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Abstract. We study some properties of invariant states on a C*-algebra ~ with a 
group G of automorphisms. Using the concept of G-factorial state, which is a "non-com- 
mutative" generalization of the concept of ergodic measure, in general wider in scope than 
G-ergodic state, we show that under a certain abelianity condition on (d ,  G), which in 
particular holds for the quasi-local algebras used in statistical mechanics, two different 
G-ergodic states are disjoint. We also define the concept of G-factorial linear functional, 
and show that under the same abelianity condition such a functional is proportional to a 
G-ergodic state. This generalizes an earlier result for complex ergodic measures. 

1. Introduction 

In a recent paper [1] we studied a possible extension of the concept 
of ergodic measure from the classical case of a positive measure to an 
arbitrary complex measure, requiring that for every G-invariant (Iml-a.e.) 
measurable subset E of the space X we have either re(E)= 0 or 
m ( X -  E ) =  0. Here G is the group of transformations of X, and [m[ is 
the total variation of m. It turned out that this extension is essentially 
trivial, in the sense that such an ergodic measure m is of the form klml, 
with k a complex constant (°'ergodicity implies positivity"). A related 
r e su l t -  which, although it can be considered to be a direct corollary of the 
above result, is as easily proved directly from the extremality property 
of positive ergodic measures - is that two positive measures on the same 
space, ergodic under the same group, are either orthogonal (i.e. their 
supports are disjoint), or proportional. Namely, if m 1 and rn 2 are two 
non-proportional positive ergodic measures, form m = ml + m2. Unless 
there is a measurable set E, G-invariant (m-a.e.), such that mi(E ) = O, 
m2(X - E) = O, m is ergodic, which contradicts the non-trivial decompo- 
sition m = ml + m2. - Expressed in the C*-algebra language, with 
a C*-algebra, acted on by a group G of automorphisms, this means that 
two different G-ergodic states on a commutative C*-algebra are disjoint, 
i.e. the corresponding cyclic representations of ~4 are disjoint. This 
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follows if we realize ~ by the Gelfand isomorphism as the C*-algebra 
C(X) of continuous functions on the space X of irreducible representa- 
tions of s~. 

The present paper is devoted to the extension of these results to non- 
commutative C*-algebras. In this connection the natural generalization 
of ergodic positive measure seems to be not G-ergodic state, but the -- 
in the general case - wider concept of G-factorial state (Definition 3.1). 
This concept can be defined in a way which carries over to a general 
G-invariant continuous linear functional on .~ (Definition 4.3). In the 
commutative case this definition coincides with the definition above of an 
ergodic complex measure (Section 5). 

If the set of G-factorial states coincides with the set of G-ergodic 
states - this is true if ( d ,  G) satisfies a certain abelianity condition (A) 
(Definition 2.6), weaker than the requirement that G is a "large" group 
of automorphisms - then any two different G-ergodic states are disjoint. 
This applies in particular to the G-ergodic states of the quasi-local 
algebras used in the description of infinite systems in statistical mechanics. 
In this description the G-ergodic states are often taken to correspond to 
equilibrium states of pure phases; two different such states then give rise 
to disjoint representations of the algebra, i.e. the two sets of pure (irre- 
ducible) states into which the two equilibrium states can be decomposed, 
are disjoint. This disjointness property is of course closely connected with 
the fact that we have to do with an infinite system; for a finite system it 
cannot be expected to hold strictly. A very simple example of this is a 
classical gas in a container, with equilibrium states described by the 
canonical distribution. Two equilibrium states corresponding to different 
temperatures certainly overlap in phase space, but in the infinite volume 
limit, when the canonical distribution approaches the micro-canonical 
one, the overlap goes to zero. 

Still assuming the validity of condition (A) we show that every 
G-factorial linear functional is proportional to a G-factorial (hence in 
this case G-ergodic) state, thus generalizing the result in [1]. It should 
be stressed that in general ergodicity does not imply positivity, i.e. one 
can find systems (s~, G) - even G-abelian ones - having G-factorial 
functionals not proportional to G-factorial states, and where different 
G-ergodic states are not disjoint (they can even be equivalent). Although 
indefinite linear functionals have no obvious physical interpretation 
in the ordinary scheme, it should be remarked that an indefinite hermitian 
functional defines a representation of the algebra in a space with in- 
definite metric, if one carries through the GNS-construction separately 
for its positive and negative parts. The concept of G-factorial functional 
could thus be of interest in this wider framework. Of course, since the 
resulting representation decomposes into separate representations in 
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the positive and negative signature spaces, one should have, as is generally 
the case in theories with indefinite metric, a richer structure with addi- 
tional operators outside the algebra of observables, mixing the repre- 
sentations. 

2. Basic Notations and Auxiliary Results 

(~', G) denotes a C*-algebra ~ '  with a group G of automorphisms: 
A ~ zg(A), d *  is the dual of d ,  ~'~ the set of G-invariant elements in the 
dual, E G the set of G-invariant states on ~¢. All representations we shall 
consider will be covariant representations (~z, U) of ( d ,  G) in a Hilbert 
space ~,~:~r(%(A))= U(g)~r(A)U(g) -~. ~'(U') is the commutant of 
~r(U), and ~" the von Neumann algebra generated by ~ (weak closure 
of n). cg~ = ~'c~c"c~ U' is the commutative yon Neumann algebra of 
G-invariant central elements in rc". For ~ c g~(r%, U o , ~ ,  x~) denote the 
corresponding cyclic representation (n~, U~) in We, with normalized 
cyclic G-invariant vector x~, so that ~(A)= (x~, ~(A)x~).  ~ > ~zo = ~P~ 
means that n~ is a subrepresentation of n, with P~ the projector on r%. 
Since in this case ~(A) = (x~, ~(A)x~) and ~z" is the weak closure of re, 

extends by continuity to re"; for simplicity we keep the same notation 
and put ~(B) = (x~, Bxo), B c n". 

We start by stating and proving some simple Lemmas, which will be 
used in Sections 3 and 4. 

Lemma 2.1. Assume ~ ~ ~ and rr > r%. We associate with ~ three 
projectors actin 9 in J f  : 

1. ~'s projector PQ. We have PQ = Proj [rc"xJ (denotes projector on the 
subspace generated by {Bxe : B ~ TO"}). Evidently Pe ~ rt' c~ U'. 

2. O's support Ee. I -  EQ is the largest projector in re" such that 
~o(1-Ee) = 0 ([2], A 26, p. 337). I f  x ~ ~ has the property that Q(A) 
= (x, rc(A)x), A ~ d ,  then E~ = Proj[~z'x]. We have E o ~ rt"c~ U'. 

3. o~'s central support Fo. F o is the central support of  both PQ and E~, 
i.e. is the smallest projector in rc'c~rc" such that F~ > P~ (or F~ > EQ). 
F~ is G-invariant, i.e. ~ ~ cg~, and can be expressed in the form 
F o = Proj [rc'rt"x~]. 

Proof. The results in 1. are obvious. - 2. We show that 
Ee = Proj[Tt'x] = E'e. Firstly, E'Qer(', and leaves x invariant, so 
O(I-E'e) = 0. Since o(E~)= (x, Eox)= 1 for the support E~, we have 
EQx = x, i.e. Ee leaves x invariant. Since by definition Ee commutes 
with rc', EQ must contain E'e. But then Ee = E'e. To show that EQ c U' 
we observe that x = x ~  is a possible choice; as U(g)x Q=xe, and 
U(g)n'U(g) -1 =re', it follows from E~=Proj[rc'x~] that E o ~ U ' . -  
18 Commun. math, Phys., Vol, 26 
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3. The central supports of P~ and E~ are the projectors on re'P~Yt ° and 
re"EQ~, respectively, i.e. they are both Proj [rc're'x~]; this representation 
also shows that F 0 e U'. 

Lennna 2.2. Assume (~, U) is a covariant yon Neumann algebra (i.e. 
% ( ~ ) - - U ( g ) ~ U ( g ) - :  = ~ )  in iF, and Q a projector in ~'c~U', with 
central support I (unit operator). ~Q = ~ Q  is the induced yon Neumann 
algebra in Q2/l; it is evidently covariant. Define cgG=~c~ 'c~U' ,  
cg~Q = jjo_c~N~ ~ U'. Then the mapping B ~ B Q  is an isomorphism from 
cg~ onto gaGQ .. 

Proof. According to ([2J, A 15, A 20, pp. 335-336) N ~ B-+BQ ~ NQ 
is an isomorphism, hence so is ~c~N'  ~ B ~ B Q  ~ NQc~N' e. As zo(Q) = Q, 
all g e G, this isomorphism commutes with all zg, so the result follows. 

Lemma 2.3. Assume (¢~, U) as in Lemma 2.2, and put 

f(B) = ~ av(x~, Bxv), 
v=l  

all B ~ N; here (al , ... a,) ~ C", and xt , ... x ,  are G-invariant vectors in J#, 
defining a subspace o;f,. Define Q = P r o j [ N ~ ] ;  evidently Q s ~ '  c~ U'. 
F is the central support of Q, and eg G = Mc~Yd'c~ U', g'oF = N~c~Y)'~c~ U', 
~Ge = Nac~N'o. c~ U'. 

Then (a), (b), and (c) are equivalent: 
(a) f (P) f ( I  - P) = 0, every projector P e cgG. 
(b) f ( P ) f ( F  - P) = O, every projector f e cgGF. 
(C) f (P) f (Q - P) = O, every projector P e ~Ge" 
In particular, if 0 ~ gG, and re > ~o, then if(P)= 0 or 1 for every 

projector P e eg G if and only if 0(P) = 0 or 1 for every projector P e CgoG 
t t !  ! = /~0('3 re~ ('3 g ; .  

Pro@ (b)*::>(c), since from Lemma 2.2 ~gGe and cgGv are isomorphic, 
and f ( B ) =  f(BQ), all B e ~F. (b)~(a)  follows from f ( B ) =  f(BF),  all 
B e N. (a)=>(b) is a consequence of the fact that f ( F -  P ) =  f ( 1 -  P), 
every projector P ~ ~g~v Ccg a. 

We recall the following definitions and criteria ([2], 5.2 and 5.3): 

Definition 2.4. 71vo states 0~, Oz are said to be equivalent (~-), quasi- 
equivalent ( ~ ), or disjoint (;), if the correspondin9 relation holds between 
reo, and %a" 

Criteria 2.5.for quasi-equivalence and disjointness: Assume rc > ~ ,  
rc >= r%~, F~ and F2 the central supports of 01 and Oa, respectively. Then 
we have 

01 "~ ¢02<=>F1 = F2 
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Finally we introduce and discuss an abelianity condition for ( d ,  G), 
which will turn out to be a sufficient condition under which we can 
generalize to the non-commutative case the results mentioned in the 
beginning of the introduction for the commutative case. 

t ( ~  r r ?  ~ t t  Definition 2.6. (d ,  G) is said to satisfy condition (A), if rcQ • c_ rce 
for every e E g~. 

The inclusion relation rc'en U'c  re" is trivially fulfilled for every 
co ~ Q 

G-ergodic ~. If the group G is trivial, G = {e}, then condition (A) is 
equivalent to requiring d to be commutative. This is perhaps most 
directly seen using the result (Theorem 3.4) that if condition (A) holds, 
any two different G-ergodic states are disjoint. Assume that d had an 
irreducible representation of dimension > 2; then two different unit 
vectors in the space of this representation would define two different, 
equivalent pure states on see, which contradicts Theorem 3.4. So all 
irreducible representations of d are one-dimensional, and this implies 
that d is commutative. - That d commutative implies condition (A) 
for any G is evident, since for any cyclic representation of a commutative 
d we have r~' = re" (re" is a maximal commutative yon Neumann algebra). 

If G is a "large" group of automorphisms of d (hence afort ior i  if 
( d ,  G) is weakly asymptotically abelian; see [3], p. 430), condition (A) 
holds ([4], Ex. 6 C, p. 164). Condition (A) is strictly weaker than G being 
a "large" group, as is shown by example "1 4= 2" ([3], p. 431) of the algebra 
of compact operators in a Hilbert space with a certain group G, which is 
not a "large" group; in this case there is-only one G-invariant state, which 
is then G-ergodic, so condition (A) holds. The G-abelian C*-algebra of 
complex 2 x 2-matrices, with G the group of diagonal unitary matrices 
acting by conjugation (example " 0 4  t"  in [3], p. 431) does not fulfil 
condition (A): the set of G-invariant states is given by ~ = ~Q~ + (1 - ~) Qo, 
0 < c~ < 1, where the extremal states (which are even pure states) ~o and 
~o~ are equivalent; by direct construction one easily shows that the non- 
extremal states don't fulfil the requirement of condition (A). Alternatively, 
it follows from Theorem 3.4 that condition (A) cannot hold. Thus 
G-abelianness does not imply condition (A). We conjecture that the 
inverse implication is also not true, so that G-abelianness and condition 
(A) are independent abelianity conditions. 

3. G-Factorial States 
• p yt We recall that a state ~ on d is factorial, If rc~nrc e = {2I}; ~ ~ gG is 

G-ergodic, if it is extremal in gG, or, equivalently, if re' e ~ U~ = {21}. 

Definition 3.1. e e ~G is G-factorial,/f 7 z ' e ~  U~ = {21}, i.e. if 0 and 
I are the only projectors in ~e~. 
1 8 "  
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In terms of the decomposition theory of states (see [5], Chapter 3, 
for a recent summary of the present status of this theory) Definition 3.1 
is equivalent to requiring that the central measure t% of 0 on the state 
space g is ergodic, since under the isomorphism from r~'~nrt~ onto 
L~(g,#~) G-invariant projectors in n ' ~ n ~  evidently correspond to 
characteristic functions of G-invariant measurable sets (modulo P~o) in & 
We recall that the measure #o is concentrated on the subset g: of factorial 
states, and, at least if d is separable, intersects each quasi-equivalence 
class of factorial states at most in one point (loosely speaking). Since the 
decomposition theory, although very "anschaulich", is complicated by 
measure-theoretical intricacies, which often force one to make restrictive 
separability assumptions, we shall use it for purpose of illustration only. 

If 0 e go is factorial, or G-ergodic, then 0 is G-factorial. Thus we have 
doe ( gos, where go~(gaf) is the set of G-ergodic (G-factorial) states on d .  

Alternative characterizations of gGs are given by 

Theorem 3.2.Assume 0 ~ go, n > n o, F E ~go the central support of Q. 
Then (a), (b), and (c) are equivalent. 

(a) e s go:.  
(b) F is minimal non-trivial projector in ~o- 
(c) For every projector P e ~o we have o(P) = 0 or 1. 

Proof. Follows directly from Definition 3.1 and Lemmas 2.2 and 2.3. 
Next we give a theorem, which states that two G-factorial states are 

either quasi-equivalent or disjoint. Furthermore, the set of G-factorial 
states consists of quasi-equivalence classes of G-invariant states, where 
each such class forms a convex set, the extremal points of which (if they 
exist) are also extremal in go, i.e. are G-ergodic. 

Theorem 3.3. Assume 01, 02 ~ go. Then we have 
(a) I f  0i, ~2 E gof, then either 0~1 ,~ 02, or 01 ; ~2" 
(b) I f  01 ~gGS, and 01 ~ 02, then for every c~ e [0, 1] 0 = ~01 + (1 - ~) 

• ~2 ~ gof,  and 0 ~ 01 ; in particular 02 e goz. 
(c) I f o  =eQ1 + ( 1 -  e) Q2 egos ,  some ee(0,  1), then 01,0zegGs, and 

01 ~ 02. 
In terms of the ergodic central measures of 0~ and 02 (a) means that 

if one equivalence class of factorial states meets the supports of both 
measures, then every class either meets both supports, or none. We can 
also remark that i f -  for a given (s~¢, G) - two different quasi-equivalent 
G-factorial states exist (example "0 4= 1" at the end of Section 2 is an 
example of this), then the map go ~ 0-,tL~ cannot be affine, since this 
would lead to the absurd result that a convex combination of two 
different ergodic measures is ergodic. 

Proof of Theorem 3.3. (a) Apply Criteria 2.5 to rt = r%~ ® ~ze~; if neither 
0~ ~ 02 nor 0~ ; 02, then F = F~ F 2 would be a non-trivial projector in 
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~fG, strictly smaller than at least one of F1 and F2, thus contradicting 
Theorem 3.2 (b). 

(b) Take 9, 0 < c~ < 1, and form rc = roe ® ~1 ® ~z~2; since 91 ~ 92, they 
have common central support F, which is minimal, since 91 s doGs; 
hence also 92 c gG~. From ~ol(F)= 92(F)= 1 follows that ~ I ( P ) = 0  or t 
and ~2(P) = 0 or 1 simultaneously for a projector P c ~G, and then we 
have also o(P) = 0 or 1, so that ~ e doG~. In particular F is also the central 
support of 9, so Q ~ 91. 

(c) rc is defined as under (b). If Q c dogs, some ~, 0 < c~ < 1, we have for 
every projector P ~ c~ G either Q(P) = 0 or 1, and then necessarily ~1 (P) = 0 
or 1, Q2(P) = 0 or 1, simultaneously, hence 91, ~2 c do, I, and ~ ~ ~oz. 

From Theorem 3.3 follows easily 

Theorem 3.4. Consider the following statements about (~ ,  G): 
(a) (s~, G) fulfils condition (A), Definition 2.6. 
(b) doge = Ox~Gf, i.e. every G-factorial state is G-erflodic. 
(c) Any two different G-factorial states are disjoint. 
(d) Any two different G-ergodic states are disjoint. 

We have (a)~(b)~.-(c)~(d). 

Proof. (a)~(b)  and (c)~(d)  are trivial. (b)~(c):  According to 
Theorem 3.3 (a) two different G-factorial states are either quasi-equivalent 
or disjoint; if they were quasi-equivalent, then every convex combination 
would by Theorem 3.3 (b) be G-factorial, hence G-ergodic, which is 
absurd. (c)=~(b): if there were a G-factorial state which is not G-ergodic, 
then it is not extremal, and we could write it as a non-trivial convex 
combination of G-factorial states, which would then be quasi-equivalent, 
by Theorem 3.3 (c), contradicting (c). 

Put  in words Theorem 3.4 expresses the obvious fact that if every 
G-factorial state is G-ergodic - which follows trivially from condition (A)-  
then every G-factorial state is extremal, so the quasi-equivalence classes 
building up dogs contain only one element each. Combined with 
Theorem 3.3 (a) this gives the disjointness of different G-factorial states. 
An illustration is given by the fact - which we shall not prove here - that 
if condition (A) holds, then the map d°s ~ 9 ~/~Q from G-invariant states 
to the corresponding central measures is actually affine; cf. remark after 
Theorem 3.3. 

The weaker result that condition (A), combined with G-abelianness, 
implies that two different G-ergodic states are not quasi-equivalent, is 
well-known (see e.g. [4], Ex.6 D, p. 165; [6], Theorem 3.9, p. 129). - 
(c) does not follow from G-abelianness alone, as we already remarked in 
the discussion following Definition 2.6. The G-ergodic states Co and 91 in 
example '°0 oe 1" discussed there are even equivalent. 
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4. G-Factorial Linear Functionals 

We recall that every f s  ~/* has a unique decomposition f = g + ih 
into hermitian elements g and h; further 9 and h have unique decom- 
positions into orthogonal positive functionats: 

g = g + - g - ,  ]lgl] = [Ig+[l+llg-I], h = h + - h _ ,  llhl[ = [Ih+]l+l[h-l[. 

If f is G-invariant, it follows from the uniqueness of the decompositions 
that also g+ etc. are G-invariant. We put f = (g+ + g_ + h+ + h_)/N, 
N = I1 g ll + J] hit; if f E d ~ ,  then evidently f e g~. 

To generalize the concept "G-factorial" from states to general linear 
functionals we must define a class of representations carrying enough 
information about the functional. We also prove a Lemma exhibiting 
explicitly representations of this class, and showing that the definition 
of G-factorial linear functional introduced later is independent of the 
representative of the class one chooses for the definition. 

Def'mition 4.1. Assume f ~ d ~ .  A covariant representation (re, U) in 
fig is called a f-representation, if there are G-invariant vectors xn, ... xn in 
~ ,  and complex numbers an, ... a n such that 

f (A)  = ~. a~(x~,rc(A)x~), all A E ~ .  
V = n  

Lemma 4.2. Assume f e s¢~, f e gG as above. Then 

(a) If  u > roy, then ~ is a f-representation. 

(b) Assume "Jz n and r~ 2 are two f-representations, Call a and cd:G the cor- 
responding commutative yon Neumann algebras. I f  for every projector 
P1 E cdlG either f(PO = 0 or f ( I -  Pn)= O, then the same is true also Jor 
every projector Pz ~ cd2G. 

Proof. (a): Assume x0 is the G-invariant cyclic vector of ~zy, so that 
f (A)  = (Xo, uy(A)xo)= (Xo, u(A)xo). As g+/N is dominated by f ,  there 
exists ([2], 2.5.1) a unique self-adjoint T e u ) ,  0 <  T_< 1, such that 
g+(A)=N(Txo ,  uf(A)Txo). The uniqueness of T and the fact that 
U(g)Xo : x o  implies that Te U), thus U(g)Tx o = Txo. Put xt = Txo, 
a n = N, and proceed similarly for g_, h+, and h_ ; it follows that re f,  and 
hence ~z, satisfies, with n = 4, the requirement for a f-representation. 

(b): We form 7r =rclOrc z and apply Lemma2.3 with ~ = re". f is 
defined on ~ either by vectors (xl, ... x~)e ~1 or by (Yl,-.. Y,) ~ 2gf2; 
the corresponding projectors Q~ and Qz are evidently projectors in ~ 

¢ t 

and ~2 ,  respectively. With cdiG = u'imu/'c~ U', cdaQ~ = Ne/aNQ~ c~ U,  
i =  1,2, we can use Lemma2.3, (a)<:~(c), to run through the chain 
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In view of Lemma 4.2 (b) and Theorem 3.2 (c) it is natural to introduce 
the following generalization of G-factorial state: 

Definition 4.3. f ~ s¢* is said to be G-factorial, if for some (and then 
for every) f-representation n we have the relation f (P)  f ( I -  P)= 0 for 
every projector P ~ q~G = n' C~ n" c~ U'. 

If we study the C*-algebra of 2 x 2-matrices, example "0 4 = 1" at the 
end of Section 2, which is a G-abelian algebra not fulfilling condition (A), 
and put f = a~o + b~l, where a and b are complex non-zero numbers, 
such that a/b is not a real positive number, we get a G-factorial linear 
functional, which is not a complex multiple of a G-factorial state. How- 
ever, the following theorem holds: 

Theorem 4.4. I f  ( d ,  G) satisfies condition (A), then every G-factorial 
f is of the form k f ,  where k is a complex number ([k[ = lift[), and f is a 
G-ergodic state. 

Theorem 4.4 is a direct consequence of the following central Lemma: 

Lemma 4.5. Given two non-zero positive G-invariant Junctionals gl, 
g2, which are orthogonal, i.e. t101 - g2 !i = tl gl II + tl g2 It. Put Oi = g] tl gitt. I f  
condition (A) holds, 01 and 02 are disjoint. 

Before proving this Lemma, we use it to prove Theorem4.4:  If 
f = g + ih is G-factorial, it follows that g = g+ - 9 -  and h = h+ - h_ 
are also G-factorial. Assume condition (A) holds; if g+ and g_ were 
both different from zero, they would have non-trivial orthogonal 
central supports F+ in a f-representation. Evidently this means e.g. 
g(F+)g(I-F+)4:0,  which is a contradiction. Hence g is definite, say 
positive, g =  tlgltO, where 0 is a G-factorial, i.e. from Theorem 3.4 a 
G-ergodic state. Similarly for h. Finally, if g and h are both non-zero, it 
follows from the fact that f is G-factorial that ,q and/~ have the same 
central support, i.e. by Theorem 3.4 they are the same state, so 
Theorem 4.4 follows. 

Proof of Lemma 4.5. The orthogonality of g1 and g2 is equivalent to 
the property that in a representation n containing the cyclic represen- 
tations nl and ~2 corresponding to 01 and g2, the supports Ea and E2 are 
orthogonal ([2], 12.3.I). To show that E1E2 = 0 implies gl ; gz, we have 
to show that the only intertwining operator between na and n2 is trivial: 
Tnl(A) = n2(A) T, all A ~ d ,  implies T = 0. 

Form Q = ½01 + ½0z, Q(A) = (xe, r%(A)xo). We can find unique self- 
adjoint positive Tien'Qc~U~, such that O~(A)=2(T~xo, r%(A)T~xo), 
~z + T 2 = I .  F rom Lemma 2.1 we can write the supports 
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E i = P r o j [ ~ ; 7 ) x o ] .  Since E 1 E 2 = O  , we have (T l x~ ,B 'T2xo)=O,  ali 
t t t  ! B' ~ ~ .  Condition (A) implies that T/e r%, so we get (T2 T~ x o, B xo) = O. 

In particular we can take B' = T2 T~, and from Tz T~ x~ = 0 and the fact 
that xQ is separating for rc'Q we get 7"2 T1 = 0. Hence (T1 + T2) 2 = I, and 
7"1 and Tz are orthogonal projectors on two complementary subspaces 
of W~. We have re i ~ ~Q/T/W~, i = 1, 2. An intertwining operator is then a 

t T~ nQ with TTz  = 0 and range in T 2 WQ, i.e. T~ T = 0. But since condi- 
tion (A) implies TT] = T t T, we get T = 0. 

Let us note that a modification of the proof gives an alternative proof 
of (a)~(d)  in Theorem 3.4: if 02 and 02 are G-ergodic and different, one 
can conclude - independently of condition (A) - that T~ 2 = T~, so that 
T~ are projectors with Ti + T2 = I ;  then 0~ + 02 follows as above. 

The conclusion of Lemma 4.5 does not hold if we assume (~ ,  G) to 
be G-abelian instead of satisfying condition (A), as is shown by the 
orthogonal, equivalent states 00 and ~o~ of example "0 ~= 1". 

5. The Commutative Case 

We want to show that if s¢ is commutative, the definition of G-fac- 
torial linear functional is equivalent to the definition of complex ergodic 
measure, in the case that this measure has a bounded total variation. We 
shall also study the relation between Theorem 4.4 and the result in [ i ]  
that a complex ergodic measure is proportional to a positive ergodic 
measure. 

(X, B, m, G) is a set X with a a-algebra B of subsets, m a complex 
measure on (X, B); [m I is its total variation, and we assume [m] (X) < co. 
G is a flow on X, a group of B-measurable (E ~ B ~ g ( E )  ~ B, all 9 e G) 
and m-measure-preserving (m(E) = m(9(E)), all E ~ B) transformations of 
X. By L e m m a l  in [1] m-measure-preserving implies Iml-measure- 
preserving. E ~ B is G-invariant (Ira[- a.e.) if [m[ (g(E) AE) = 0, all 9 e G; 
here F A E  = FvaE - Fc~E. m is said to be ergodic, if for every G-invariant 
(trot - a.e.) E e B we have re(E) m(X  - E) = O. 

Introducing the space L ~ ( X , B ,  Imt) of tml-equivalence classes of 
lml-essentially bounded measurable functions on X, which with the norm 
t}(pH =esssup{]ep(x)l;x~X} and natural definitions of product and 
involution is a commutative C*-algebra, m defines in the obvious way a 
continuous linear functional f , ,  on L °°. Evidently there is a one-to-one 
correspondence E'~)~E between ]m]-equivalence classes of sets in B and 
projectors (characteristic functions) in L °°, and we have re(E)= fm(~) .  
G-invariant sets correspond to G-invariant projectors. L ~ has an iso- 
morphic representation as a concrete C*-algebra of operators (multi- 



Non-Commutative Ergodic Theory 257 

plication by the L ~° function) in the Hilbert space L2(X, B, Im[/lrn] (X)); 
this is just the fro-representation rc/m(~ , for short), z~ is evidently already 
weakly closed, i.e. a yon Neumann algebra; this corresponds to the fact 
that L ~, as the dual of L 1, is a W*-algebra, an "abstract" yon Neumann 
algebra ([5], p. 1, p. 45). Since furthermore rc is cyclic and commutative, 
we have ~ = re' = ~". So the G-invariant projectors in L ~ coincide with 
the projectors in ~c; = rc'c~'c~ U', and evidently the condition that m 
is ergodic corresponds to the condition that fm is G-factorial. Theorem 4.4 
then implies that m is a complex multiple of a positive ergodic measure, 
which is Theorem 1 in [1]. 

Conversely we show that if sd in ( d ,  G) is commutative, Theorem 1 
in [1] implies Theorem 4.4 in this paper. A commutative sd can be con- 
sidered, by the Gelfand isomorphism, as a C*-algebra Co(X) of con- 
tinuous functions, vanishing at infinity, on a locally compact space X. 
If B is the family of Borel sets on X, generated by the open sets of X, the 
action of G on the elements of d is transformed into homeomorphisms 
of X, mapping B onto itself. An element f e S~c,* corresponds to a G-in- 
variant complex measure rnz on (X, B), of bounded total variation [mfl. 
The f-representation ~ / ( =  re) of ~ = Co(X) is evidently given by the 
functions in Co(X ) acting by multiplication in L2(X, B, Irn~t/Imlt (x)). In 
this case we find re' = ~" = L~(X, B, Imfl). As before we conclude that f 
G-factorial is equivalent to rn~ ergodic. So Theorem 1 in [1] shows that 
m~=klm~l, where of course ]m~l is positive and ergodic; this gives 
Theorem 4.4. 

In a certain sense Theorem 1 in I l l  implies Theorem 4.4 also in the 
general non-commutative case. If condition (A) holds, the mapping from 
G-invariant states to G-invariant central measures on the state space is 
affine, as we remarked at the end of Section 3. (The proof of this result 
runs largely parallel to the proof of Lemma 4.5). This mapping can then 
be extended by linearity to a mapping from d *  to complex bounded 
G-invariant central measures. Under this mapping a G-factorial linear 
functional corresponds to a complex ergodic measure, so an application 
of Theorem 1 in [1] gives Theorem 4.4. 

A final remark: In one respect the result in [1] is more general, since 
it holds also if Iml is supposed to be only o--finite instead of finite, as we 
have assumed here. This would correspond to unbounded linear func- 
tionals on the C*-algebra sd, a concept which has been studied by 
Pedersen in a series of papers [7]. 
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