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1 Preface

Part 1 is a version of some talks given to the Leeds Stat Mech Discussion
Group. The brief was to introduce basic statistical mechanics, so as to ex-
plain the common setting in which the various different interactions with
Mathematics sit.
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1.1 What/Why Statistical Mechanics?

We are going to have to assume some basic Physics, and hopefully move on
from there. ...So where does Statistical Mechanics fit in to Physics?

“The fundamental laws necessary for the mathematical treatment of a

large part of physics and the whole of chemistry are thus completely

known, and the difficulty lies only in the fact that application of these

laws leads to equations that are too complex to be solved.” Paul Dirac

In this quote Dirac points out that the problems of Physics do not end, by
any means, with the determination of fundamental principles. They include
such fundamental problems; and also problems of computation.
(Indeed for the subject we are going to describe here, its original historical
development was assumed to be on the fundamental side. Only a better
understanding of its setting later showed otherwise.)
An example of the laws that Dirac is refering to would be Newton’s laws,
which do a good job of determining the classical dynamics of a single particle
moving through a given force-field. Two-body systems are also manageable
but after that, even though it may well still be Newtonian (or some other
well-understood) laws that apply in principle, exact dynamics will simply not
be computationally accessible.

Do we really need to know about many-body dynamics? Yes. At least
some understanding of the modelling of many-body systems is needed in
order to work with a number of important materials (magnets, magnetic
recording materials, LCDs, non-perturbative QFT etc). In each such case,
the key dynamical components of the system are numerous, and interact with
each other. Thus the force fields affecting the movement of one, are caused
by the others; and when it moves, its own field changes, moving the others.

The solution:
The equilibrium Statistical Mechanical approach to such problems is to try
to model only certain special types of observation that could be made on the
system. One then models these observations by weighted averages over all
possible instantaneous states of the system. In other words dynamics is not
modelled directly (questions about dynamics are not asked directly). As far
as is appropriate, dynamics is encoded in the weightings – the probabilities
asigned to states.

The first problem is to describe these states, and determine appropriate
probabilities.
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It is most convenient to pass to an example. We shall have in mind a bar
magnet. 1 We shall assume that the metal crystal lattice is essentially fixed
(the formation of the lattice is itself a significant problem, but we will have
enough on our plate). The set of states of the system that we shall allow are
the possible orientations of the atomic magnetic dipoles (not their positions,
which shall be fixed on the lattice sites).

What next?

2 Towards the partition function

2.1 Classical reminders

A good rule of thumb when analysing a physical system is: ”follow the
energy”. (This begs many questions, all of which we ignore.)

The kinetic energy of a system of N point particles with masses mi and
velocities vi is

Ekin =

N
∑

i=1

1

2
miv

2

i

What can affect a particle’s subsequent velocity, and hence change its
kinetic energy? That is, what causes dv

dt
to be non-zero? A force can do this:

F = m
dv

dt

Thus we also need to understand the forces acting on the particles.
For example: If they are really pointlike then they interact pairwise via

the Coulomb force
F1 =

q1q2

4πǫ0

r12

r3
12

= −F2

Here q1, q2 are the charges (perhaps in coulombs); ǫ0 is a constant (depending
on that unit choice); and r12 = r1 − r2.

For a moment we can think of this as a force field created by the second
particle, acting on any charged first particle. This is a conservative force
field; meaning that there is a function φ(r) such that

F = −∇φ

1This provides a number of simplifications of the general problem, without trivialising
the key features.
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The function φ(r) is part of the potential energy of the first particle. In other
words its ‘total energy’ is of the form

E =
1

2
mv2 + φ

In practice, since φ is only defined up to an additive constant, E itself is not
so significant as changes in E.

2.2 Stats/Gibbs canonical distribution

Notice that system energy E depends on the velocities and positions of all the
atoms in the system. There are 1023 or so atoms in a handful of Earthbound
matter, so we are not going to be able to keep track of them all (nor do we
really want to). We would rather know about the bulk, averaged behaviour
of the matter.

Let us call the inaccessible complete microscopic specification of all po-
sitions and velocities in the system a ‘microstate’. Then for each microstate
σ we know, in principle, the total energy E(σ). We could ask: What is
the probability P of finding the system, at any given instant, in a specific
microstate?

Then we could compute an expected value for some bulk observation O
by a weighted average over the microstates:

〈O〉 =
∑

σ

O(σ)P (σ) (1)

In principle the probability P could depend on every aspect of σ. This
would make computation very hard. At the other extreme, P could be in-
dependent of σ. But this turns out to be a problematic assumption for a
number of Mathematical and Physical reasons. Another working assumption
would be that two microstates are equally likely if they have the same energy;
i.e. that P depends on σ just through E. That is, that P depends only on
the total energy of the system. Let us try this.

The next question is: How does P depend on E? What is the function
P (E)?

If we have a large system, then we could consider describing it in two
parts (left and right side, say), separated by some notional boundary, with
the total microstate σ being made up of σL and σR. These halves are in
contact, of course, along the boundary. But if the system is also in contact

4



with other systems (so that energy is not required to be locally conserved),
then it is plausible to assume that the states of the two halves are independent
variables. In this case

P (σ) = P (σL)P (σR)

as for such probabilities in general. Similarly, the total energy

E = EL + ER + Eint

(where Eint is the interaction energy between the halves) is reasonably ap-
proximated by

E ∼ EL + ER

(Why is this reasonable?!... Clearly the kinetic energy is localised in each of
the two halves. The potential energy is made up of contributions from all
pairs, including pairs with one in each half. But we assume that the pair
potential is greater for pairs that are closer together; and that the boundary
is a structure of lower dimension that the system overall. In this sense Eint

is localised in the boundary (pairs that are close together but in separate
halves are necessarily close to the boundary); while being part of the over-
all potential energy, which is spread with essentially constant density over
the whole system. Thus Eint is a vanishing proportion of the whole energy
for a large system. (We shall return to these core Physical assumptions of
Statistical Mechanics later. They imply an intrinsic restriction in Statistical
Mechanics to treating interactions that are, in a suitable sense, short-range.
Fortunately this seems Physically justifiable.))

The L and R subsystems will each have their own ‘energy-only’ probabil-
ity function. Thus we have something like

P (EL + ER) = PL(EL)PR(ER) (2)

In this expression EL and ER are independent variables, so

∂P (EL + ER)

∂EL

=
∂P (EL + ER)

∂ER

so P ′

L(EL)PR(ER) = PL(EL)P ′

R(ER), so

P ′

L(EL)

PL(EL)
=

P ′

R(ER)

PR(ER)
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This separates. We write −β for the constant of separation. We have
P ′

L(EL) = −βPL(EL) (and similarly for R). This is solved by a function
of form

P (E) = C exp(−βE)

where C is any constant. In our case C is determined by

∑

σ

P (E(σ)) = 1

The separation constant β is interesting, since it is the only thing (other than
the form of the function itself) that connects the subsystems. We will see
later that this connection corresponds (inversely) to a notion of temperature.

2.3 Partition Function

The normalisation function for our system

Z(β) =
∑

σ

exp(−βE(σ))

(Z for zustatensummen, or some such name due to Boltzmann) is called the
partition function. That is, for given β,

P (E) =
exp(−βE)

Z

Recall that, by our derivation, β represents the effect of thermal (energetic)
contact with the universe of other systems. Our usual notion of the bulk
contribution of neighbouring systems on the energetics of a given system, at
least where long-time-stable (equilibrium) properties are concerned, is the
notion of temperature. Thus β encodes temperature. How specifically does
it do this? See later.

First we want to consider the pay-off for the analysis we have made so
far. The idea was that we would be able to compute time-averaged bulk
properties of the system.

Z is ‘just’ a normalising factor. But

d lnZ

dβ
= − 1

Z

∑

σ

E(σ) exp(−βE(σ))
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the internal energy (or compute 1

N
of this for the energy density), so its

analysis contains Physics!

Suppose
E : S → ±N

(i.e. the energy is quantised).2 Then Z is polynomial in exp(∓β). Its only
analytic structure is zeros. However, we will see how these zeros are indeed
physically significant.

Figure 1 gives a quick glimpse of the distribution of zeros in the complex
x = exp(β) plane for a three-dimensional Ising model (what this is will be
explained later).

Question: What does this tell us?
The specific heat tells us the rate of change of internal energy with tem-

perature (or, in practice, the other way round — we measure the amount of
energy we have to put into a fixed mass of material to change its temperature
by 1 degree):

S =
∂2 1

N
ln Z

∂β2

Consider the formulation

Z =
∏

j

(x − zj)

In terms of the complex zeros {zj = xj + iyj} we have:

∂ 1

N
ln Z

∂β
=

x

N

∑

j

1

x − zj

S =
∂2 1

N
ln Z

∂β2
=

x

N

(

∑

j

1

x − zj
− x

∑

j

1

(x − zj)2

)

Note that the complex zeros appear in conjugate pairs. Performing the sum
within each conjugate pair this becomes

S =
2x

N

(

′
∑

j

x − xj

(x − xj)2 + y2
j

− x

′
∑

j

(x − xj)
2 − y2

j

((x − xj)2 − y2
j )

2 + 4(x − xj)2y2
j

)

2This is far from always true, but it is not unrealistic.
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zeros of Z

Figure 1: Complex zeros of the partition function for a cubical lattice Ising
model of about N = 150 sites [8, 9].
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Consider the contribution of the j-th term (i.e. from a pair of zeros) to S,
at some point on the real x axis. Note that if yj is large, or if x−xj is large,
then this contribution is small. Meanwhile the contribution is large if the
zeros are close to the axis, and x is close to these zeros. In particular the
contribution is large if x = xj , whereupon

Sj ∼
2x2

Ny2
j

Simply put, this says that, moving along the real line (real temperature),
S and U go crazy when there are complex zeros close by (as there are at a
particular point in Figure 1, for example).
Accordingly we shall call a region of the complex plane that is close to the
real axis and contains zeros of Z a critical neighbourhood of Z.

Let us (very crudely) compare with physical observation.
When we boil a kettle we put roughly equal amount of energy into the water
in each unit of time. At first the temperature rises, and the rate of rise does
not change very much as the temperature goes up. That is, the specific heat
changes slowly and smoothly with temperature. Close to and at the boiling
point, however, the temperature rise essentially stops, i.e. the amount of
energy required to further change the temperature becomes very large. In
the practical experiment there are a number of reasons for this, but one of
them is that the specific heat becomes very large. Thus we associate divergent
specific heat with a phase transition (in this case the liquid-gas transition at
the boiling point).

Another quick picture, of a different model, is shown in Figure 2. Once
again you are invited to study the distribution of zeros close to the ‘physical’
region: the real interval [0, 1].

In practice we are never even going to know N accurately for a real
physical system. Nor is such an accurate knowledge important to us, since
realistic observations do not depend on it. Indeed for intensive quantities we
expect them to be stable under even large changes in N , so long as N is large
enough. Thus intensive observations in our model also need to be large N
stable. 3

Our pictures give a clue as to the sense in which this can happen:
Different polynomials (different N ; different but suitably ‘similar’ physical

3Note that we do not require a large N limit per se for Physics. But stability and the
existence of such a limit amount to the same thing computationally.
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Figure 2: Complex zeros of the partition function for a two-dimensional clock
model at two different lattice sizes [7].
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systems) could have similar distributions, real accumulation points, etc.; and
hence manifest behaviour on the physical line in similar ways.
Can we at least have a model for this?

3 Models

We now briefly introduce a simple choice for E (the microstate energy func-
tion), called the Potts model, from a Physics perpective. 4

As noted, to introduce a choice for E for physical modelling, we must
actually introduce one for each of a whole collection of ‘similar’ systems, then
check the stability of observables across this collection. Mathematically, it is
convenient to introduce one for each of a rather large collection of (nominally
but not necessarily adequately similar) systems, then refine this collection by
physical considerations post hoc. (We will make all this very precise later.)

Some statistical mechanics nomenclature: While kinetic-energy-only (non-
interating) models are rather simple, models in which only the potential
energy is accounted for in the microstate energy are much richer (partly be-
cause aspects of the kinetic energy of the system are encoded in β anyway).
Excluding kinetic energy from E means that we are essentially treating our
particles as fixed (that is, not translating). Instead system dynamics is man-
ifested in other ways. For example we can consider non pointlike particles,
hence with the possibility of magnetic dipole moments. System dynamics in
this case can be manifested in magnetic dipole orientation. In such a setting,
particles are called spins. Also, the microstate energy function is called the
Hamiltonian (and typically written H not E).

Let Γ be the set of graphs, and for G ∈ Γ let VG be the vertex set. Adopt
the notation

n = {1, 2, ..., n}
and for any set S (such as a set of graph vertices) write

QS = Hom(S, Q)

for the set of maps from S to Q — each map f asigns state q to vertex s by
f(s) = q.

4REMARK: In SMDG the first lecture (given by Jeanne Scott) gave a formal intro-
duction to Potts models treated as combinatorial entities.
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A Q-state graph Hamiltonian is a map asigning to each graph G a map
in Hom(QVG, Z). We say that this map gives the ‘energy’ of state σ ∈ QVG .

The idea of a model like this is that each graph represents a given phys-
ical system, with the degrees of freedom residing on the vertices, and the
geometrical relationship of the vertices encoded (somehow) in the edges.

Fixing Q (e.g. Q = 2)

...F IXME!

Lots of stuff missing from here.

4 Computation

4.1 Partition vector

4.2 Transfer matrix

4.3 Analysis

We have seen quite generally that in the physical temperature region the
limit free energy density is ln λ0 where λ0 is the largest magnitude eigenvalue
of the transfer matrix. What becomes of this when we look in the complex
x = exp(β) plane, and in particular in our ‘critical’ neighbourhood of the
physical region? (As defined in Section 2.3.)

To get a bit more out of the 1d Ising model here consider other boundary
conditions. For example, for the AN graph but with end spin states fixed

Z ′(AN ) =
(

1 0
)

(

x 1
1 x

)(

1
0

)

=
1

2
(λN

1 + λN
2 )

while

Z(ÂN ) = Tr

(

x 1
1 x

)N

= λN
1 + λN

2 = (x + 1)N + (x − 1)N

There are a number of ways that we can recast this simple expression to help
think about what might happen in general for large N .

Firstly, we can rewrite

(x + 1)N + (x − 1)N = (x − 1)N((
x + 1

x − 1
)N + 1)
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Ignoring the first factor we have

Z ∼ Y N + 1 = Y N/2(Y N/2 + Y −N/2)

(where Y = x+1

x−1
), that is, the remaining zeros are distributed evenly around

a circle. It is the same circle for any N , but the line density increases with
N . Setting Y = exp(β ′)

f =
1

N
ln Z =

1

N
(ln(2) +

N

2
ln Y + ln(cosh(

N

2
β ′)))

so

U = −∂ 1

N
ln Z

∂β ′
= −1 − tanh(

N

2
β ′)

That is, the internal energy changes fast (at β ′ = 0) for large N .
As we have already seen, the physics is dominated by the zeros close to

the real line, so we can approximate

lim
N→∞

f ∼ β ′/2 +
1

2π

∫

∞

−∞

a(y) ln(β ′ + iy)dy

where a(y) = 1 (in our case) is the line density of zeros. Thus

U ∼ 1

2πi

∫

∞

−∞

a(y)dy

y − iβ ′

The integrand has a simple pole at y = iβ, so the integral changes by 2πa(0)
as β ′ changes sign. In other words, if the limit line density a(0) 6= 0 the
internal energy changes discontinuously at this point — a first order phase

transition.
In practice, in more complicated systems, we can get

a(y) ∼ |y|1−p (0 ≤ p ≤ 1)

but we will return to this shortly.
Notice in our 2× 2 transfer matrix example that the distribution of zeros

corresponds to the locus of points where the largest eigenvalue is actually
degenerate (with the other eigenvalue, regarded as an analytic function of
β). In fact a large class of models have a transfer matrix reducible to a 2× 2
polynomial matrix T ′. As before

lim
N→∞

ln Z

N
= lim

N→∞

ln(λN
+ + λN

−
)

∗
= lnλ+
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where * means on the real axis. What happens to the zeros this time?
Consider the general identity

CN + DN =

N−1

2
∏

n=−
N−1

2

(C + exp(
2πin

N
)D) =

N−1

2
∏

n=1/2

(C2 + D2 + 2 cos(2πn/N)CD)

(the explicit limits are for the case N even — the reader will easily compute
the odd case). Using this we can rewrite

lim
N→∞

ln Z

N
= lim

N→∞

ln(λN
+ + λN

−
) =

1

2π

∫ π

0

ln(2(A2 + B) + 2 cos y(A2 − B))dy

where A2 − B = CD = λ+λ− and 2(A2 + B) = C2 + D2 = λ2
+ + λ2

−
, that is

λ± = A ±
√

B

Since T ′ is polynomial, so are A and B, and hence the limit is (the log of) an
infinite product of polynomials. One readily confirms that the zeros of this
infinite product are the loci

|λ+| = |λ−|
and the endpoints of these loci (if any) are the points where λ+ = λ−, i.e. at
roots of the polynomial B (if B nonvanishing).

(4.1) REMARKS: This analysis is essentially taken from [6, Ch.11].
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A What is Physics?

Statistical Mechanics is part of Physics. Physics might be characterised,
in the large, as the scientific exercise (as opposed to involuntary reflex) of
modelling of the observable physical world. That is, the representation of
part of the physical world by something ‘simpler’, which nonetheless captures
some of the physical world’s humanistically essential features.
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There are various phases to this exercise, such as:
(i) deciding which toy is the model;
(ii) working out what the model itself does; and
(iii) interpreting this behaviour as a prediction for the physical world.

The simple toys at our disposal include real toys (scale models of bridges
and so on), and systems of equations in mathematics. 5 In particular Scien-
tists have had notable success summarizing large amounts of observational
data from the physical world with certain relatively simple mathematical
models. A very successful such model is, reasonably, regarded as close to na-
ture itself; and hence fundamental. Key to this is the expectation that such
a model, pushed into an as yet unobserved (but suitably nearby) regime, will
correctly predict the result of observations subsequently made there. There
has been notable success too in this predictive aspect of Physics, and great
technological benefits have accrued.
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