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0.1 Preface

Part 1 is a version of some talks given to the Leeds Statistical Mechanics
Discussion Group. The brief was to introduce basic statistical mechanics, so
as to explain the common setting in which the various different interactions
with Mathematics sit.

The notes do not require the reader to have read any of [9]. However this
is a useful companion work.

0.1.1 What/Why Statistical Mechanics?

We are going to have to assume some basic Physics, and hopefully move on
from there. ...So where does Statistical Mechanics fit in to Physics?

“The fundamental laws necessary for the mathematical treatment of a

large part of physics and the whole of chemistry are thus completely

known, and the difficulty lies only in the fact that application of these

laws leads to equations that are too complex to be solved.” Paul Dirac

In this quote Dirac points out that the problems of Physics do not end, by
any means, with the determination of fundamental principles. They include
such fundamental problems; and also problems of computation.
(Indeed for the subject we are going to describe here, its original historical
development was assumed to be on the fundamental side. Only a better
understanding of its setting later showed otherwise.)
An example of the laws that Dirac is refering to would be Newton’s laws,
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which do a good job of determining the classical dynamics of a single particle
moving through a given force-field. Two-body systems are also manageable
but after that, even though it may well still be Newtonian (or some other
well-understood) laws that apply in principle, exact dynamics will simply not
be computationally accessible.

Do we really need to know about many-body dynamics? Yes. At least
some understanding of the modelling of many-body systems is needed in
order to work with a number of important materials (magnets, magnetic
recording materials, LCDs, non-perturbative QFT etc). In each such case,
the key dynamical components of the system are numerous, and interact with
each other. Thus the force fields affecting the movement of one, are caused
by the others; and when it moves, its own field changes, moving the others.

The solution:
The equilibrium Statistical Mechanical approach to such problems is to try
to model only certain special types of observation that could be made on the
system. One then models these observations by weighted averages over all
possible instantaneous states of the system. In other words dynamics is not
modelled directly (questions about dynamics are not asked directly). As far
as is appropriate, dynamics is encoded in the weightings – the probabilities
asigned to states.

The first problem is to describe these states, and determine appropriate
probabilities.

It is most convenient to pass to an example. We shall have in mind a bar
magnet. 1 We shall assume that the metal crystal lattice is essentially fixed
(the formation of the lattice is itself a significant problem, but we will have
enough on our plate). The set of states of the system that we shall allow are
the possible orientations of the atomic magnetic dipoles (not their positions,
which shall be fixed on the lattice sites).

What next?

1This provides a number of simplifications of the general problem, without trivialising
the key features.
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Chapter 1

Background

1.1 Towards the partition function

1.1.1 Classical reminders

A good rule of thumb when analysing a physical system is: ”follow the
energy”. (This begs many questions, all of which we ignore.)

The kinetic energy of a system of N point particles with masses mi and
velocities vi is

Ekin =

N∑

i=1

1

2
miv

2
i

What can affect a particle’s subsequent velocity, and hence change its
kinetic energy? That is, what causes dv

dt
to be non-zero? A force can do this:

F = m
dv

dt

Thus we also need to understand the forces acting on the particles.
For example: If they are really pointlike then they interact pairwise via

the Coulomb force
F1 =

q1q2

4πǫ0

r12

r3
12

= −F2

Here q1, q2 are the charges (perhaps in coulombs); ǫ0 is a constant (depending
on that unit choice); and r12 = r1 − r2.

For a moment we can think of this as a force field created by the second
particle, acting on any charged first particle. This is a conservative force

7
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field; meaning that there is a function φ(r) such that

F = −∇φ

The function φ(r) is part of the potential energy of the first particle. In other
words its ‘total energy’ is of the form

E =
1

2
mv2 + φ

In practice, since φ is only defined up to an additive constant, E itself is not
so significant as changes in E.

1.1.2 Stats/Gibbs canonical distribution

Notice that system energy E depends on the velocities and positions of all the
atoms in the system. There are 1023 or so atoms in a handful of Earthbound
matter, so we are not going to be able to keep track of them all (nor do we
really want to). We would rather know about the bulk, averaged behaviour
of the matter.

Let us call the inaccessible complete microscopic specification of all po-
sitions and velocities in the system a ‘microstate’. Then for each microstate
σ we know, in principle, the total energy E(σ). We could ask: What is
the probability P of finding the system, at any given instant, in a specific
microstate?

Then we could compute an expected value for some bulk observation O
by a weighted average over the microstates:

〈O〉 =
∑

σ

O(σ)P (σ) (1.1)

In principle the probability P could depend on every aspect of σ. This
would make computation very hard. At the other extreme, P could be in-
dependent of σ. But this turns out to be a problematic assumption for a
number of Mathematical and Physical reasons. Another working assumption
would be that two microstates are equally likely if they have the same energy;
i.e. that P depends on σ just through E. That is, that P depends only on
the total energy of the system. Let us try this.

The next question is: How does P depend on E? What is the function
P (E)?
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If we have a large system, then we could consider describing it in two
parts (left and right side, say), separated by some notional boundary, with
the total microstate σ being made up of σL and σR. These halves are in
contact, of course, along the boundary. But if the system is also in contact
with other systems (so that energy is not required to be locally conserved),
then it is plausible to assume that the states of the two halves are independent
variables. In this case

P (σ) = P (σL)P (σR)

as for such probabilities in general. Similarly, the total energy

E = EL + ER + Eint

(where Eint is the interaction energy between the halves) is reasonably ap-
proximated by

E ∼ EL + ER

(Why is this reasonable?!... Clearly the kinetic energy is localised in each of
the two halves. The potential energy is made up of contributions from all
pairs, including pairs with one in each half. But we assume that the pair
potential is greater for pairs that are closer together; and that the boundary
is a structure of lower dimension that the system overall. In this sense Eint

is localised in the boundary (pairs that are close together but in separate
halves are necessarily close to the boundary); while being part of the over-
all potential energy, which is spread with essentially constant density over
the whole system. Thus Eint is a vanishing proportion of the whole energy
for a large system. (We shall return to these core Physical assumptions of
Statistical Mechanics later. They imply an intrinsic restriction in Statistical
Mechanics to treating interactions that are, in a suitable sense, short-range.
Fortunately this seems Physically justifiable.))

The L and R subsystems will each have their own ‘energy-only’ probabil-
ity function. Thus we have something like

P (EL + ER) = PL(EL)PR(ER) (1.2)

In this expression EL and ER are independent variables, so

∂P (EL + ER)

∂EL
=

∂P (EL + ER)

∂ER
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so P ′
L(EL)PR(ER) = PL(EL)P ′

R(ER), so

P ′
L(EL)

PL(EL)
=

P ′
R(ER)

PR(ER)

This separates. We write −β for the constant of separation. We have
P ′

L(EL) = −βPL(EL) (and similarly for R). This is solved by a function
of form

P (E) = C exp(−βE) (1.3)

where C is any constant. In our case C is determined by

∑

σ

P (E(σ)) = 1

The separation constant β is interesting, since it is the only thing (other than
the form of the function itself) that connects the subsystems. We will see
later that this connection corresponds (inversely) to a notion of temperature.

1.1.3 Partition Function

The normalisation function for our system (1.3)

Z(β) =
∑

σ

exp(−βE(σ))

(Z for zustatensummen, or some such name due to Boltzmann) is called the
partition function. That is, for given β,

P (E) =
exp(−βE)

Z

Recall that, by our derivation, β represents the effect of thermal (energetic)
contact with the universe of other systems. Our usual notion of the bulk
contribution of neighbouring systems on the energetics of a given system, at
least where long-time-stable (equilibrium) properties are concerned, is the
notion of temperature. Thus β encodes temperature. How specifically does
it do this? See later.

First we want to consider the pay-off for the analysis we have made so
far. The idea was that we would be able to compute time-averaged bulk
properties of the system.
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Z is ‘just’ a normalising factor. But

d lnZ

dβ
= − 1

Z

∑

σ

E(σ) exp(−βE(σ))

the internal energy (or compute 1
N

of this for the energy density), so its
analysis contains Physics!

Suppose
E : S → ±N

(i.e. the energy is quantised).1 Then Z is polynomial in exp(∓β). Its only
analytic structure is zeros. However, we will see how these zeros are indeed
physically significant.

Figure 1.1 gives a quick glimpse of the distribution of zeros in the complex
x = exp(β) plane for a three-dimensional Ising model (what this is will be
explained later).

Question: What does this tell us?
The specific heat tells us the rate of change of internal energy with tem-

perature (or, in practice, the other way round — we measure the amount of
energy we have to put into a fixed mass of material to change its temperature
by 1 degree):

S =
∂2 1

N
ln Z

∂β2

Consider the formulation

Z =
∏

j

(x − zj)

In terms of the complex zeros {zj = xj + iyj} we have:

∂ 1
N

lnZ

∂β
=

x

N

∑

j

1

x − zj

S =
∂2 1

N
ln Z

∂β2
=

x

N

(
∑

j

1

x − zj

− x
∑

j

1

(x − zj)2

)

1This is far from always true, but it is not unrealistic.
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zeros of Z

Figure 1.1: Complex zeros of the partition function for a cubical lattice Ising
model of about N = 150 sites [11, 15].
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Note that the complex zeros appear in conjugate pairs. Performing the sum
within each conjugate pair this becomes

S =
2x

N

(
′∑

j

x − xj

(x − xj)2 + y2
j

− x

′∑

j

(x − xj)
2 − y2

j

((x − xj)2 − y2
j )

2 + 4(x − xj)2y2
j

)

Consider the contribution of the j-th term (i.e. from a pair of zeros) to S,
at some point on the real x axis. Note that if yj is large, or if x− xj is large,
then this contribution is small. Meanwhile the contribution is large if the
zeros are close to the axis, and x is close to these zeros. In particular the
contribution is large if x = xj , whereupon

Sj ∼
2x2

Ny2
j

Simply put, this says that, moving along the real line (real temperature),
S and U go crazy when there are complex zeros close by (as there are at a
particular point in Figure 1.1, for example).
Accordingly we shall call a region of the complex plane that is close to the
real axis and contains zeros of Z a critical neighbourhood of Z.

Let us (very crudely) compare with physical observation.
When we boil a kettle we put roughly equal amount of energy into the water
in each unit of time. At first the temperature rises, and the rate of rise does
not change very much as the temperature goes up. That is, the specific heat
changes slowly and smoothly with temperature. Close to and at the boiling
point, however, the temperature rise essentially stops, i.e. the amount of
energy required to further change the temperature becomes very large. In
the practical experiment there are a number of reasons for this, but one of
them is that the specific heat becomes very large. Thus we associate divergent
specific heat with a phase transition (in this case the liquid-gas transition at
the boiling point).

Another quick picture, of a different model, is shown in Figure 1.2. Once
again you are invited to study the distribution of zeros close to the ‘physical’
region: the real interval [0, 1].

In practice we are never even going to know N accurately for a real
physical system. Nor is such an accurate knowledge important to us, since
realistic observations do not depend on it. Indeed for intensive quantities we
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Figure 1.2: Complex zeros of the partition function for a two-dimensional
clock model at two different lattice sizes [10].
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expect them to be stable under even large changes in N , so long as N is large
enough. Thus intensive observations in our model also need to be large N
stable. 2

Our pictures give a clue as to the sense in which this can happen:
Different polynomials (different N ; different but suitably ‘similar’ physical
systems) could have similar distributions, real accumulation points, etc.; and
hence manifest behaviour on the physical line in similar ways.
Can we at least have a model for this?

1.2 Models

We now briefly introduce a simple choice for E (the microstate energy func-
tion), from a Physics perpective.

As noted in Section 1.1.3, to introduce a choice for E for physical mod-
elling, we must actually introduce one for each of a whole collection of ‘simi-
lar’ systems, and then check the stability of observables across this collection.
Mathematically, it is convenient to introduce an E for each of a rather large
collection of (nominally but not necessarily adequately similar) systems, then
refine this collection by physical considerations post hoc. (We will make all
this very precise later.) This is called choosing a ‘model’. The choice we
shall describe here is called the Potts model.

(1.2.1) Some statistical mechanics nomenclature: While kinetic-energy-only
(non-interacting) models are rather simple, models in which only the poten-
tial energy is accounted for in the microstate energy are much richer (partly
because aspects of the kinetic energy of the system are encoded in β anyway).
Excluding kinetic energy from E means that we are essentially treating our
particle positions as fixed (that is, not translating). Instead system dynam-
ics is manifested in other ways. For example we can consider non-pointlike
particles, hence with the possibility of magnetic dipole moments. System
dynamics in this case can be manifested in variations in magnetic dipole ori-
entation. In such a setting, particles are called spins. Also, the microstate
energy function is called the Hamiltonian (and typically written H not E).

(1.2.2) Let Γ be the set of graphs. For G ∈ Γ let VG be the vertex set of G
(sometimes we will simply write G for VG), and EG the edge set. We adopt

2Note that we do not require a large N limit per se for Physics. But stability and the
existence of such a limit amount to the same thing computationally.
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the notation
n = {1, 2, ..., n}

For any set S (such as a set of graph vertices) and Q ∈ N write

QS = Hom(S, Q)

for the set of maps from S to Q — each map f asigns a state in q ∈
{1, 2, ..., Q} to each vertex s by f(s) = q.

1.2.1 Potts and ZQ-symmetric lattice models

(1.2.3) For Q ∈ N, a Q-state graph Hamiltonian is a map asigning to each
graph G a map HG in Hom(QVG , Z), or more generally Hom(QVG , R). We
say that this map HG gives the ‘energy’ of state σ ∈ QVG .

(1.2.4) The idea of a model like this (modelling Physics in some given phys-
ical space E) is as follows.
(i) one considers a subset of graphs, such that each graph G considered rep-
resents (in principle) a given physical system — a collection of degrees of
freedom embedded in E.
(ii) in particular the degrees of freedom of the system reside on the vertices
of G, and each takes values from a range represented by {1, 2, ..., Q}; and
(iii) the geometrical relationship of the degrees of freedom is encoded (some-
how) in the edges between the vertices.
In other words, the set of microstate variables is VG (which does not depend
on the edges of G), but the interactions HG between spins will depend on
the edges EG.

(1.2.5) Fixing Q (e.g. Q = 2) we have, for example,

HPotts
G (σ) =

∑

(v,v′)∈EG

δσ(v),σ(v′ ) =
∑

(v,v′)∈EG

δσ(v)−σ(v′ ),0 (1.4)

HClock
G (σ) =

∑

(v,v′)∈EG

cos(2π(σ(v) − σ(v′))/Q) (1.5)

Note that each of these indeed gives a Hamiltonian for each choice of G.
However not every G makes sense physically. Here the idea is specifically that
VG represents the set of molecules on some crystal lattice; and EG determines
nearest neighbour molecules on the lattice. For example, see Figure 1.3.
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or or

3d metal 2d metal more exotic 2-manifold

Figure 1.3:

Such an embedding implies further useful structural properties, as we
shall see shortly. We may write G to emphasise the extra structure on G,
when it is of such a form.

(1.2.6) The 2d square lattice shown, for example, would be part of a sequence
of graphs including also larger square lattices such as the one with 56 vertices
and 97 edges shown in Figure 1.4(a).

(1.2.7) Figure 1.4(b) is an example of a Q = 2-state spin configuration on
the vertices of the same square lattice. We draw an up-arrow for the spin
state 1, and a down-arrow for the spin state 2. In this case there are only
two down-arrows out of N = 56. Thus HG(σ) = 97 − 8 = 89.
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(a) (b)

Figure 1.4:



Chapter 2

More on lattice models

Here we look in a little more detail at certain aspects of the ‘lattice models’
introduced in §1.2.1. This Chapter can be skipped at first reading.

2.1 Geometrical aspects

2.1.1 The dual lattice

Note that an embedded graph of the kind discussed in Section 1.2.1 may
be equipped with the structure of a cell complex (see for example Hilton
and Wylie [7, §2.12], Spanier [13, Ch.4]). That is, (I) the embedded graph
G defines sets sc(G) of simplices (oriented convex polytopes) of dimensions
c = 0, 1, ..., d, sometimes called c-cells.
(II) For each dimension c one also considers the free Z-module with basis
sc(G), the elements of which are called c-chains. The boundary operator ∂ is
a Z-linear map

∂ : Zsc(G) → Zsc−1(G);

for each c, such that ∂2 = 0.
For example, if e1 = (v1, v2) is a directed edge of G then ∂e1 = v2 − v1

(we also identify −e1 = (v2, v1)).

(2.1.1) In particular G partitions the d-dimensional embedding space E into
points, arcs, plaquettes and so on.

We write |G| for the union of all convex cells in the cell complex of G.
Strictly speaking, if it is non-empty we include the complement of |G| in E

among the d-cells associated to G.

19
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(2.1.2) From this perspective the Potts spin configurations are ZQ-valued 0-
cochains (regarding ZQ = Z/QZ as an additive group). That is, a c-cochain
is a linear map

σ : Zsc(G) → ZQ

for any c, determined by the images of the c-cells. (And the images of the
vertices are their values in the Potts spin configuration σ.)

The set of c-cochains form an abelian group by pointwise addition (not a
very natural operation from the physical perspective, but a useful organisa-
tional device).

(2.1.3) We define a scalar product on cells by (S, S ′) = δS,S′ and extend
bi-linearly to chains. This leads to a coboundary operator ∂∗ : Zsc → Zsc+1

by:
(S, ∂∗S ′) = (∂S, S ′)

for S ∈ sc, S ′ ∈ sc−1. Note (∂∗)2 = 0.
Consider Figure 1.4(a) for example. Let f1 be the face in the top left-

hand corner, and compute ∂∗f1. We have (S, ∂∗f1) = (∂S, f1) = 0 (f1 is not
in the boundary of any cell). Thus ∂∗f1 = 0.
Meanwhule, let e1 be the edge in the top left-hand corner. We have (S, ∂∗e1) =
(∂S, e1) = δS,f1

(up to choice of orientation), thus ∂∗e1 = f1.
We can look for a proper subset of chains that forms a ∂∗ subcomplex.

Such a subset can be generated by making a choice of 0-cells to include. For
example, if we include all the interior 0-cells (in the obvious sense) then all
the interior 1-cells and all the 2-cells must be included, but we do not need
to include any of the exterior 0-cells or 1-cells.

(2.1.4) From this structure we may define a Kramers-Wannier dual graph
to G. This is a graph (with associated cell complex) D(G) with a vertex v
for each d-dimensional component of G (i.e. a 0-cell for each d-cell), and an
edge between v and v′ if their d-dimensional preimages in G share a common
(d − 1)-dimensional component (hence a 1-cell for each (d − 1)-cell). Indeed

D : sc(G) → sd−c(D(G))

is a bijection for each c.
For example, the dual of our square lattice graph above is shown in Fig-

ure 2.1.

(2.1.5) A c-cochain σ defines a dual (d− c)-cochain D(σ) on sd−c(D(G)) via

D(σ)(D(S)) := σ(S)
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Figure 2.1: Dual lattice of a certain square lattice. All of the exterior vertices
are to be identified as the same vertex.

2.1.2 Domain walls

(2.1.6) This dual graph D(G) gives us an alternative way to describe spin
configurations — in terms of islands of aligned spins, or specifically in terms
of the positions of the boundaries of islands of aligned spins. Consider the
square lattice case, and note that each (directed) edge of the dual graph is
associated to a pair of (ordered) spins, i, j, say, on the original graph. Then
for a given configuration σ we can asign a directed weight

wij(σ) = σ(j) − σ(i)

(modulo Q) to this dual edge. (We shall orient the dual edges so that, passing
from i to j, the positive direction of the dual edge across the edge i − j is
from left to right. We asign w as above to this direction.) In particular, if
two adjacent spins have the same value in σ then the dual edge weight is zero
(and no energy is ‘lost’ at this edge).

For Q odd, a simple notation is to use the representatives of Z/QZ in the
interval [−Q/2, ..., Q/2] for w, and draw w positive-direction pointing arrows
on the dual edge if w ≥ 0, or −w reverse arrows if w < 0. The same notation
works for Q even, but note that −Q/2 ≡ Q/2. In the Q = 2 case every dual
edge has weight either 1 or 0, for example.



22 CHAPTER 2. MORE ON LATTICE MODELS

The weight ‘variables’ are Z/QZ-valued, but it is not appropriate to re-
place the sum over 0-cochains on the original lattice by the sum over arbitrary
1-cochains on the dual lattice, since the map w is not surjective. (It is also
not injective, but it is made so if we pick and fix any one spin.) The con-
straint is that if we traverse a loop around any dual vertex, starting at some
spin, then the sum of weights must be congruent to 0 mod. Q (else we do
not have a consistent value for the starting spin).

(2.1.7) Note that for Q = 2 the sum of dual edge weights for edges incident
at a give dual vertex, must be even. In general, the sum (taking care of signs,
note) must be congruent to zero modulo Q. For Q = 2 that is to say, we can
form sequences of dual edges with weight 1 into closed loops. This cannot
necessarily be done uniquely (for example if four weight-1 edges are incident
at a dual vertex), but all equivalent loop asignments correspond to the same
spin configuration (up to a global up-down choice).

This means that we can replace the sum over spin configurations by a
sum over ‘edge coverings’. Coverings are weight asignments to the edges of
the dual lattice satisfying the covering rule: only asignments with the signed
sum of weights incident at each dual vertex congruent to 0 modulo Q are
allowed. Every such weight asignment determines a spin configuration, given
only the state of a single spin. (Note that this ambiguity can be resolved
freely, since the Hamiltonian (1.4) is invariant under changes in this choice.
That is

∑

spin configs

exp(βH) = Q
∑

allowed
coverings γ

exp(βH)

Note also that the Hamiltonian can be expressed simply in terms of the total
length of weight-1 boundary in the covering:

H(γ) = |EV | − l(γ) (2.1)

where l(γ) is the length of boundary in covering γ.)

For example, the picture of our spin configuration (b) above is the left-
hand picture in Figure 2.2. And here H = |EV | − 8. The right-hand picture
in Figure 2.2 shows a different spin configuration and its boundary represen-
tation.

This representation of spin configurations is sometimes called the domain

wall representation (for reasons that the figure makes clear).
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Figure 2.2: Two spin configurations with corresponding coverings.

(2.1.8) Note that the covering rule may appear to be modified if one considers
only part of a system, or a system with boundary. Then the details of the
connection with the exterior may be encoded in sinks and sources — dual
sites where the incident weight sum is not congruent to 0. See later.

2.1.3 Trivial examples

Consider the lattice consisting of a single square. The dual lattice consists
of two vertices, connected by four edges.

2.1.4 High and low temperature

2.1.5 Kramers–Wannier duality

2.1.6 Graphs with boundary

blah blah!!!
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2.A Appendix: Combinatorics of the Potts

groundstate

I have removed the appendix from this point, because it does not belong in
an introductory text, and it is not finished. See SM-CombinPotts-1.tex.
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Computation

3.1 Transfer matrix formalism

3.1.1 Partition vectors

Suppose that we have fixed a graph Hamiltonian as in (1.2.3). Then for each
graph G we have a partition function ZG, associated to the Hamiltonian HG.

(3.1.1) Let ZG
V |x

be ZG but with vertex subset V fixed to x:

ZG
V |x =

∑

s s.t. state s|V =x

exp(−βH)

Then the ‘Partition vector’ ZG
V is a vector indexed by configurations of V ,

whose x-th entry, (ZG
V )x, is ZG

V |x
.

(3.1.2) If G = G′∪G′′ where VG′ ∩VG′′ = V , EG′ ∩EG′′ = ∅, and HG is ‘local’
in the sense that interactions are associated to pairs of vertices defined by
edges, then the subgraph partition vector ZG′

V makes sense, and we have

ZG =
∑

x

(ZG′

V )x(Z
G′′

V )x (3.1)

Typically G has topological properties (perhaps embedded in and rep-
resenting some manifold), with respect to which V is a boundary, and the
situation of equation(3.1) may be illustrated as in Figure 3.1 or 3.2.

25
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G’

G’’
=

VV

Figure 3.1:
∑

x ZG′

V |x
ZG′′

V |x
= ZG′∪G′′

G
T

V
V V’

=
∑

x

ZG
V |xZ

T
V |x V ′|y = ZG∪T

V ′|y

Figure 3.2: Transfer Matrix Txy = ZT
V |x V ′|y

.
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1  2

Figure 3.3: 1. Adding a lattice layer; 2. New larger lattice.

3.1.2 Transfer matrices

Figure 3.2 also server, formally, to define the transfer matrix T = ZT
V,V ′ , as a

partition vector with two parts to the ‘boundary’ (note that this is simply an
organisational arrangement). Suppose we iterate composition of a suitable
T , as illustrated in Figure 3.3. Then we get

Zbig = 〈T n〉
(for suitable initial and final boundary conditions 〈−〉). If {λi}i are the
eigenvalues of T we have

Zbig = 〈T n〉 =
∑

i

kiλ
n
i

where the kis depend on the boundary conditions, but not n. For example
with simple periodic b.c.s we have

〈T n〉 = Tr(T n) =
∑

i

λn
i

Note that here T is +ve symmetric, so the Perron–Frobenius Theorem
implies

Zbig ∼ k0λ
n
0

(

1 +
k1

k0
(
λ1

λ0
)n +

∑

i>1

ki

k0
(
λi

λ0
)n

)

∼ k0λ
n
0

where λ0 is the largest eigenvalue, unless λ1 → λ0 as size→ ∞. So the
Helmholtz free energy 1

N
ln(Z) ∼ ln(λ0).

What about the physical role of other eigenvalues?



28 CHAPTER 3. COMPUTATION

3.1.3 Correlation functions

Cold systems tend to be ordered, and hot systems disordered. Neither of
these states exhibits long range correlation between local states. Thus only
in the order/disorder transition region may there be such correlations. Ex-
perimentally, correlation of spins over long distance is indeed a signal of phase
transition.

• Experimentally, at a fixed T away from Tc, an observation of the cor-
relation of the state of two spins (say) as a function of their separation
r, behaves like:

〈σiσi+r〉 ∼ e−r/ρ

(length scale ρ(T ) measured in terms of lattice spacing).

As T → Tc, ρ → ∞ (crucial in lattice Field Theory).

• In Stat Mech

〈σiσi+r〉 ∼
(T N1σ̂T rσ̂T N2).

(T N1+r+N2).
∼
(

λσ

λ0

)r

= exp(−r (ln(λ0) − ln(λσ))
︸ ︷︷ ︸

1

ρ

)

• So other eigenvalues besides λ0 have physical significance. (NB labelled
by operator content, not N , should not depend on N in limit.)

3.2 Practical calculation

3.2.1 Use the force: transfer matrix algebras

Next idea: We look for an algebra A and a representation R such that we can
express

T = R(X)

with X ∈ A; then organise the spectrum of T by simple components of R.

There is no simple recipe for finding A,R,X to make this work. We shall
discuss a limited systematisation as we go.
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1 2 3
T = T 1.. . . T = T 1.T 2.. . . T = T 1.T 2.T 3.. . .

4 5 6
T = T 1.T 2.T 3.T 4.. . . T = T 1.T 2.T 3.T 4.T 12.. . . T = T 1.T 2.T 3.T 4.T 12.T 23.. . .

Figure 3.4: Growing a cylindrical lattice layer one interaction at a time

Local transfer matrix

The transfer matrix method (essentially requiring that the lattice can made up of
a number of layers) grows the lattice a single layer at a time. Now we go further,
and grow the lattice a single interaction at a time.

Let us picture the situation in which we have built some number of complete
layers, and now proceed to start building a new layer. We start by adding a single
new edge/interaction: see Figure 3.4(1). Proceeding as illustrated, here we get

T =
∏

i

T i
∏

〈i,j〉

T ij (3.2)

What is T i here?

Consider the following example. Take H = −β
∑

〈ij〉 δσi,σj (2-state case, say) on
a graph made up of closed chain layers (hence a cylindrical lattice, as it were),
as in our recent figures. Set x = eβ . Consider the partition vector ZG

W for some
assembly of complete layers of lattice G, relative to some collection of ‘boundary’
spins W (as in (3.1.1)). One natural arrangement is to take W to be the union of
the states in some initial layer (on the left) and the states in the most recent layer
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grown (on the right) — in which case the partition vector is the transfer matrix
T n for some n. Alternatively one might consider Z relative only to the states, V
say, in the most recently grown layer — i.e. as 〈T n. But consider (for a moment)
the partition vector relative to a single spin i in V , preparatory to adding a single
new interaction involving that spin, as indicated:

i

Zσi
=

(
Zσi=1

Zσi=2

)

Now consider |V | = m so ZV is a Qm-component vector

ZV =

(

ZV |σi=1

ZV |σi=2

)

where each entry is a Qm−1-component vector. The partition vector for the new
system, over the new spin, after the new edge is added, is:

Z+
σi

=

(
xZσi=1 + Zσi=2

Zσi=1 + xZσi=2

)

=

(
x 1
1 x

)

︸ ︷︷ ︸

T i=(x−1)IQ+DQ

Zσi

Thus the prefactor matrix on the right is the local transfer matrix.

What is T ij?

Similarly

Z ]
σiσj

=







xZ11

Z12

Z21

xZ22







=







x
1

1
x







︸ ︷︷ ︸

T ij=IQ2+(x−1)CQ

Zσiσj

Let us define

ui :=
1√
Q

IQ ⊗ .. ⊗ DQ
︸︷︷︸

i−th

⊗IQ ⊗ .. ⊗ IQ

uij :=
√

QIQ ⊗ .. ⊗ CQ
︸︷︷︸

i−th and j−th

⊗IQ ⊗ .. ⊗ IQ
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NB, these obey

u2
i =

√

Qui u2
ij =

√

Quij uiuijui = ui uijuiuij = uij (3.3)

[ui, uj ] = [uij, ukl] = [ui, ukl] = 0 {i} ∩ {k, l} = ∅ (3.4)

Algebra

• As abstract relations (3.3-3.4) define Graph TL algebra (GTLA) for the
complete graph Km. A sort of TL version of a Coxeter–Artin group1.

• GTLA for graph G is subalgebra with generators ui and uij if (i, j) ∈ G.

This is generally not finite rank2 but G = Am case is ∼= ordinary TL algebra.

• Thus in 2d

T = R




∏

i

(
(x − 1)√

Q
1 + ui)

∏

ij

(1 +
(x − 1)√

Q
uij)





where R is a representation of OTLA.

• Thus spectrum of T decomposes by irreducible components of R. Thus cor-
relation functions (particles) at least partially indexed by simples of algebra.

• This is the paradigm.

Global limit

• Even fixing the physical model, there is a T , and hence a TMA, for each N .

• But physical observables, and hence spectrum components, defined essen-
tially independently of N . For given N , spectrum components are (partly)
indexed by simple module decomposition of

T = R(X)

, thus these can be indexed independently of N .

• Thus expect global limit to sequence of algebras, and localisation functors
picking out fibres of “physically equivalent” modules.

• How change system size? Example:

Freeze two spins together in transfer matrix layer.

What does this look like at the level of algebra?

1(for Coxeter–Artin groups see (Ram’s translation of) Brieskorn-Saito)
2quite interesting. See Martin-Saleur 93
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The partition algebra and the Brauer algebra

For Q-state models the overarching algebra is the partition algebra. The partition
algebra Pn has a basis of partitions of 2 rows of n vertices.

• Pn gives a representation of GTLA.

• consider also the Brauer subalgebra (pair partitions).

3.3 Analysis of results I: generalities and very

low rank

We have seen quite generally that in the physical temperature region the limit free
energy density is ln λ0 where λ0 is the largest magnitude eigenvalue of the transfer
matrix. What becomes of this when we look in the complex x = exp(β) plane, and
in particular in our ‘critical’ neighbourhood of the physical region? (As defined in
Section 1.1.3.)

To get a bit more out of the 1d Ising model here consider other boundary
conditions. For example, for the AN graph but with end spin states fixed

Z ′(AN ) =
(

1 0
)
(

x 1
1 x

)(
1
0

)

=
1

2
(λN

1 + λN
2 )

while

Z(ÂN ) = Tr

(
x 1
1 x

)N

= λN
1 + λN

2 = (x + 1)N + (x − 1)N

There are a number of ways that we can recast this simple expression to help think
about what might happen in general for large N .

Firstly, we can rewrite

(x + 1)N + (x − 1)N = (x − 1)N ((
x + 1

x − 1
)N + 1)

Ignoring the first factor we have

Z ∼ Y N + 1 = Y N/2(Y N/2 + Y −N/2)

(where Y = x+1
x−1), that is, the remaining zeros are distributed evenly around a

circle. It is the same circle for any N , but the line density increases with N .
Setting Y = exp(β′)

f =
1

N
ln Z =

1

N
(ln(2) +

N

2
ln Y + ln(cosh(

N

2
β′)))
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so

U = −∂ 1
N ln Z

∂β′
= −1 − tanh(

N

2
β′)

That is, the internal energy changes fast (at β′ = 0) for large N .

As we have already seen, the physics is dominated by the zeros close to the
real line, so we can approximate

lim
N→∞

f ∼ β′/2 +
1

2π

∫ ∞

−∞
a(y) ln(β′ + iy)dy

where a(y) = 1 (in our case) is the line density of zeros. Thus

U ∼ 1

2πi

∫ ∞

−∞

a(y)dy

y − iβ′

The integrand has a simple pole at y = iβ, so the integral changes by 2πa(0) as β′

changes sign. In other words, if the limit line density a(0) 6= 0 the internal energy
changes discontinuously at this point — a first order phase transition.

In practice, in more complicated systems, we can get

a(y) ∼ |y|1−p (0 ≤ p ≤ 1)

but we will return to this shortly.

Notice in our 2× 2 transfer matrix example that the distribution of zeros cor-
responds to the locus of points where the largest eigenvalue is actually degenerate
(with the other eigenvalue, regarded as an analytic function of β). In fact a large
class of models have a transfer matrix reducible to a 2 × 2 polynomial matrix T ′.
As before

lim
N→∞

lnZ

N
= lim

N→∞
ln(λN

+ + λN
− )

∗
= ln λ+

where * means on the real axis. What happens to the zeros this time?

Consider the general identity

CN + DN =

N−1

2∏

n=−N−1

2

(C + exp(
2πin

N
)D) =

N−1

2∏

n=1/2

(C2 + D2 + 2cos(2πn/N)CD)

(the explicit limits are for the case N even — the reader will easily compute the
odd case). Using this we can rewrite

lim
N→∞

ln Z

N
= lim

N→∞
ln(λN

+ + λN
− ) =

1

2π

∫ π

0
ln(2(A2 + B) + 2 cos y(A2 − B))dy
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where A2 − B = CD = λ+λ− and 2(A2 + B) = C2 + D2 = λ2
+ + λ2

−, that is

λ± = A ±
√

B

Since T ′ is polynomial, so are A and B, and hence the limit is (the log of) an
infinite product of polynomials. One readily confirms that the zeros of this infinite
product are the loci

|λ+| = |λ−|

and the endpoints of these loci (if any) are the points where λ+ = λ−, i.e. at roots
of the polynomial B (if B nonvanishing).

(3.3.1) REMARKS: This analysis is essentially taken from [9, Ch.11].

3.4 The 2D Ising model: exact solution

Recall from §1.2.1 that a lattice is an embedding (i.e. a positional but not orienta-
tional fixing) of a set of spins in an underlying physical space (usually in a regular
array). Then a lattice model is a model of the bulk behaviour of such a system of
many interacting lattice spins, determined by a spin interaction Hamiltonian.

Recall the Potts model Hamiltonian (1.4). The Ising model is the two-state
Potts model (up to some trivial Hamiltonian rescalings). It will be convenient to
use the equivalent ‘Ising form’ of the Potts Hamiltonian here. Thus we have the
collection of partition functions of form

Z =
∑

σ

exp(β
∑

ij

(2δσi,σj − 1))

where
∑

ij is the sum over pairs of nearest neighbour sites in the lattice. In practice
one focusses on a lattice or collection of lattices determined by the embedding
space. In 2D this collection of lattices is (at least locally) the n × m square grids,
with n,m large.

Our strategy in computing Z is to determine a transfer matrix T (acting on
the space of states of an n-site layer of the lattice), such that Z = 〈T m〉, and then
to compute by finding a basis for the state space in which T is diagonal.

Let us briefly recall the partition vector/transfer matrix formalism. Fixing
the local Hamiltonian one has a tensor (vector or matrix) for each graph G and
collection {V1, V2, ..., Vr} of (possibly intersecting) subsets of the set of vertices.
The i1, i2, ..., ir entry of the tensor is the partition function for G with the spins in
Vi fixed in state i. Our pictorial notation for this is to draw the graph, together
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with a loop around each vertex set Vi. For example, in Q-state models one has

= 1Q = 1⊗n
Q T =

where the last picture is the T appropriate for a layer in a square lattice.
In the Ising form the local transfer matrix Ti (from (3.2)) for an n-site wide

lattice is

i

= Ti =

(
x x−1

x−1 x

)

i

= x12n + x−1σx
i = x(12n + x−2σx

i )

(this means Ti acts non-trivially on the ith factor in the layer configuration space,
and acts trivially on all the other n − 1 factors). Note that for any scalar θ

eθσx
= cosh θ1 + sinh θσx = cosh θ(1 + tanh θσx)

so if we choose θ so that tanh θ = x−2 we get

Ti =
x

cosh(θ)
eθσx

i = (cosh(θ) sinh(θ))−1/2eθσx
i =

√

2 sinh(2β) eθσx
i (3.5)

Meanwhile the local transfer matrix Tij is

= Tij =







x
x−1

x−1

x







ij

(acting on the adjacent factors i, j), which can be written

Tij = exp







β







1
−1

−1
1













= exp

(

β

(
1

−1

)

⊗
(

1
−1

))
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Bruria Kaufman’s (1949) idea is as follows. One notes that V1 =
∏

Ti and
V2 =

∏
Tij can both be equated to certain spin representations of rotations. (These

are representations on tensor space of dimension 2n.) We can then use an abstract
relation to the eigenvalues of a smaller more manageable representation of the
same rotations — the ordinary rotation matrices of dimension 2n. Recall that
these are generated by the simple plane rotations

wi i+1(θ) = 1i−1 ⊕
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)

⊕ 12d−i−1 (3.6)

where the mixing occurs in the i, i + 1-positions.

To understand the spin representations it is convenient to introduce Clifford
algebras.

(3.4.1) A set {Γa}a=1,...,2n of 2n × 2n matrices such that Γ2
a = 1 and

ΓaΓb + ΓbΓa = 0 (a 6= b)

are said to form a Clifford algebra.

(3.4.2) For example, with σx
i the usual Pauli matrix action on tensor space:

Γ•
2i−1 :=





i−1∏

j=1

σx
j



σz
i Γ•

2i :=





i−1∏

j=1

σx
j



σy
i

obey these relations.

In this case note that

Γ•
2iΓ

•
2i−1 = σy

i σz
i = iσx

i Γ•
2i+1Γ

•
2i = σx

i σz
i+1σ

y
i = iσz

i σ
z
i+1

Thus from (3.5) et seq

V1 =
∏

i

Ti = κn
n∏

i=1

e−iθΓ•

2iΓ
•

2i−1 V2 =
∏

i

Ti i+1 = eβσz
nσz

1

n−1∏

i=1

e−iβΓ•

2i+1
Γ•

2i

where κ =
√

2 sinh(2β), and at the last we have applied periodic boundary condi-
tions.

3

3 (3.4.3) Note: (i) If {Γa}a is a Clifford algebra, then so is {SΓaS
−1}a for any invertible

matrix S ∈ End(C2
n

);
(ii) the matrices Γ′

a
obtained from the Γ•

a
s by swapping the roles of σx and σz are a Clifford
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(3.4.4) Fixing any Clifford algebra {Γa}a we define

S(wab(θ)) = cos
θ

2
1 − sin

θ

2
ΓaΓb = exp(

−1

2
θΓaΓb)

Example: One can easily find a Clifford algebra {Γ◦
a}a such that

exp(
−1

2
θΓ◦

1Γ
◦
2) = exp(

−1

2
θiσz

1) =

(
e−iθ/2

eiθ/2

)

⊗ 12 ⊗ 12... (3.7)

One can check that these matrices obey

S(wab(θ))ΓaS
−1(wab(θ)) = cos θΓa + sin θΓb

and so on. In other words conjugation by S(wab(θ)) enacts the rotation wab(θ) on
the space of Γ-matrices (not to be confused with the space on which the Γ-matrices
act).

It follows that conjugation by S(wab(θ))S(wcd(θ
′)) realises the rotation wab(θ)wcd(θ

′).
From this we have a kind of realisation of the group of rotations in 2n-dimensions.
(This is not quite a representation, since it is a double-cover, but this need not
concern us.)

(3.4.5) Note from (3.6) that the spectrum of wab(θ) is eiθ, e−iθ (and possibly some
1s). (Indeed any element in SO(3) can be expressed as a simple rotation about
some, not in general coordinate, axis; and hence has eigenvalues of the same form.)

Meanwhile, noting (3.7), the spectrum of S(wab(θ)) is e
i
2
(±θ) (2n−1 copies of each).

Further, if w =
∏

i waibi
(θi) with all the {ai, bi} distinct; and S(w) =

∏

i S(waibi
(θi)),

then the 2n eigenvalues of w are {e±iθj}j ; and, since the factors in S(w) commute,
the 2n eigenvalue of S(w) are

Spectrum(S(w)) = {e i
2

Pn
j=1

±θj}. (3.8)

algebra.
(iii) arbitrarily permute the numbering of the Γas in any Clifford algebra, and the Clifford
relations will still be obeyed.
(iv) Also if {Γa} is any Clifford algebra then Γ′ = rΓ1 + sΓ2 obeys

ΓaΓ′ + Γ′Γa = Γa(rΓ1 + sΓ2) + (rΓ1 + sΓ2)Γa = r(ΓaΓ1 + Γ1Γa) + s(ΓaΓ2 + Γ2Γa) = 0

for all a > 2, for any r, s; and

(cΓ1 + sΓ2)(sΓ1 − cΓ2) + (sΓ1 − cΓ2)(cΓ1 + sΓ2) = 2(cs − sc) = 0

and so on. Following these calculations one eventually checks that Γ1, Γ2 can be replaced by
the indicated linear combinations, so long as c = cos θ and s = sin θ for some θ. Evidently
one can compose such transformations, so we have an action of the 2n dimensional rotation
group transforming between realisations of the Clifford relations.
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(Later we shall generalise this correspondence to elements of SO(2n) that are
products of commuting rotations about arbitrary sets of orthogonal axes, not just
the nominal coordinate axes.)

(3.4.6) In these terms, writing S•(w) for S(w) in the Γ• case, we have

V1 = κn
n∏

i=1

S•(w2i 2i−1(2iθ))

V2 = χ
n−1∏

i=1

S•(w2i+1 2i(2iβ))

where χ is the periodic boundary operator. For a suitable treatment of the bound-
ary (not quite simple periodic, but close enough) we have χ = S•(w1 2n(2iβ)).

(3.4.7) The idea now is to replace T = V1V2 with the corresponding product of
rotation matrices W = W1W2. We then find the eigenvalues of this product W .
Since every rotation group element can be expressed as a product of commuting
rotations (not necessarily respecting the initial axes) these eigenvalues will define a
set of rotation angles {θi}i as above. We claim that this set then give the spectrum
of T , as in (3.8).

We have (in a representative small example, n = 4), with c = cos(2iθ), s =
sin(2iθ), and so on,

W1 = w12(2iθ)w34(2iθ)w56(2iθ)w78(2iθ) =















c s
−s c

c s
−s c

c s
−s c

c s
−s c















W2 =















c′ −s′

c′ s′

−s′ c′

c′ s′

−s′ c′

c′ s′

−s′ c′

s′ c′
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Note that W1,W2 are both fixed by the square of the matrix position shift
operator (and that this is true for general n). Accordingly we can fourier transform
to block diagonalise W . That is, we make a change of basis as follows. Define
fz = (1, z, z2, z3, ..., zn−1)t, vz = (1, 0)t ⊗ fz and v′z = (0, 1)t ⊗ fz. With zn = 1 we
have

W1

(
vz

v′z

)

=

(
c −s
s c

)(
vz

v′z

)

W2

(
vz

v′z

)

=

(
c′ zs′

−z−1s′ c′

)(
vz

v′z

)

W

(
vz

v′z

)

=

(
cc′ + z−1ss′ zcs′ − sc′

sc′ − z−1cs′ cc′ + zss′

)(
vz

v′z

)

Noting that the determinant of the image matrix W (z) on the right is 1 we write
the eigenvalues as λ± = e±lz . Thus

elz + e−lz = Trace(W (z)) = 2

(

cc′ +
z + z−1

2
ss′
)

That is,

cosh(lz) =

(

cosh(2θ) cosh(2β) − z + z−1

2
sinh(2θ) sinh(2β)

)

Since z is any solution to zn = 1, the complete set of lzs is obtained from z = e2πik/n

with k = 1, .., n. One then finds that each lz is positive for physical parameters.
It follows that the largest among the eigenvalues for T that this gives:

λ = exp

(

1

2

n∑

k=1

±le2πik/n

)

is the case

λ0 = exp

(

1

2

n∑

k=1

le2πik/n

)

Recall that this is for an n-site wide lattice. If the lattice is m sites long then

Z ∼ λm
0



1 +
∑

i6=0

(
λi

λ0
)m



 ∼ λm
0 ,

or more usefully, the free energy is f = 1
nm ln Z ∼ (1/n) ln λ0, with this approxi-

mation getting better as m gets bigger and becoming an equality in the large m
limit.
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Now we follow [9, §4.1] for the rest of the analysis. Using that

sinh(2β) = sinh(2θ)−1 and coth(2β) = cosh(2θ)

we have

cosh(lz) =

(

coth(2β) cosh(2β) − z + z−1

2

)

which it is convenient to express via the integral representation4

lz =
1

π

∫ π

0
dy ln(2(coth(2β) cosh(2β) − z + z−1

2
) − 2 cos(y))

giving

ln λ0 =
1

2

n∑

k=1

1

π

∫ π

0
dy ln(2 coth(2β) cosh(2β) − 2 cos(2πk/n) − 2 cos(y))

Note how the difference in the way we have treated m and n is manifested here.
We are looking at the free energy in the infinite-m limit (hence the integral), but
with n still finite. We can rigorously bring the treatment of the two directions
onto the same footing by taking the large n limit (which will covert the sum to
a matching integral); or we can roughly discretise the integral to a sum over m
terms, using the sum over n terms as a guide:

∫ π

0
f(y)dy ∼ π

M

M∑

r=1

f(πr/M)

(any M >> 1).

In the latter case we get (see e.g. [?])

Zmn =

m∏

r=1

n∏

s=1

{

1 − K

2
(cos(2πr/m) + cos(2πs/n))

}

where

K = 4
exp(−2β)(1 − exp(−4β)))

(1 + exp(−4β))2

4recall cosh−1 x = ln(x +
√

x2 − 1) = lnx + ln(1 +
√

1 + x−2) and

π ln(1 +
√

1 − t2) =

∫
π

0

ln(1 + t cosw)dw
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T_c
Temp

Figure 3.5: Sketch plot of specific heat versus temperature for the 2D Ising
model.

Note that each factor in Znm is invariant under x → −x, and

1

x2
→ tanh β =

eβ − e−β

eβ + e−β
= (x2 − 1)/(x2 + 1)

The fixed point of this transformation is given by

−(x2 + 1) + (x2 − 1)x2 = x4 − 2x2 − 1 = (x2 − (−
√

2 + 1))(x2 − (
√

2 + 1)) = 0

x2 = exp(2β) = 1 +
√

2

Note that this also determines the ferromagnetic critical point.
A very rough sketch of the second log-derivative (the specific heat) versus

T = 1/β is given in Figure 3.5. The divergence is logarithmic: close to Tc we have

S(T ) ∼ − ln |Tc − T |
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Chapter 4

Spin chains

This Chapter is largely unfinished, but for now contains some useful notation.

4.1 Anisotropic limit

Here we consider a ‘continuous time’ approximation to the Ising model. (Here
‘time’ is a misnomer for the layering direction in the transfer matrix formalism.)
In this case one takes an infinite lattice limit in the layering direction first, but
adjusts the couplings anisotropically to compensate. There is then a non-trivial
simplification of the general problem arising. This has the flavour of a quantum
Hamiltonian limit of the transfer matrix (which will lead conveniently to the later
consideration of such Hamiltonians per se).

— TO DO! —

4.2 XXZ spin chain

In some formalisms, such as quantum theory, the energy function E (the ‘classical
Hamiltonian’) is replaced by an operator on the space of states. In such cases, the
first mathematical challenge is to determine the eigenvalues and eigenvectors of
this Hamiltonian operator.

We describe the Heisenberg chain Hamiltonian and a number of variations
thereof. The eigenvalue problem is hard for these systems, for anything other than
very small chain length. In the absence of a complete solution, Physical interest
may justify trying to solve just for the lowest (respectively highest) eigenvalue, its
degeneracy, and the gap to the next lowest.

43
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4.2.1 Notations and conventions

Define

σx =

(
0 1
1 0

)

iσy =

(
0 1
−1 0

)

σz =

(
1 0
0 −1

)

so that

σ+ =
1

2
(σx + iσy) =

(
0 1
0 0

)

Our convention in the Kronecker product A ⊗ B is to order so that

σ+ ⊗ σ− =







0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0







and σz ⊗ 12 =







1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1







Now fix L and define operators σx
i (and so on) on (C2)⊗L so that:

σx
i σx

i+1 = 12 ⊗· · ·⊗
(

0 1
1 0

)

⊗
(

0 1
1 0

)

⊗· · · = 12 ⊗· · ·⊗







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0







⊗· · ·

σz
i σ

z
i+1 = 12⊗· · ·⊗

(
1 0
0 −1

)

⊗
(

1 0
0 −1

)

· · · = 12⊗· · ·⊗







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1







· · ·

4.2.2 Hamiltonia

uXY Z
ij (kx, ky, kz) :=

1

2
(kxσx

i σx
j + kyσ

y
i σy

j + kzσ
z
i σ

z
j )

uXY Z
i (kx, ky , kz) := uXY Z

i i+1 (kx, ky, kz)

(by uL we shall intend the periodic closure uL,1)

uXXZ
i = uXY Z

i (1, 1,−q + q−1

2
) =







− δ
4 0 0 0

0 δ
4 1 0

0 1 δ
4 0

0 0 0 − δ
4







i
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where δ = q + q−1 ∈ C; uXXX
i = uXY Z

i (1, 1, 1); uXY
i = uXY Z

i (1 + a, 1 − a, 0)
(a ∈ R);

ui = uXXZ
i +

1

2

q + q−1

2
− 1

2

q − q−1

2
(σz

i − σz
i+1) =







0 0 0 0
0 q 1 0
0 1 q−1 0
0 0 0 0







The simple periodic Heisenberg chain (without external field) is the Hamiltonian

HXXX = uXXX
L +

L−1∑

i=1

uXXX
i

Generalisations include

HXXZ
pp′ :=

L−1∑

i=1

uXXZ
i + pσz

1 + p′σz
L HXXZ :=

∑

i

ui

(see e.g. [?]). We shall be interested in the spectrum of these matrices. The matrix
HXXZ differs from a sum of the uXXZ

i by an additive scalar and boundary terms,
so both are forms of XXZ spin chain Hamiltonian.

The anisotropic limit Potts model Hamiltonian is (roughly) in the same uni-
versality class as the Potts model. It also takes the same form as HXXZ , except
for being in a different representation of the TL algebra. For this reason (among
others) one is interested in the spectrum of HXXZ .

(Potts model unsolved.)

4.2.3 Normal Bethe ansatz

We are interested in the spectrum of H = HXXZ
pp′ (or specifically HXXZ , or indeed

any similar case).

We take words in {1, 2} of length L as a basis for (C2)L. For any fixed but
arbitrary L, let us write vx = v(x1, ..., xJ ) for the vector with 2s in the J indicated
positions. Clearly the subspaces spanned by vectors with J fixed are invariant
under H, so for each J we may look for eigenvectors w obeying

Hw = Eww

with

w =
∑

1≤x1<...<xi<xi+1<...<xJ≤L

cxvx
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(We call the excess of 1s over 2s, given by L − 2J , the charge. Whether Physical
interest resides mainly in low or high charge depends on the details. Here we shall
concetrate on what can be said about eigenvalues in general.)

It will be evident that there is only one vector (hence eigenvector) with J = 0.
We have

HXXZ 111...1 = 0

For J = 1 we have

Hv1 = (u1 + u2 + ... + uL−1)v1 = q−1v1 + v2

Hvi = vi−1 + (q + q−1)vi + vi+1 (1 < i < L)

HvL = qvL + vL−1

so that
Hw =

∑

j

cjHvj = Ew

∑

j

cjvj

gives the following. Coefficient of v1 (then vi, then vL):

Ec1 = c1q
−1 + c2

Eci = ci−1 + ci(q + q−1) + ci+1 (1 < i < L) (4.1)

EcL = cLq + cL−1

All three forms coincide if we use the boundary conditions

c0 = −qc1 cL+1 = −q−1cL

Following Alcaraz et al one tries for a solution of form

cj = A(k)eijk + A(−k)e−ijk

where viable choices for k, and for each k the constant A, are to be determined.
Substituting into (4.1) we have

Ek − (q + q−1)(A(k)eijk + A(−k)e−ijk)

= A(k)eijke−ik + A(−k)e−ijkeik + A(k)eijkeik + A(−k)e−ijke−ik

giving
Ek = (q + q−1) + 2 cos(k)

CHECK THIS!
It remains to impose the boundary conditions, which, if they can be satisfied,

will determine the possible values of k. The c0 condition gives

A(0) + A(0) = −q(A(1)eik + A(−1)e−ik)
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4.2.4 Abstract Bethe ansatz

4.2.5 Gram matrices

Acknowledgements

Thanks to Yogi Valani for many useful discussions.
Thanks to my coorganisers of Leeds SMDG, Jeanne Scott and Sathish Sukumaran
for all their considerable efforts to make it work.

.1 Appendix: What is Physics?

Statistical Mechanics is part of Physics. Physics might be characterised, in the
large, as the scientific exercise (as opposed to involuntary reflex) of modelling of
the observable physical world. That is, the representation of part of the physical
world by something ‘simpler’, which nonetheless captures some of the physical
world’s humanistically essential features.
There are various phases to this exercise, such as:
(i) deciding which toy is the model;
(ii) working out what the model itself does; and
(iii) interpreting this behaviour as a prediction for the physical world.

The simple toys at our disposal include real toys (scale models of bridges and
so on), and systems of equations in mathematics. 1 In particular Scientists have
had notable success summarizing large amounts of observational data from the
physical world with certain relatively simple mathematical models. A very suc-
cessful such model is, reasonably, regarded as close to nature itself; and hence
fundamental. Key to this is the expectation that such a model, pushed into an as
yet unobserved (but suitably nearby) regime, will correctly predict the result of
observations subsequently made there. There has been notable success too in this
predictive aspect of Physics, and great technological benefits have accrued.

Bibliography

Some relevant texts are, for Statistical Mechanics: Baxter[2], Domb and Green[3],
Levy[8], Martin[9], and Wannier[16];

1Note that these toys either exist themselves in the physical world, or are abstractions
formulated by creatures living in the physical world (and whose thought processes are tied
to making sense of this experience). This is of course unavoidable, but singular. Other
problems in representation theory are not constrained to have all representations built
inside the thing being represented.
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for generalities: Abramowitz and Stegun[1], Feynman[6].
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