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Chapter 2

Brauer diagram category
construction

Here K is a commutative ring, and we define the Brauer algebra [2] as an End-set in
a suitable K-linear category. This Brauer diagram category is a natural subcategory
of a partition category (see e.g. [8]). We recall the definition of the partition category
and construct the Brauer category from this.

We then discuss the construction of specific elements of these algebras, such
as idempotent elements of the centre. (This is related to Gram matrix problems
discussed in Section 77 and ‘discriminant’ problems as discussed, for example, in
[?, 5]. We mainly follow [11].)

We begin in §2.1 with some set theory notation.

2.1 Preliminaries

2.1.1 Set notation
Forn € Nlet n ={1,2,...n},n' = {1',2",...,n'} and so on. Write

I' nunUnu...—snunUn"U...

for the map which adds a (possibly further) prime to each element; and I~ for the
map which removes a prime, or leaves a symbol unchanged if it is unprimed.

(2.1.1) For S a set, write P(S) for the power set of S. We regard this as a (hyper-
cubical) lattice in the usual way. Thus P(S x S) is the set of relations on S. If T"is
a set and p € P(S x S) then write p|r for the (possibly empty) restriction of p to a
relation on S NT.

(2.1.2) If S is a set then P(S) is the set of partitions of S, and E(S) the set of
equivalence relations. We will confuse these sets via their natural equivalence.

By convention, if we write AU B for two partitions we shall intend the union of
their images as (equivalence) relations. This will be a relation but not an equivalence
relation in general (but see later).

(2.1.3) A relation on S may be representated as a directed graph on vertex set S
(the details of the graph edge set from vertex to vertex are irrelevant except if the
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4 CHAPTER 2. BRAUER DIAGRAM CATEGORY CONSTRUCTION

edge set is empty or not). The union AU B above then corresponds to the union of
edge sets and of vertex sets.

(2.1.4) We have
E(S) Cc P(S x S)
Define
TC :P(S xS)—= P(SxS)
by setting TC'(R) to the smallest element of E(S) containing R.

The union of A € E(S) and B € E(T) is a relation (but not generally an
equivalence) on SUT.

(2.1.5) For A € P(S) define A = || A]| as the integer partition of |S| such that A; is
the degree of the i-th longest part of A. Thus \| = |A].
For example,

{12}, {3331 = (2, D).
We call || — || : P(S) = Ag| the shape function.

(2.1.6) Every map f : S — T induces a map f : E(S) — E(T') and similarly on
partitions. In particular the map

op:nUn —nun

is the one that toggles the prime (i <> i').
(2.1.7) Note that if f : S — T is a bijection then || f(A)|| = ||A]l.

2.1.2 Young diagrams

We confuse Young diagrams and integer partitions in the usual way. The set of all
such is denoted A. We write A* for A excluding the empty integer partition. Write
A,, for the subset of partitions of n.

(2.1.8) A multipartition is an ordered list of integer partitions, i.e. an element of
hom(N, A) (or of hom(n, A) for some n).

An wunordered multipartition is an equivalence class of multipartitions under the
action of reordering the list; i.e. a list of distinct partitions and multiplicities; i.e.

a map from the set of partitions to the set of natural numbers — an element of
hom (A, Ny).

(2.1.9) Let A be an unordered multipartition. We say that a Young diagram p is
A-tilable if it has a sequence of subdiagrams

p=p0 D 1Dy =10

such that each skew p;/p;11 is a diagram in A and each such diagram occurs as
many times in the filtration (po/p1, 1/ oy -y t—1/11) as in A.

Write A, for the set of A-tilable partitions.

For example:

A((2)3) = {(27 2, 2)? (47 2)? (6)}
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2.2 Aside: Representation theory generalities

Here are some useful reminders, from Brauer [3], Curtis and Reiner [4] and Benson
[1].

A f.d. algebra A over field k is Frobenius if there is a linear map L : A — k, such
that ker(L) contains no left or right ideal.
That is, A is Frobenius if there is L € A* such that L(ab) = 0 for all a € A implies
b=0.

Note that each L € A* defines an associative bilinear form b; : A x A — k via
br(a,b) = L(ab).
Here associativity means by, (ab, ¢) = by, (a, be).

Let R be the left regular representation of A. The bilinear form bg(a,b) =
Trace(R(ab)) = Trace(R(a)R(b)) is associative.

Theorem 1. Let ideal H in ring A be nilpotent, and e* = e € A/N. Then there is
an idempotent f € A whose image in A/N is e.

2.3 The partition algebra

We recall the definition of the partition algebra and category from [8] (see also, e.g.,
[10, 7).

(2.3.1) Fix a ring K and § € K. The partition algebra P, = P,(d) has a basis of
partitions of two rows of n objects: n Un’. We next describe the composition rule.

(2.3.2) We may represent partitions as graphs, with the object set as vertices. That
is, we may represent a partition p by the graph of any relation whose RST closure
gives p.

We adopt the usual convenience of confusing a graph with any depiction that
encodes that graph. For example then:

1 2 3

/ ]

.

1 2 3

represents the partition {{1,1'},{2,3,4,4'},{5,2'},{6},{3',5,6'} }.

This realisation allows considerable freedom in the drawing of a typical partition.
However we will adopt the arrangement of vertices into rows as drawn in the example
as a rigid convention. Such a picture is then called a partition diagram.

More generally any digraph on a vertex set V' together with a map from a set
S to V' (let us say an injective map, although even this can be relaxed) defines a
relation and, by closure, a partition on S. In this case an element of V' not in the
image of S is called internal.

(2.3.3) Note that if we juxtapose two diagrams d, d’ (each drawn as in our example)
in a vertical stack, so that the meeting rows of vertices coincide pointwise, then we
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have a graph d.d’ on three rows of vertices. This then defines a partition on all
three rows, or on any subset, and in particular defines a partition p(d,d’) on the
subset consisting of the new top and bottom rows (relative to which, the middle row
becomes internal).

The partition algebra product is defined on the basis of partitions:

q.¢' = 0°p(d, d’)

where d, d’ are any representatives of ¢, ¢’ and ¢ is the number of connected compo-
nents of d.d' involving only internal vertices.

(2.3.4) The partition algebra P, has identity element
1=1,={{1,1'}{2,2'},....{n,n"}}
(2.3.5) The partition algebra P, is generated by the elements (partitions)
o ={{1,1'},{2,2"}, ... {4, j'}. {4, i'}, s {n, 0} }

A = {1,100 {2,2'Y, ., ih ') - {ny 0/} )
Ay =1, 142,20, {6, i+ 1,60+ 1)}, . {n,n'}}
Equivalent formulations of the multiplication rules are given, for example, in [9].

(2.3.6) We define a K-linear category
Cp = (N,Homp(—, —),0)
where Homp (m,n) = KP(mUn') and the composition is the obvious generalisation

of the algebra composition.

(2.3.7) For d any partition appearing in the category Cp we write #(d) for the
propagating number — the number of parts that contain both primed and unprimed
elements. We write P(m U n')[l] for the subset of partitions d with #(d) = .

2.3.1 The Brauer algebra

(2.3.8) The Brauer algebra B, (d) is the subalgebra of P,(d) obtained by restricting
the basis to the set J(n Un’) of pair partitions (define J,, = J(n U n’) for short).
We write J,[l] for the subset of J, of diagrams with [ propagating lines; and
J, (1) for the subset of J,, of diagrams with at most [ propagating lines.
We define the special pair partitions

Ui=A;iiniAiAinAiin

Define P(m,n) = P(mUn') and J(m,n) = J(mUn'). Keeping K fixed, the Brauer
partition category is the subcategory of the partition category Cp given by

Cy = (Na KJ(_v _)7 O)
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Automorphisms, arithmetic and idempotents

2.4 Spore function on partitions

The subset of generators o;; (from (2.3.5)) generate a copy of the symmetric group
Sy in P, (they are the pair permutations in S,). Thus P, is both a left and a right
Sp-module by restriction. Indeed P(n U n’) is a left and a right S,,-set.

(2.4.1) The invertible elements of P(n Un') in P, are precisely the elements of S,,.
From this we have, immediately, the inner automorphism group of P, generated by
these units.

(2.4.2) Write A% for the orbit of A € P(nUn') under conjugation by S,. Define

Ag = A= ) d

de ASn

Examples: note that if A € J(nUn') C P(nUn') then A% C J(n Un'); and
A € S, implies A% C S,. In the latter case we have the usual observation that
conjugacy classes are indexed by integer partitions of n.
Note that
op(w) = w

for w € S,,.

(2.4.3) Define
Sp:P(nun’) — A,

by Sp(A) = [[(TC(AU1,))[ull
Example:

1 2 3 1 2 3
‘/ *
/ o m o
¢ ¢ Ne—e
1 2 3 1 2 3

There are several more examples in §2.5.

Proposition 1. For all A € P(nUn') and w € Sy:
Sp(A) = Sp(wAw ™)
If #(A) = #(B) = 0/1 then A5 = B if and only if Sp(A) = Sp(B).

Proof. First part: Consider 2.1.7. Second part: Exercise. O

2.5 Primitive central idempotents

Our aim here is to compute the primitive central idempotents of the Brauer algebra
over the field of rational polynomials in §. This is for a number of reasons.
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1. primitive central idempotents determine the blocks of an algebra. The Brauer
algebra over the rational field is semisimple, but its idempotents are related (in a
suitable sense [?]) to the primitive central idempotents in specific specialisations of
0 over other fields, which have more complicated blocks.

2. we hope to gain information about the submodule structure of standard
modules (modules that we shall describe later, that are simple over the field of
rational polynomials in ¢, but not in general).

3. we hope to get clues about analogues for the Brauer algebra of Young’s
orthogonal form (we have in mind the form of Leduc-Ram [6] and generalisations).

The difficulty of these problems tells us that constructing idempotents will also
be hard. However both partition algebras and Brauer algebras are naturally filtered
by certain ideals that are easy to construct. As a first step we can try to construct
idempotents associated to these ideals.

2.5.1 Splitting idempotents

(2.5.1) Our approach follows [11]. There it is recalled firstly that if J C A is an
ideal in an algebra A, then the short exact sequence of A-bimodules

0=>J—>A—>A/J—=0

splits iff there is an idempotent e; € A with the following properties.

1. e; =21 mod. J

2. 6JJ = J6J =0
If e; exists then note that e; € Z(A), the centre of A; and e; is unique with these
properties.

(2.5.2) For A’ C A a subalgebra (or indeed any subset), then define Z4/(A) as the
set of elements of A that commute with A’. Obviously Za(A4) D Z(A). Thus we
can start a search for elements of Z(A) by looking for elements of Z4(A).

2.5.2 The Brauer case

In our case KS,, C B,,, and K S, has a nice action on B,,, so it is natural to consider
Zks, (Br). We are interested in elements of B,, that are invariant under conjugation
by all elements of S,,. (The setup for the partition algebra is very similar.) Consider
an element of form

:EGZS (B ) _ _
T = E cqd EC wrw = E cqwdw ! = E Co1dwd
deJ(nun’) deJ(nun’) deJ(nUn’)

where we have used the fact that conjugation by w € S, is a permutation on J(nUn').
Thus x € Zg, (B,,) implies ¢q = ¢ygu-1 for all w. Evidently for any d

Z wdw ™' € Zs, (By)

’LUESTL

So (in characteristic 0, where the possible multiplicities in this sum are all units)
Zs,(By,) has a basis of elements of this form.
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Another basis of Zg, (B,,) (in arbitrary characteristic) is the set of elements
B ={ds|deIJ(nun')}.

Examples: 8y = {1,012, U; } (note that in this case By itself is commutative);

gy = (LA U+ LI ) L) Lo L) L T LR LA Ly

(2.5.3) The next question is how to construct this basis 3, in general. In other
words, what are a set of representative elements of the orbits of J(n U n’) under
Sp-conjugation?

Firstly note that conjugation does not change the number [ of propagating lines,
so we can work separately in each section of the propagating line filtration. Accord-
ingly let us decompose the basis:

Bu= || Bl

l=n,n—-2,...

Within the [ section, we see from Prop. 1 that the basis is partly indexed by possible
images of the Sp map in this case.

Examples: _
Sp(Ba[0) = Sp( ) = (2)
Sp(Is[1)) = Sp( ™ )= 1{(2,1),3)}
S I BN
SpIfo)) = Sp(™M M I = ((2,2),(4))

« > « o

(the faint lines are a reminder of the computation of Sp, and can otherwise be
ignored);

Sp(Js(1)) = {(2,2,1),(3,2), (4, 1), 5)}
Sp(J6(0)) = {(2,2,2), (4,2), (6)}
Exercise: compute Sp(Jg(2)) = Sp(Js[2]) U Sp(JTs[0]).
(2.5.4) More generally define

[n/2]
Wsr = U5U5+2---Us+2(r—1)a W = H U2i—1 e U1U3...Un_1.
i=1
Then for n = 2m we have
Sp(W) = (2™). (2.1)

For A an integer partition of n with each \; even define

Ai/2—1
Wy =W -1

2+Zj:1 )\1
=1

e.g. W(6’4) = W22W81 = U2U4U8.



10 CHAPTER 2. BRAUER DIAGRAM CATEGORY CONSTRUCTION

Proposition 2. The image Sp(Jomyo/1(0/1)) includes only those partitions that, in
the sense of (2.1.9), contain m distinct copies of the Young diagram (2). That is

SP(Jamt0/1(0/1)) = Aaymy  (resp. Aaym 1)

Proof. For convenience define Ay, = A(2m) and Ay, = Ayoym 1)). The image of
the spore map lies in A;, because every non-propagating line in d € J2m+0/1(0/1)
binds precisely two symbols into the same part in Sp(d). The lines ‘on the top’ for
example bind to a shape (2). And the lines on the bottom may then bind further.
For example consider W in (2.1) above, with Sp(W) = (2"). To see surjectivity
in case n even (case n odd is similar) then consider for example Sp(WWJ), which
gives (2(r +1),2™ 1), and so on; so that Sp(WW,) = A. O

(2.5.5) One sees immediately in these cases [ = 0,1 that they generate bases 3, (1)
for Zs, (B,)NJ for the appropriate cases of J = KJ,(l). We write D, for the basis
element labelled by partition A, thus

W «
=71 A
/74 K + 4 others

andﬁa()—{DA|/\€A @} = {Dey, D}t

(2.5.6) Let us write .J,(I) for the ideal of Bn with basis J,(l), and write 1, (l) for
the corresponding splitting idempotent in the sense of (2.5.1). We will see below
(and it is well-known) that this idempotent exists in case K is the field of rational
polynomials in . Assume we work in such a case. Define X, by 1,(0/1) = 1+ X,,.
Since X, is central, and hence in Zg, (B,), we have

Xn = Z a,\D,\
A

where the scalars a) are to be determined. By (2.5.1) a necessary condition is
given by dX, = —d for d € J,(I) — in this case with [ = 0/1. Thus in particular
for W = U,U;...U,y (n' the largest odd number below n) a necessary condition is
WX, = —W. Equating coefficients of W in this identity gives one linear condition
on the unknowns. Our idea is to equate coefficients for a transversal of the orbits
under S, conjugation. Provided these give independent linear conditions then this
is enough to determine the unknowns. (Since X, exists for our K we do not need
to check any of the other conditions.)

(2.5.7) Examples: For n =2 we have W = U; and X, = aiyUi, 50 a0 = —1 and

Remark: of course this gives a central idempotent decompositon of 1: 1 = (1 — %D(Q))—i-

(%D(g)) . This is not necessarily primitive. Indeed if 2 is a unit we can decompose

further using the (central) idempotents in K Sy — exercise.
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(2.5.8) For 5(1) we have 95(1) = 1 + X3 with

X3 = Z axDy = ap D@y + a@) D)
A€A((2),1))

where a(21), a3y are to be determined. Requiring dX = —d for d € .J is satisfied by
requiring (say) U; X = —Uj, by the S,-symmetry. Similarly we need only compute
the coefficients of U; and of U;U,. This gives

0 2 a(g’l) . —1
1 6+1 a(3) - 0

= (6+1) _ 1
T GEe- T Gre-D

Explicitly we have:

o =g (Z1+ (L4 I

and hence

>+a(3) ( A+ S 2+ Do [N+ L2 )

|
|

o]

iy
TR

Al
|

U
A

D dp g

|
U X3 = a(2,1) ‘

on.

(2.5.9) NOTES

1. the denominators of coefficients in our idempotents tell us a lot of representation
theory! Over the rational polynomial field our idempotent is part of a complete
decomposition of 1 into ‘ordinary’ primitive central idempotents. By the refinement
theorem, the primitive central idempotents of any specialisation of the integral ver-
sion of the algebra are the images of ordinary central idempotents, hence they are
images of sums of ordinary primitive central idempotents — the failure of splitting
down to the same level as the ordinary case being the signal of non-singleton blocks.
This failure of splitting is signalled in the ordinary idempotents by the presence
of denominators which prevent the specialisation. If a denominator vanishes like
(0 —d.) as & — . then we deduce that there is no such splitting idempotent at
0 = d., in other words a non-singleton block is formed.

2. cases J,(I) with [ > 1 require an extra layer of sophistication, which we shall
address elsewhere.

3. we can read off the restriction rules for various B,,-modules restricted to S,, from
our analysis. we observe that they agree with the known rules.

4. we can develop a version of this programme for the partition algebra. aspects of
this have already been done, but the version of note 3 for the partition algebra is of
current interest.

(2.5.10) For comparison we consider the ‘natural’ contravariant form on the ‘Specht’
module A, (l) associated to this ideal [|. This encodes a homomorphism from A, (/)
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to its contravariant dual (with respect to the op involution). The form is computed
via:

o 1 1
Ms(1) = 161
114

— the gram matrix over the natural basis. We are interested in the rank of the form

(the rank of the matrix) — and hence the rank of the homomorphism which, on

general grounds, gives the dimension of the simple head when we pass to a ground
ring that is a field.

The rank of the matrix is clearly full for generic 6. The non-full cases correspond

to the zeros of the deteminant:

|Ma(1)] = (6 = 1)*(5 +2)
Ignoring the exponents for a moment, we see that our ‘splitting idempotent’ blows
up at the correct values.

(2.5.11) In order to address note 1 further we now report some more specific cases.
For n = 5,1 =1 we have U U3 X5 = —U,U;3. Equating coefficients of U,;Us, U;Us0y4,
U1U3U2 and U1U3U20'4O'3 we get

52 46 26 8 a(2.9,1) ~1
6 0°4+0+2 2 40 4 4 a(s,2) 0
) 4 82 +46 46 + 4 a(4,1) 0
I 2042 641 0°+30+4 as) 0

This gives (using sage [12]):
—(x —1)%(z + 2)*(2* + 3z — 2)

a(292a1) = A5
x—1)?(z+2)3
o =ty = EZ VD
5
—2(x — 1)*(z + 2)?
a(s) = As

where
As = (z—2)(x —1)*(x +2)*(z + 4)

2.5.3 [Exercises (and more cases)

(2.5.12) n = 4, 1 = 0. ... Here we need to determine D35 and D), using
U,U3 Xy = —U,U;. Equating coefficients of U;Uz and of U;U3U, we get:

52 26 0(2’2) . —1
§ 6°+90 a(4) N 0

This is almost the same as the n = 3 case — differing only by overall factors of §.
We get
—(6+1) 1
a — a =
GO =565 +2)(0—1) B =56 +2)(0 - 1)
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It is instructive to consider the difference with the n = 3 case. Here we have,
nominally, for the ‘natural’ cv form on A4(0):

|M4(0)| = 6*(0 — 1)%(6 + 2)

This (or rather the associated Smith form — exercise) tells us that the natural
form is not well-defined when § = 0 (or rather it is the zero form, yielding the
zero morphism, which is the only morphism/form in some cases, but is not the only
morphism /form here). For other ¢ values the form is ok and the agreement is as
before. For 6 = 0 we find that there is a renormalised form and it has full rank.
However, in this case J4(0) lies in the radical, so there is no splitting idempotent,
in agreement with our calculation.

Remark: How do we know a cv form is nonzero unique up to scalars? In our
case the argument for this (essentially it is quasiheredity) does not hold integrally or
in every specialisation. So the form is not necessarily natural integrally or in every
specialisation. It is interesting to consider if/when the failures can be cast as degen-
erations and so, in this sense, naturality recovered. In the meanwhile our arguments
must make reference to external facts (such as quasiheredity where applicable).

(2.5.13) n =6, 1 =0. ... Here we need D229y, D2 and D), using U;UsUs X =
—U,U3Us. Equating coefficients of UyUsUs, U1 UsUsUs and UyUsUs Uy Uy (say) we get

3* 66% 86 Dioa.9) ~1
== D(4’2) — 0
Dy 0

Exercise: complete!
(2.5.14) n =7, [ = 1. ... Spores are (2,2,2,1),(3,2,2), (4,2,1), (5
(2.5.15) n. =8, [ =0. ... Spores are (2,2,2,2), (4,2,2), (4,4), (6,2

,2),(6,1), (7).
), (8).
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