X

n

=

X

�

a

�

D

�

where the s
alars a

�

are to be determined. By (2.5.1) a ne
essary 
ondition is

given by dX

n

= �d for d 2 J

n

(l) | in this 
ase with l = 0=1. Thus in parti
ular

for W = U

1

U

3

:::U

n

0

(n

0

the largest odd number below n) a ne
essary 
ondition is

WX

n

= �W . Equating 
oeÆ
ients of W in this identity gives one linear 
ondition

on the unknowns. Our idea is to equate 
oeÆ
ients for a transversal of the orbits

under S

n


onjugation. Provided these give independent linear 
onditions then this

is enough to determine the unknowns. (Sin
e X

n

exists for our K we do not need

to 
he
k any of the other 
onditions.)

(2.5.7) Examples: For n = 2 we have W = U

1

and X

2

= a

(2)

U

1

, so a

(2)

Æ = �1 and

 

2

(0) = 1�

1

Æ

= 1�

1

Æ

D

(2)

Remark: of 
ourse this gives a 
entral idempotent de
ompositon of 1: 1 =

�

1�

1

Æ

D

(2)

�

+

�

1

Æ

D

(2)

�

: This is not ne
essarily primitive. Indeed if 2 is a unit we 
an de
ompose

further using the (
entral) idempotents in KS

2

| exer
ise.



2.5. PRIMITIVE CENTRAL IDEMPOTENTS 11

(2.5.8) For  

3

(1) we have  

3

(1) = 1 +X

3

with

X

3

=

X

�2�

((2);(1))

a

�

D

�

= a

(2;1)

D

(2;1)

+ a

(3)

D

(3)

where a

(2;1)

; a

(3)

are to be determined. Requiring dX = �d for d 2 J is satis�ed by

requiring (say) U

1

X = �U

1

, by the S

n

-symmetry. Similarly we need only 
ompute

the 
oeÆ
ients of U

1

and of U

1

U

2

. This gives

�

Æ 2

1 Æ + 1

��

a

(2;1)

a

(3)

�

=

�

�1

0

�

and hen
e

a

(2;1)

=

�(Æ + 1)

(Æ + 2)(Æ � 1)

; a

(3)

=

1

(Æ + 2)(Æ � 1)

Expli
itly we have:

X

3

= a

(2;1)

�

+ +

�

+a

(3)

�

+ + + + +

�

U

1

X

3

= a

(2;1)

0

�

+ +

1

A

+a

(3)

0

�

+ + + + :::

1

A

so the 
oeÆ
ient of U

1

in the 
ondition U

1

X

3

= �U

1

is Æa

(2;1)

+ 2a

(3)

= �1; and so

on.

(2.5.9) NOTES

1. the denominators of 
oeÆ
ients in our idempotents tell us a lot of representation

theory! Over the rational polynomial �eld our idempotent is part of a 
omplete

de
omposition of 1 into `ordinary' primitive 
entral idempotents. By the re�nement

theorem, the primitive 
entral idempotents of any spe
ialisation of the integral ver-

sion of the algebra are the images of ordinary 
entral idempotents, hen
e they are

images of sums of ordinary primitive 
entral idempotents | the failure of splitting

down to the same level as the ordinary 
ase being the signal of non-singleton blo
ks.

This failure of splitting is signalled in the ordinary idempotents by the presen
e

of denominators whi
h prevent the spe
ialisation. If a denominator vanishes like

(Æ � Æ




) as Æ ! Æ




then we dedu
e that there is no su
h splitting idempotent at

Æ = Æ




, in other words a non-singleton blo
k is formed.

2. 
ases J

n

(l) with l > 1 require an extra layer of sophisti
ation, whi
h we shall

address elsewhere.

3. we 
an read o� the restri
tion rules for various B

n

-modules restri
ted to S

n

from

our analysis. we observe that they agree with the known rules.

4. we 
an develop a version of this programme for the partition algebra. aspe
ts of

this have already been done, but the version of note 3 for the partition algebra is of


urrent interest.

(2.5.10) For 
omparison we 
onsider the `natural' 
ontravariant form on the `Spe
ht'

module �

n

(l) asso
iated to this ideal [℄. This en
odes a homomorphism from �

n

(l)
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to its 
ontravariant dual (with respe
t to the op involution). The form is 
omputed

via:

M

3

(1) =

0

B

B

�

:::

Æ 1 1

1 Æ 1

1 1 Æ

1

C

C

A

| the gram matrix over the natural basis. We are interested in the rank of the form

(the rank of the matrix) | and hen
e the rank of the homomorphism whi
h, on

general grounds, gives the dimension of the simple head when we pass to a ground

ring that is a �eld.

The rank of the matrix is 
learly full for generi
 Æ. The non-full 
ases 
orrespond

to the zeros of the deteminant:

jM

3

(1)j = (Æ � 1)

2

(Æ + 2)

Ignoring the exponents for a moment, we see that our `splitting idempotent' blows

up at the 
orre
t values.

(2.5.11) In order to address note 1 further we now report some more spe
i�
 
ases.

For n = 5; l = 1 we have U

1

U

3

X

5

= �U

1

U

3

. Equating 
oeÆ
ients of U

1

U

3

, U

1

U

3

�

4

,

U

1

U

3

U

2

and U

1

U

3

U

2

�

4

�

3

we get

0

B

B

�

Æ

2

4Æ 2Æ 8

Æ Æ

2

+ Æ + 2 2 4Æ + 4

Æ 4 Æ

2

+ Æ 4Æ + 4

1 2Æ + 2 Æ + 1 Æ

2

+ 3Æ + 4

1

C

C

A

0

B

B

�

a

(2;2;1)

a

(3;2)

a

(4;1)

a

(5)

1

C

C

A

=

0

B

B

�

�1

0

0

0

1

C

C

A

This gives (using sage [12℄):

a

(2;2;1)

=

�(x� 1)

2

(x + 2)

2

(x

2

+ 3x� 2)

�

5

a

(3;2)

= a

(4;1)

=

(x� 1)

2

(x+ 2)

3

�

5

a

(5)

=

�2(x� 1)

2

(x+ 2)

2

�

5

where

�

5

= (x� 2)(x� 1)

3

(x+ 2)

3

(x+ 4)

2.5.3 Exer
ises (and more 
ases)

(2.5.12) n = 4, l = 0. ... Here we need to determine D

(2;2)

and D

(4)

, using

U

1

U

3

X

4

= �U

1

U

3

. Equating 
oeÆ
ients of U

1

U

3

and of U

1

U

3

U

2

we get:

�

Æ

2

2Æ

Æ Æ

2

+ Æ

��

a

(2;2)

a

(4)

�

=

�

�1

0

�

This is almost the same as the n = 3 
ase | di�ering only by overall fa
tors of Æ.

We get

a

(2;1)

=

�(Æ + 1)

Æ(Æ + 2)(Æ � 1)

; a

(3)

=

1

Æ(Æ + 2)(Æ � 1)
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It is instru
tive to 
onsider the di�eren
e with the n = 3 
ase. Here we have,

nominally, for the `natural' 
v form on �

4

(0):

jM

4

(0)j = Æ

3

(Æ � 1)

2

(Æ + 2)

This (or rather the asso
iated Smith form | exer
ise) tells us that the natural

form is not well-de�ned when Æ = 0 (or rather it is the zero form, yielding the

zero morphism, whi
h is the only morphism/form in some 
ases, but is not the only

morphism/form here). For other Æ values the form is ok and the agreement is as

before. For Æ = 0 we �nd that there is a renormalised form and it has full rank.

However, in this 
ase J

4

(0) lies in the radi
al, so there is no splitting idempotent,

in agreement with our 
al
ulation.

Remark: How do we know a 
v form is nonzero unique up to s
alars? In our


ase the argument for this (essentially it is quasiheredity) does not hold integrally or

in every spe
ialisation. So the form is not ne
essarily natural integrally or in every

spe
ialisation. It is interesting to 
onsider if/when the failures 
an be 
ast as degen-

erations and so, in this sense, naturality re
overed. In the meanwhile our arguments

must make referen
e to external fa
ts (su
h as quasiheredity where appli
able).

(2.5.13) n = 6, l = 0. ... Here we need D

(2;2;2)

, D

(4;2)

and D

(6)

, using U

1

U

3

U

5

X

6

=

�U

1

U

3

U

5

. Equating 
oeÆ
ients of U

1

U

3

U

5

, U

1

U

3

U

5

U

2

and U

1

U

3

U

5

U

2

U

4

(say) we get

0

�

Æ

3

6Æ

2

8Æ

:::

:::

1

A

=

0

�

D

(2;2;2)

D

(4;2)

D

(6)

1

A

=

0

�

�1

0

0

1

A

Exer
ise: 
omplete!

(2.5.14) n = 7, l = 1. ... Spores are (2; 2; 2; 1); (3; 2; 2); (4; 2; 1); (5; 2); (6; 1); (7).

(2.5.15) n = 8, l = 0. ... Spores are (2; 2; 2; 2); (4; 2; 2); (4; 4); (6; 2); (8).



14 CHAPTER 2. BRAUER DIAGRAM CATEGORY CONSTRUCTION



Bibliography

[1℄ D J Benson, Representations and 
ohomology I, Cambridge, 1995.

[2℄ R Brauer, On algebras whi
h are 
onne
ted with the semi{simple 
ontinuous

groups, Annals of Mathemati
s 38 (1937), 854{872.

[3℄ , On modular and p-adi
 representations of algebras, Pro
 Nat A
ad S
i

USA 25 (1939), 252{258.

[4℄ C W Curtis and I Reiner, Methods of representation theory with appli
ations to

�nite groups and orders, vol. 1, Wiley, New York, 1990.

[5℄ P Hanlon and D Wales, A tower 
onstru
tion for the radi
al in Brauer's 
en-

tralizer algebras, J Algebra 164 (1994), 773{830.

[6℄ R Ledu
 and A Ram, A ribbon Hopf algebra approa
h to the irredu
ible rep-

resentations of 
entralizer algebras: the Brauer, Birman-Wenzl, and type-A

Iwahori{He
ke algebras, Adv. Math. 125 (1997), 1{94.

[7℄ P P Martin, Potts models and related problems in statisti
al me
hani
s, World

S
ienti�
, Singapore, 1991.

[8℄ , Temperley{Lieb algebras for non{planar statisti
al me
hani
s | the

partition algebra 
onstru
tion, Journal of Knot Theory and its Rami�
ations 3

(1994), no. 1, 51{82.

[9℄ , The stru
ture of the partition algebras, J Algebra 183 (1996), 319{358.

[10℄ P P Martin and H Saleur, On an algebrai
 approa
h to higher dimensional

statisti
al me
hani
s, Commun. Math. Phys. 158 (1993), 155{190.

[11℄ P P Martin and D Wood
o
k, On 
entral idempotents in the partition algebra,

J Algebra 217 (1999), 156{169.

[12℄ Sage, Sage manual.

15


