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1. DYNAMICS ON FINITE ALGEBRAIC STRUCTURES AND ULTRAMETRICITY

Everywhere in this paper a (discrete autonomous) dynamical system is just a pair 〈A, f〉, where
f : A → A is a map of the set A into itself. Dynamical systems theory studies trajectories, i.e.,
sequences of iterations

x0, x1 = f(x0), . . . , xi+1 = f(xi) = f i+1(x0), . . . .

Its central questions are the asymptotic behavior of these sequences, their distribution, etc. This
implies that A is endowed with a metric and with a measure.

When we speak about algebraic dynamics, we assume that the space A is also endowed with a
certain algebraic structure (a field, a ring, a group, . . . ) and that the map f somehow agrees with
this algebraic structure; e.g., f may be a compatible map (that is, for every congruence ∼ of A

and all a, b ∈ A, we have f(a) ∼ f(b) whenever a ∼ b). For instance, a polynomial over A and an
endomorphism of A are compatible maps.

In real life settings we never deal with an infinite A. Yet for a finite A, every trajectory is
eventually periodic, and it is meaningless to speak of its asymptotic behavior. Unfortunately, in
real life settings the set A is usually very big—so big that we cannot use computers to determine
where a point will be after N iterations for large N . However, we can study the behavior of
trajectories on small A in order to understand what happens to trajectories when A becomes bigger
and bigger. Thus, we have to study the asymptotic behavior of trajectories when the order #A

of A goes to infinity, #A → ∞.
Obviously, we can say almost nothing nontrivial about this asymptotic behavior in a general

case, for arbitrary maps of arbitrary finite sets. It turns out that we can say a lot about this behavior
whenever A is endowed with an algebraic structure and f somehow agrees with this structure, say,
when f is compatible and finite algebraic systems An constitute an inverse spectrum:

. . .
ϕn+1−−−→ An

ϕn−−→ An−1
ϕn−1−−−→ . . .

ϕ1−→ A0.

The inverse limit A∞ of the inverse spectrum can be endowed with a profinite topology, with a
metric, and with a measure. This metric will necessarily be an ultrametric, a non-Archimedean
metric. Therefore, there exists a close connection between the dynamics on finite sets and the
dynamics on ultrametric spaces.
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An important class of such inverse limits is given by the rings of p-adic integers Zp (p > 1 is a
prime number), which are the inverse limits of the residue class rings Z/pn

Z modulo pn (or, briefly,
of residue rings modulo pn), n = 1, 2, . . . . The corresponding projections ϕn are just the reductions
modulo pn, which are clearly ring epimorphisms. Thus, p-adic dynamics can be considered as an
essential part of algebraic dynamics, which is currently an intensively developing mathematical
discipline. It is worth a brief review that follows.

1.1. Towards algebraic dynamics: Brief history of p-adic dynamics. Traditionally,
dynamical systems were considered in the fields of real and complex numbers, R and C. Later
there appeared studies of dynamical systems in finite fields and rings, in which number theory was
widely used. The theory of p-adic dynamical systems was developed as a natural generalization of
dynamics in the residue rings modulo pn. It was generalized to arbitrary non-Archimedean fields.1

This was a combination of number theoretic and dynamical approaches to algebraic dynamics. We
can mention the studies by W. Narkiewicz, A. Batra, P. Morton, P. Patel, J. Silverman, G. Call,
D.K. Arrowsmith, F. Vivaldi, S. Hatjispyros, J. Lubin, T. Pezda, H.-C. Li, and L.-C. Hsia [14–17, 33,
47, 48, 66–73, 76–78, 80–93, 98–103, 119, 120] and the recent studies by J.A.G. Roberts, F. Vivaldi,
W.-S. Chou, I.E. Shparlinski, A.-H. Fan, M.-T. Li, J.-Y. Yao, Y.F. Wang, D. Zhou, M. Misiurewicz,
J.G. Stevens, D. Thomas, A. Peinado, F. Montoya, J. Muñoz, and A.J. Yuste [34, 38–40, 79, 97,
109, 111].

These studies are closely related to studies initiated in algebraic geometry. In algebraic ge-
ometry the fields of real and complex numbers, R and C, do not play an exceptional role. All
geometric structures can also be considered over non-Archimedean fields. Therefore, for people
working in algebraic geometry, it was natural to try to generalize some mathematical structures
to the non-Archimedean case, even if these structures do not directly belong to the domain of
algebraic geometry; for example, it was natural to consider dynamics in a non-Archimedean field K.
These (algebraic geometric) dynamical studies began with the article of M. Herman and J.-C. Yoc-
coz [46] on the problem of small divisors in non-Archimedean fields. It seems that this was the
first publication on non-Archimedean dynamics. A crucial role in the further development of this
dynamical approach was played by J. Silverman (see, e.g., [112–114]). The studies were continued by
R. Benedetto [19–28], J. Rivera-Letelier [105–108], C. Favre and J. Rivera-Letelier [41], F. Laubie,
A. Movahhedi, and A. Salinier [62], and J.-P. Bézivin [29–32]. Finally, J. Silverman published his
fundamental book [115] devoted to arithmetic problems in the theory of dynamical systems.

Another approach to algebraic dynamics has p-adic theoretical physics as its source. The first
p-adic physical models were elaborated in the 1990s at the Steklov Mathematical Institute of the
Russian Academy of Sciences by V. Vladimirov, I. Volovich, I. Aref’eva, and E. Zelenov in collab-
oration with A. Khrennikov and B. Dragovich; important contributions to this domain were made
by E. Witten, G. Parisi, P. Framton, P.G.O. Freund, M. Olson, and others (see, e.g., the mono-
graphs [123, 50, 52] and the pioneering papers of Vladimirov and Volovich [121, 122, 124]). In 1989,
Ruelle, Thiran, Verstegen, and Weyers published an interesting article [110] on p-adic quantum
mechanics, and a little later Thiran, Verstegen, and Weyers published the article [117] on p-adic
dynamics (see also [118]). We also mention the earlier preprint [18] of Ben-Menahem. A. Khren-
nikov went down this road to p-adic dynamical systems as well, from the study of quantum models
with Qp-valued functions to p-adic and more general non-Archimedean dynamical systems (see,
e.g., [51, 52]). The following works in this direction are also worth noting: [1, 57, 75, 94, 95, 116].
In these works, the study of p-adic monomial dynamics x �→ xn on Zp played an important role.
Later Khrennikov, Nilsson, and Nyqvist [56] considered perturbed monomial systems x �→ xn +q(x)
on Zp, where q(x) is a polynomial that is “small” compared with the monomial part of the dynamics;

1These are fields with absolute values for which the strong triangle inequality |x + y| ≤ max(|x|, |y|) holds. We
remark that the fields of p-adic numbers Qp are non-Archimedean.
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the smallness is defined as the smallness of coefficients with respect to the p-adic absolute value.
In [42–44, 55, 74] the problem of ergodicity of perturbed monomial dynamics on p-adic spheres was
formulated; it was put forward at numerous international conferences and talks at many universities
throughout the world. Nevertheless, it remained unsolved until 2005, when the author of this paper
solved it in the most general case [9], for 1-Lipschitz locally analytic dynamical systems.

The latter work was a continuation of studies on p-adic ergodicity started in [3, 4, 6]; we also
mention the papers [61, 36] on polynomial dynamics over residue rings. These studies also led
to algebraic dynamics and proved to be extremely important for applications to computer science
and cryptology, especially in connection with pseudorandom numbers and uniform distribution of
sequences. The research in this direction began in 1992 with the publications [3, 4] by the present
author, which were succeeded by his works [5–8, 11, 12] on p-adic ergodic theory and applica-
tions. These studies are motivated mainly by the problem of constructing a computer program
that generates a random-looking sequence of numbers. To look any random, the sequence must
be at least uniformly distributed in some precise sense; it must also pass common statistical tests;
and the performance of the corresponding program (or hardware device) must be sufficiently fast.
To satisfy the latter condition, the program must be a not too complicated composition of basic
computer instructions (additions, multiplications, ORs, ANDs, XORs, etc.), which turned out to be
continuous with respect to a 2-adic metric. Thus, to comply with the first condition, one may com-
bine these instructions to obtain a certain ergodic transformation f on Z2; then the corresponding
sequence of iterations x, f(x), f2(x), . . . , which is actually a trajectory (orbit) of the corresponding
dynamical system 〈Z2, f〉, will necessarily be uniformly distributed in Z2 and hence modulo 2n for
all n = 1, 2, . . . . This is a strong motivation to develop p-adic ergodic theory.

We note that the above-mentioned works deal with algebraic dynamics over commutative alge-
braic structures, such as commutative rings and fields. However, motivations to develop algebraic
dynamics over noncommutative algebraic structures are also rather strong. Let us show how, for
instance, the operation of a noncommutative dihedral group Dn of order 2n+1 arises in computer
science. In computers, there are instructions that depend on the value of a one-bit registry, a so-
called “flag.” Usually program jumps are instructions that depend on flags. Often a flag contains
the sign of a number. Consider the following instruction (or a program): If the flag value is 0, then
addition is performed, and if it is 1, then subtraction is performed. Here the ∗ operation of the
group Dn appears: If ε and ξ are the values of the flag and a and b are n-bit words in the alphabet
{0, 1}, then (ε, a) ∗ (ξ, b) = (ε ⊕ ξ, b + (−1)ξa), where ⊕ is addition modulo 2 and + is addition
modulo 2n. Now, using this instruction and endomorphisms of the group Dn, which can actually
be realized as substitutions like (1, 0) �→ (α, k), (0, 1) �→ (β,m) via look-up tables, one can consider
iterations of a polynomial transformation (see (1) below) on the group Dn with a corresponding set
of operators, i.e., polynomial dynamics on a noncommutative group.

There are purely mathematical motivations to develop algebraic dynamics over noncommutative
algebraic structures as well. In mathematics, the study of ergodic polynomial transformations on
(non-Abelian) groups has its own history that started with the following more than 50-year-old
problem of P. Halmos [45, p. 26]: Can an automorphism of a locally compact but noncompact group
be an ergodic measure-preserving transformation? The problem attracted considerable attention
and motivated a related study of affine ergodic transformations on noncommutative groups G (that
is, ergodic transformations of the form x �→ gxβ, where g ∈ G and β is an automorphism of
the group G) by B. Schreiber with co-workers and by other authors (see, e.g., [104] and references
therein). In the late 1960s the theory of polynomials over noncommutative algebraic structures, and
especially over groups, emerged (see [65]); its development naturally led to the study of polynomial
transformations on groups with operators, i.e., transformations of the form

x �→ g1(xω1)n1g2(xω2)n2 . . . gk(xωk)nkgk+1 = g(xα1)n1(xα2)n2 . . . (xαk)nk , (1)
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where g, g1, . . . , gk+1 ∈ G, n1, . . . , nk are rational integers, ω1, . . . , ωk are operators, i.e., group
endomorphisms, and α1, . . . , αk are endomorphisms of the group G. As any profinite group2 can be
endowed with a metric (which is called a profinite metric) and a measure, it is reasonable to ask what
continuous transformations with respect to the profinite metric are measure-preserving or ergodic
with respect to the measure. The recent paper [58] by J. Kingsbery, A. Levin, A. Preygel, and
C.E. Silva gives a general equivalent description of measure-preserving and ergodic transformations
in terms of the actions of these transformations on all groups of the inverse spectrum; for instance,
to determine whether a transformation is measure-preserving, it is necessary to verify whether it
induces a bijection on every group from the inverse limit, i.e., for an infinite number of groups.
Thus, it is reasonable to ask whether this verification can be done in a finite number of steps and
so to obtain explicit formulas for these transformations.

The latter setting is important for applications. Actually, ergodic transformations on groups can
be used to generate pseudorandom sequences of permutations in the same way as ergodic transfor-
mations of p-adic integers are used to generate pseudorandom sequences of numbers. Pseudorandom
sequences of permutations on finite sets are used in cryptography when constructing the so-called
polyalphabetic substitution ciphers. A well-known example of ciphers of this kind is the Enigma,
an encryption device used by Germany during World War II.

In Section 4 we consider a problem of determining ergodic transformations on profinite groups
with operators. We note that not all profinite groups admit polynomial ergodic transformations;
however, using the earlier publication of the author [2], which characterizes finite solvable groups
having ergodic polynomials, we determine ergodic polynomial transformations on profinite groups
with operators that are the inverse limits of finite solvable groups. We emphasize that these dy-
namics on profinite groups can somehow be “reduced to,” or “composed of,” the p-adic dynamics on
different spaces of p-adic integers.

These results may be considered, on the one hand, as a contribution to ergodic theory for
noncommutative algebraic structures. In this connection, it is interesting to note that actually in
Section 4 we mimic the approach from the p-adic ergodic theory, but with the use of a noncom-
mutative differential calculus (instead of p-adic derivation); the latter calculus originally arose in
the works of R. Fox on knot theory (see [35]). We believe that this approach can be expanded to
develop ergodic theory on noncommutative algebraic systems other than groups with operators.

On the other hand, the ergodic theory for profinite groups, which we develop in Section 4, has
applications to pseudorandom generators that are constructed not only with the use of arithmetical
and logical instructions of a computer, but also with the use of flags. The basic ideas of this approach
lead to new constructions of “flexible” stream ciphers (see, e.g., [11]).

Concluding the review, we only mention two other important areas of application of p-adic dy-
namics: In 1997, Khrennikov [52] proposed to apply dynamical systems in the rings Zm to modeling
cognitive processes, especially in psychology. Recently 4-adic and 2-adic dynamical systems were
applied to genetics (see [53, 37, 54]).

1.2. Ergodicity and uniform distribution of sequences. As mentioned above, in ap-
plications, measure-preserving and ergodic mappings often serve as a tool to construct uniformly
distributed sequences for various applied purposes (e.g., for pseudorandom number generation, cryp-
tography, etc.; see, e.g., [3, 5–7, 10, 11]). To construct these sequences, the following basic result of
ergodic theory is actually used (see, e.g., [59, Ch. 3, Definition 1.1, Exercise 1.10, Lemma 2.2]):

Proposition 1.1. Let S and T be compact topological groups, and let f : S → T be a mapping
that is continuous and measurable with respect to the Haar measure. If (an)∞n=0 is a uniformly
distributed sequence over S and f is measure-preserving, then the sequence (f(an))∞n=0 is uniformly
distributed over T.

2A group that is an inverse limit of finite groups.
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If additionally S = T, f is ergodic, and S is separable, then the sequence (fn(a))∞n=0 is uniformly
distributed for almost all a ∈ S.

As mentioned above, in real life settings we deal with dynamical systems on finite sets; that is,
the order #A of the group A is finite. Then every subset U of A is open and closed simultaneously,
and μ(U) = #U · (#A)−1. Moreover, if the groups A and B are of finite order, then the map
f : A → B is measure-preserving if and only if #f−1(a) = #f−1(b) for all a, b ∈ A. Such maps are
called balanced. Obviously, the map f : A → A preserves the measure μ if and only if it is bijective,
that is, if f is a permutation on A. Finally, f is ergodic if and only if this permutation has only
one cycle, of length #A. In the latter case we say that f is transitive on A. Note that whenever f
is transitive, the corresponding trajectory is just a periodic sequence, and its shortest period is of
length #A; that is, every element from A occurs in the period exactly once.

1.3. Hereditary dynamical properties and compatibility. Let A be a universal algebra
(e.g., a group or a ring), and let f : A → A be a compatible map. Let ϕ : A → B be an epimorphism
of the universal algebra A onto a universal algebra B of the same type, and let x, y ∈ A be arbitrary
elements of A such that their ϕ-images coincide, ϕ(x) = ϕ(y). Then ϕ(f(x)) = ϕ(f(y)) since f is
compatible. Thus, the map fϕ : B → B defined as (fϕ)(b) = ϕ(f(a)) for b ∈ B and a ∈ ϕ−1(b)
is well defined. So each compatible transformation on A defines a unique transformation on each
epimorphic image of A. As each epimorphism of A defines a unique congruence of A and vice versa,
we say that f possesses some property P modulo a congruence η if the map induced by f on the
corresponding epimorphic image possesses P. The following simple proposition holds:

Proposition 1.2. Let A be a finite group, let η be a congruence of A, and let F : An → Am

(where m ≤ n) be a balanced (respectively, bijective, transitive) compatible map of the nth Cartesian
power An onto the mth Cartesian power Am of the group A. Then F is balanced (respectively, bijec-
tive, transitive) modulo η. If H is the kernel of the congruence η and k = |A : H|, then the map F
for m = n is transitive if and only if F is transitive modulo η and the iterated map F kn : Hn → Hn

is transitive on Hn.
Moreover, if A is a direct product of groups B and C, A = B × C, then F is balanced on A

if and only if F is balanced both on B and C, i.e., modulo each congruence corresponding to the
projection onto a direct factor. Finally, the map F for n = m = 1 is transitive if and only if it is
transitive both on B and C and the orders #B and #C are coprime.

The most “natural” compatible transformation of a universal algebra is a polynomial transfor-
mation. However, ergodic polynomials (i.e., polynomials that induce ergodic transformations on
the universal algebra) exist not over every universal algebra. Actually, the existence of an ergodic
polynomial imposes strict limitations on the structure of a universal algebra. As ergodicity is
the leading theme of the paper, we first introduce some important examples of universal algebras
having ergodic polynomials, i.e., of algebras over which there exist polynomials that induce ergodic
transformations on these algebras. In this section, we consider only finite universal algebras; now
we describe finite Abelian groups with operators and finite commutative rings that admit ergodic
(hence, transitive) polynomials. A similar problem for finite non-Abelian groups is much more
complicated; we consider it in Section 3.

1.4. Ergodic polynomial transformations on finite Abelian groups with operators.
Let G be a finite Abelian group with operation + written additively, and let Ω be a set of operators
on G; that is, every element ω ∈ Ω induces an endomorphism of the group G: (a + b)ω = aω + bω

for all a, b ∈ G. It is clear that as the group G is Abelian, any ergodic (i.e., transitive) polynomial
transformation must be of the form x �→ a + xα, where α lies in the ring Env Ω generated by endo-
morphisms of G induced by operators from Ω; moreover, α must be an automorphism of G. Recall
that as G is Abelian, all its endomorphisms form a ring with respect to addition and multiplication
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(i.e., composition) of endomorphisms. That is, finite Abelian groups having ergodic polynomials are
exactly finite Abelian groups having transitive affine transformations x �→ a + xα. Groups having
transitive affine transformations were studied in [49], under the name of single orbit groups. In the
following theorem we summarize the results from [49] concerning Abelian groups (with operators)
that have transitive polynomials:

Theorem 1.3. A finite Abelian group G with a set of operators Ω has ergodic polynomials if
and only if G is isomorphic to one of the following groups:

(i) a cyclic group C(m), m = 1, 2, . . . , with an arbitrary set of operators Ω;
(ii) the Klein group K4 with Ω � ω inducing a nonidentity involution on K4;
(iii) a direct product of a group of type (ii) by a group of type (i) of odd order.

Remark 1.4. We recall that the Klein group K4 is isomorphic to the additive group of a
2-dimensional vector space over the field F2 of two elements. It is not difficult to see that the affine
transformation x �→ a + xψ on the Klein group K4 (a ∈ K4, ψ ∈ End(K4)) is transitive on K4 if
and only if ψ is a nonidentity automorphism whose square ψ2 = ψ ◦ψ is an identity automorphism
and aψ �= a.

As every endomorphism of the cyclic group C(n) (written additively) is a multiplication by m,
all affine transformations of C(n) are in fact transformations of the form x �→ (a+mx) mod n of the
residue ring Z/nZ modulo n. Thus, in view of the Chinese remainder theorem and Proposition 1.2,
to characterize transitive transformations of this form it suffices to consider only the case of a prime
power n. Theorem 1.9 (see below) completely describes transitive affine transformations of the
residue rings Z/pk

Z, p prime, by virtue of Theorem 1.8.
All these results, in view of Proposition 1.2, give us a complete description of all finite Abelian

groups (with operators) having transitive polynomials, as well as of transitive polynomial trans-
formations themselves, in an explicit form. Starting at this point, we can try to expand these
considerations in two directions: first, to the case of non-Abelian groups, and second, to the case
of other commutative universal algebras; the most important of the latter are commutative rings.
We deal with ergodic polynomial transformations on non-Abelian groups in Sections 3 and 4; we
consider commutative rings having transitive polynomials in the next subsection. As we will see, in
both cases the problem of description of the corresponding ergodic transformations will inevitably
lead us to the non-Archimedean dynamics.

1.5. Ergodic polynomial transformations on finite commutative rings. In this sub-
section we demonstrate that except for some “sporadic” examples, residue rings and finite fields are
the only finite commutative rings on which there exist polynomial ergodic transformations; that is,
for applied purposes such as pseudorandom number generation, it is enough to restrict ourselves to
dynamics on residue rings or finite fields rather than on more exotic rings.

Let R be a finite commutative ring with identity 1 (i.e., 1 is a multiplicative neutral element
of R). The existence of univariate transitive polynomials over R imposes significant restrictions on
the structure of R:

Proposition 1.5. Whenever R has transitive polynomials, R is a principal ideal ring.
Proposition 1.5 shows that whenever R has a transitive polynomial, R is a direct sum of local

rings; that is, every direct summand is either a field or a ring that has a unique maximal ideal, which
is called a radical of the ring. By Proposition 1.2, the ring R has a transitive polynomial if and only
if every direct summand has a transitive polynomial and the orders of direct summands are pairwise
coprime. However, it is well known that every finite field is polynomially complete; that is, every
transformation on this field can be represented as a polynomial over this field. In particular, every
finite field has transitive polynomials. Thus, to characterize finite commutative rings that have
transitive polynomials, it suffices to restrict ourselves to finite local rings with nonzero radicals.
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Theorem 1.6 [2]. A local ring R has transitive polynomials if and only if one of the following
alternatives holds3:

(i) R = Fpn , a field of pn elements, n = 1, 2, . . . ;

(ii) R = Z/pn
Z, a residue ring modulo pn, p prime, n = 1, 2, . . . ;

(iii) R = Fp[x]/x2
Fp[x], p prime;

(iv) R = Fp[x]/x3
Fp[x], p ∈ {2, 3};

(v) R = Z[x]/p2
Z[x] + x3

Z[x] + (x2 − p)Z[x], p ∈ {2, 3};
(vi) R = Z[x]/9Z[x] + x3

Z[x] + (x2 + 3)Z[x].

Remark 1.7. It is obvious that the ring R = Z[x]/p2
Z[x] + x3

Z[x] + (x2 − p)Z[x] is a factor
ring of the ring of polynomials in x over the residue ring Z/p2

Z modulo the ideal generated by two
polynomials, x3 and x2 − p. That is, the order of this ring R is p3.

In a similar manner, it is easy to show that the ring R = Z[x]/9Z[x] + x3
Z[x] + (x2 + 3)Z[x] is

a factor ring of the ring of polynomials in x over the residue ring Z/9Z modulo the ideal generated
by two polynomials, x3 and x2 + 3. That is, the order of this ring R is 27.

1.6. Ergodic polynomials over p-adic integers. Among the rings listed in Theorem 1.6,
only the residue rings modulo pk form a spectrum. However, the inverse limit of the residue rings
Z/pk

Z is the ring of p-adic integers Zp, which is endowed with a non-Archimedean (p-adic) metric
and with a natural probabilistic measure, the normalized Haar measure.

It is clear that every polynomial over Z/pk
Z can be considered as a polynomial with rational

integer coefficients, that is, as a polynomial over Zp. This polynomial induces a transformation
on Zp, which is compatible; thus, it is 1-Lipschitz with respect to the p-adic metric. Therefore,
the problem of determining ergodic (that is, transitive) polynomials over the residue rings Z/pn

Z

becomes a problem of p-adic dynamics.
The following theorem holds:
Theorem 1.8 [6, 9]. For m = n = 1, a 1-Lipschitz map F : Z

n
p → Z

m
p is measure-preserving

(or ergodic) if and only if it is bijective (respectively, transitive) modulo pk for all k = 1, 2, 3, . . . .
For n ≥ m, the map F is measure-preserving if and only if it is balanced modulo pk for all

k = 1, 2, 3, . . . .
Further we will need the following criterion for ergodicity of affine transformations on Zp:
Theorem 1.9. The map f(x) = ax + b, where a, b ∈ Zp, is an ergodic transformation on Zp

if and only if the following conditions hold simultaneously :

b �≡ 0 (mod p), (2)

a ≡ 1 (mod p) for odd p, (3)

a ≡ 1 (mod 4) for p = 2. (4)

The following theorem determines ergodic uniformly differentiable transformations on Zp:
Theorem 1.10 [3]. Let a 1-Lipschitz map f : Zp → Zp be uniformly differentiable on Zp.

Then f is ergodic if and only if it is transitive modulo pn for some sufficiently large n.
Note that in some interesting cases this “sufficiently large” n is actually rather small:
Corollary 1.11 (cf. [61, 36]). A polynomial f ∈ Zp[x] is ergodic if and only if f is transitive

modulo p2 for p /∈ {2, 3} and modulo p3 for p ∈ {2, 3}.
3We characterize rings up to isomorphisms.
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2. BASICS OF POLYNOMIAL DYNAMICS ON GROUPS

Now we begin a study of measure-preserving (in particular, ergodic) transformations on a
group G (whose operation is written multiplicatively henceforth) in the class of all maps Gn → G
of the form

w(x1, . . . , xn) = g1(xω1
i1

)n1g2(xω2
i2

)n2 . . . gk(x
ωk
ik

)nkgk+1.

Here g1, . . . , gk+1 are elements of the group G, n1, . . . , nk are rational integers, i1, . . . , ik ∈
{1, 2, . . . , n}, and ω1, . . . , ωk ∈ Ω. The image of an element h ∈ G under the action of an operator ω
is denoted by hω. Note that every operator ω ∈ Ω acts on G by an endomorphism, which we denote
by the same symbol ω. Thus, raising an element h ∈ G to the power n ∈ Z commutes with the
operator ω ∈ Ω, (hω)n = (hn)ω; so we write hnω (or hωn) instead of (hω)n for short. Under these
conventions, a polynomial w(x1, . . . , xn) in variables x1, . . . , xn over the group G with the set of
operators Ω is an expression of the form

w(x1, . . . , xn) = g1x
ω1n1
i1

g2x
ω2n2
i2

. . . gkx
ωknk
ik

gk+1. (5)

Below maps Gn → G of the form (5) will be referred to as (n-variate) polynomial functions over
groups with operators. Note that whenever G is an “ordinary group,” that is, a group with an
empty set of operators, a polynomial w(x1, . . . , xn) in variables x1, . . . , xn over the group G can be
written as

w(x1, . . . , xn) = g1x
n1
i1

g2x
n2
i2

. . . gkx
nk
ik

gk+1. (6)

Sometimes it is convenient to represent polynomials in a form other than (5) (or (6)), namely, in
the form

w(x1, . . . , xn) = w(1, . . . , 1)xh1ω1n1
i1

xh2ω2n2
i2

. . . xhkωknk
ik

, (7)

where h1, . . . , hk ∈ G. Indeed, as xg = gxg for all x ∈ G, where x �→ xg = g−1xg is an automorphism
of G induced by the conjugation by an element g ∈ G, we can rewrite (5) in the form (7) and vice
versa. Note that in the case of univariate polynomials (i.e., when n = 1) in a variable x, the
polynomial can be represented in the form

w(x) = w(1)xh1ω1n1+...+hkωknk , (8)

where xhω1n+gαm stands for xhω1nxgαm = h−1(xω)nhg−1(xα)mg. A representation of the form (8) is
convenient if, say, we consider a map induced by a polynomial w(x) on a normal Abelian Ω-invariant
subgroup N ⊂ G. In the latter case the sum h1ω1n1 + . . .+hkωknk can be treated as an element of
the commutative ring End(N) of endomorphisms of the group N if we associate every ω ∈ Ω with
an endomorphism of N induced by the operator ω and every g ∈ G with an automorphism of N
induced by the conjugation by g. For instance, if N is an elementary Abelian p-group, p prime,
we can treat N as a vector space over Fp (and hence End(N) is merely the algebra of all square
matrices over Fp); so the sum h1ω1n1 + . . . + hkωknk can then be treated as just the sum of the
matrices h1ω1n1, . . . , hkωknk, i.e., as a matrix over Fp.

2.1. Noncommutative differential calculus. We need to develop necessary tools for study-
ing polynomial dynamics over groups (with operators). In the case of a commutative structure, e.g.,
a ring Zp of p-adic integers, one of the key points in our study of a dynamical system f : Zp → Zp

was the “formula of small increments” that expresses the value of the function f at the point x + h,
where h is p-adically small, via the derivative f ′(x): the congruence

f(x + h) ≡ f(x) + h · f ′(x) (mod pordp h+1) (9)
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holds for any polynomial f(x) ∈ Zp[x] and all h ∈ Zp. Using this formula, we actually reduced
the problem of determining whether f is measure-preserving (or ergodic) to the study of the action
of f on the residue ring Z/pk

Z, where k is small, and to the study of the behavior of the derivative
f ′(x) (actually to the study of an affine map h �→ a + h · f ′(x) on the field Fp) (see, e.g., Hensel’s
lemma or Theorem 1.10). Our aim is to obtain an analog of formula (9) for non-Abelian groups.
For this purpose, we need a notion of the derivative of a polynomial over a group with operators.
This notion is a further generalization of the concept of free differential calculus (i.e., derivatives
of elements of a free group F (X) freely generated by X) put forth by R. Fox in connection with
knot theory (see [35]) and of Lausch’s notion of the derivative of a polynomial over a group with an
empty set of operators (see [63, 65]).

Let G be a group with a system of operators Ω. Then any polynomial w(x1, . . . , xn) over G
can be represented in the form (5), where ω1, . . . , ωk ∈ Ω. The polynomial w(x1, . . . , xn) is an
element of the group G[XΩ] of all polynomials in variables X = {x1, x2, . . .} over the group G with
the system of operators Ω. The group G[XΩ] is a free product of the group G by the free group
F (XΩ) freely generated by the set {xω

i : i = 1, 2, . . . , ω ∈ Ω}. Let us consider the semigroup free
product of the group G[XΩ] by a free semigroup freely generated by the elements of the set Ω. We
denote by Z〈G,Ω,X〉 the semigroup ring of the above-mentioned semigroup free product over the
ring of rational integers Z. The elements of this semigroup ring can be represented as finite sums∑

(i) zi
∏

(j) ωjwj , where zi ∈ Z, ωj ∈ Ω, wj ∈ G[XΩ], and i and j run over a finite set of subscripts.
By definition, the differentiation with respect to the variable xi is a map

∂

∂xi
: G[XΩ] → Z〈G,Ω,X〉

that satisfies the following conditions:

(i) ∂xj

∂xi
= δij is the Kronecker delta;

(ii) ∂g
∂xi

= 0 for any g ∈ G;

(iii)
∂xω

j

∂xi
= δijω for any ω ∈ Ω;

(iv) ∂uv
∂xi

= ∂u
∂xi

v + ∂v
∂xi

for any u, v ∈ G[XΩ].

This differentiation differs from the ordinary differentiation, e.g., of polynomials over commutative
rings only by identity (iv). From this identity it follows that for n ∈ Z

∂xn

∂x
=

⎧
⎪⎨

⎪⎩

xn−1 + xn−2 + . . . + 1 if n > 0,
0 if n = 0,

xn + xn+1 + . . . x−1 if n < 0.

It is easy to verify that there exists a unique map that satisfies all these conditions (i)–(iv).
The image ∂w

∂xi
of the polynomial w ∈ G[XΩ] under this map is called the derivative of the poly-

nomial w with respect to the variable xi. Furthermore, if N � G is an Abelian Ω-invariant nor-
mal subgroup of G, then, given g1, g2, . . . ∈ G, we associate every element W (x1, x2, . . . , xn) =∑

(i) zi
∏

(j) ωjwj(x1, . . . , xn) with an endomorphism W (g1, . . . , gn) ∈ End(N) induced on N by
W (g1, . . . , gn):

hW (g1,...,gn) = ((hz1)ω1)w1(g1,...,gn) · ((hz2)ω2)w1(g1,...,gn) . . . ,

where (·)wi(g1,...,gn) is the conjugation by the element wi(g1, . . . , gn) ∈ G. In the case of W = ∂w
∂xi

,
this endomorphism is called the value of the derivative of the polynomial w at the point (g1, . . . , gn)
and is denoted as ∂w(g1,...,gn)

∂xi
. The following formula, which follows directly from group laws, is now
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obvious:

w(g1h1, . . . , gnhn) = w(g1, . . . , gn) · h
∂w(g1,...,gn)

∂x1
1 . . . h

∂w(g1,...,gn)
∂xn

n , (10)

where h1, h2, . . . , hn ∈ N .
Example 2.1. For instance, let G be an arbitrary group with an empty set of operators, and

let w(x) = ax2bx−1c be a polynomial over G, a, b, c ∈ G. Now, if h ∈ N � G, then “pulling” the
element h to the right-hand position, i.e., using the identities hg = ghg, (hg)2 = g2hg2+g, . . . and
(hg)−1 = g−1h−1, (hg)−2 = g−2h−g−1−1, . . . , we see that (cf. (8))

w(xh) = w(x)hxbx−1c+bx−1c−x−1c.

Note that xbx−1c + bx−1c − x−1c is the derivative of the polynomial w(x).
In the case of polynomials in one variable x, we denote the derivative of the polynomial w(x)

by ∂w, for short. Thus, if N � G is an Abelian Ω-invariant normal subgroup of a group G with a
set of operators Ω, and if w(x) is a polynomial over G, then for all g ∈ G the following equality
holds:

w(gh) = w(g)h∂w(g), (11)

where ∂w(g) is the value of the derivative ∂w at the point (element) g ∈ G, i.e., an endomorphism
of N . Note that if, additionally, N is a minimal normal subgroup of a finite group G, then N is
isomorphic to the additive group of a vector space over Fp = Z/pZ. Thus, we can treat the values
of derivatives of polynomials as linear transformations of this vector space.

Example 2.2. In Example 2.1 let G = Sym(4) be a symmetric group of permutations of a set
of four elements, and let N = K4 � Sym(4) be its unique minimal normal subgroup, which is the
Klein group K4. Note that K4 is isomorphic to the additive group of a 2-dimensional vector space
over the field F2. The group Sym(4) is a semidirect product Sym(4) = A � B � K4, where A is a
cyclic group of order 2 and B is a cyclic group of order 3. Let a and b be generators of the groups
A and B, respectively; then ba = b−1. Moreover, we may assume4 that a and b act on K4 by linear
transformations with matrices

(
1 0
1 1

)

and
(

0 1
1 1

)

,

respectively. Let c ∈ K4; then the value of the derivative of the polynomial w(x) at the point a is

∂w(a) = aba−1 + ba−1 − a−1 = b−1 + ba − a =
(

1 1
1 0

)

+
(

0 1
1 1

)(
1 0
1 1

)

−
(

1 0
1 1

)

=
(

1 0
0 0

)

.

If G is a finite solvable group, we can define the value of the derivative in the ring of endomor-
phisms of a certain chief factor of the group G similarly to the case when N is a minimal normal
Ω-invariant subgroup of G. Recall that a chief factor of the group G with a system of operators Ω
is, by definition, any factor group H/K, where H and K are normal Ω-invariant subgroups in G,
H ⊇ K, H �= K, and there is no normal Ω-invariant subgroup S in G such that H ⊇ S ⊇ K,
H �= S, S �= K. Thus, for any polynomial w(x) over G, the action of w(x) on the factor group G/K
is well defined: w(g) = (wψ)(g), where g ∈ G/K and ψ : G → G/K is a canonical epimorphism.
Furthermore, as G is solvable and H/K is a minimal normal Ω-invariant subgroup of G/K, H/K
is Abelian and is therefore an elementary Abelian p-group for some prime p. Thus, the values of
the derivative ∂w in the rings of endomorphisms of the chief factors are well defined and can be

4By choosing an appropriate basis of the vector space associated with K4.
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regarded as matrices over the corresponding finite field Fp. We denote these values as ∂H/Kw(g).
Note that here we may also take g ∈ G, meaning that ∂H/Kw(g) = ∂H/Kw(ψ(g)). It is clear that
“small increment” formulas (10) and (11) hold in this case as well; however, they are identities in
the factor group G/K rather than in the group G.

Example 2.3. Consider a group G = Sym(3) � Q2, where the symmetric group Sym(3) (of
order 6) acts on the quaternion group Q2 (of order 8) by outer automorphisms. We recall that
Aut(Q2) ∼= Sym(4) and the subgroup K4 ⊂ Sym(4) is isomorphic to the group of inner automor-
phisms Q2/Z(Q2). The center Z(Q2), which is of order 2, is a fully invariant subgroup in G, and
G/Z(Q2) ∼= Sym(4); so A = Q2/Z(Q2) is a chief factor of G. As A ∼= K4, A is isomorphic to the
additive group of a 2-dimensional vector space over F2. We can consider the polynomial w(x) from
Example 2.1 as a polynomial over G assuming that a is a transposition in Sym(3), b is an element
of order 3 in Sym(3), and c ∈ Q2. Then, identifying the automorphisms induced by conjugations
by a and b with the respective 2× 2 matrices over F2 as in Example 2.2, we conclude that the value
∂Aw(a) of the derivative in the ring of endomorphisms End(A) of the chief factor A is the matrix

(
1 0
0 0

)

= aba−1 + ba−1 − a−1 = b−1 + ba − a = ∂Aw(a).

Thus, (11) in this case reads

w(ah) · Z(Q2) = w(a)h∂Aw(a) · Z(Q2)

for all h ∈ Q2.
It should also be pointed out that differential calculus on groups becomes noticeably simpler

in one special case, namely, for finite nilpotent groups with an empty set of operators. Since all
factors of the chief series of a finite nilpotent group are central (i.e., H/K lies in the center of the
factor group G/K) and are prime-order groups (say, of order p), the value of the derivative of the
polynomial (6) with respect to the ith variable at any point in the ring of endomorphisms of any
principal factor is congruent modulo the corresponding p to the degree of the polynomial in the ith
variable:

degi w(x1, . . . , xn) =
∑

ij=i

nj;

so the “small increment” formula (10) becomes especially simple:

w(g1h1, . . . , gnhn) = w(g1, . . . , gn) · hdeg1 w(x1,...,xn)
1 . . . h

degn w(x1,...,xn)
n (12)

for all g1, . . . , gn ∈ G, h1, . . . , hn ∈ A, and for every central factor A = H/K of G. Of course, (12)
holds in G/K but not necessarily in G.

2.2. Bijective polynomials over finite groups. In this subsection, we apply derivations
on groups to determining whether a polynomial w(x) over a finite solvable group G is measure-
preserving, that is, whether w induces a bijective transformation g �→ w(g) on G. Further, in
Section 4, we will see that this problem is connected to the following one: Does a polynomial over
a profinite group preserve the Haar measure on this group?

Let A be a minimal normal Ω-invariant subgroup of a finite solvable group G with operators Ω;
then A is an elementary Abelian p-group for a suitable prime p; i.e., A is isomorphic to the additive
group of a vector space over Fp = Z/pZ. Thus, for any polynomial w(x) ∈ G[x] and every g ∈ G
the derivative ∂w(g) is a linear transformation on this vector space. Furthermore, the polynomial
w(x) naturally induces a transformation on the factor group G/A: If ϕ : G → G/A is a canonical

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 265 2009



NONCOMMUTATIVE ALGEBRAIC DYNAMICS 41

epimorphism, this transformation is a well-defined map wϕ : ϕ(g) �→ ϕ(w(g)), g ∈ G. If this map is
a bijection, we will say that w is bijective modulo the subgroup A. The following proposition is an
immediate consequence of Proposition 1.2 combined with formula (11):

Proposition 2.4. A polynomial w(x) ∈ G[x] is bijective on G if and only if the following two
conditions hold simultaneously :

(i) the polynomial w is bijective modulo A, and
(ii) the derivative ∂w(g) induces a nonsingular linear transformation on A for all g ∈ G.

From here, by easy induction on the length of the chief series of G we deduce the following

Theorem 2.5. A polynomial w(x) over a finite solvable group G with a set of operators Ω
is bijective on G if and only if every matrix ∂Aw(g) is nonsingular for any chief factor A of the
group G and any element g ∈ G.

This theorem is a trivial generalization of the result of Lausch [63], proved by him for Ω = ∅, to
the case of a nonempty system of operators Ω. The corresponding result for nilpotent groups with
Ω = ∅ is especially simple.

Corollary 2.6. If G is a finite nilpotent group (with an empty set of operators), then a poly-
nomial w(x) ∈ G[x] is bijective on G if and only if its degree is coprime to the order of G.

Example 2.7. Let G be a symmetric group of degree 4 (with an empty set of operators),
and let w(x) = ax2bx−1c, where a, b, c ∈ G. If a, b, and c are as in Example 2.2, then w is not
bijective on G since ∂Aw(g) is singular whenever A = K4 and g = a. However, the polynomial
v(x) = ax2cx−1b is bijective on G. Indeed, in the notation of Example 2.2, ∂K4v(g) = b and
∂Av(g) = ∂Bv(g) = 1 for all g ∈ G.

3. ERGODIC POLYNOMIALS OVER FINITE GROUPS WITH OPERATORS

In this section, we study ergodic polynomial transformations on finite (noncommutative)
groups G with a set of operators Ω; that is, we study transitive transformations of the form (5).
Similarly to the commutative case, this problem inevitably leads to ergodic theory for infinite (al-
though profinite) groups endowed with a non-Archimedean metric. The latter theory is considered
in Section 4.

The existence of an ergodic polynomial imposes specific constraints both on the group G and on
the set of operators Ω. So, at the first stage, we must describe all groups G and sets of operators Ω
such that the group G with the set of operators Ω has ergodic polynomials. At the second stage, we
must describe these ergodic polynomials. Thus, at the first stage we must prove a group-theoretic
analog of Theorem 1.6 and then develop a version of ergodic theory for groups including non-Abelian
ones. We will see that the second stage will necessarily force us to consider ergodic (with respect to
the Haar measure) transformations on profinite groups endowed with a non-Archimedean metric.
Thus, the situation in the noncommutative case resembles the one for the commutative case when
the problem of characterization of transitive polynomials over residue rings led us to p-adic ergodic
theory on the ring of p-adic integers Zp.

We restrict our considerations to ergodic polynomials over finite groups since in real-life settings
that we currently know only finite groups occur.

3.1. Basic properties of groups having ergodic polynomials. Denote by G the class of
all finite groups G with a set of operators Ω that have ergodic polynomials in one variable, that is,
groups for which there exist transitive transformations of the form

x �→ w(x) = g1x
ω1n1g2x

ω2n2 . . . gkx
ωknkgk+1, (13)
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where g1, . . . , gk+1 ∈ G, ω1, . . . , ωk ∈ Ω, and n1, . . . , nk ∈ Z. The class G obviously contains all
polynomially complete groups; it is well known that the latter are (except for the group of order 2)
all finite simple non-Abelian groups, and vice versa. In other words, any transitive transformation
of a finite simple non-Abelian group can be represented by a polynomial over this group, and for
applications it is important to find an explicit form of this polynomial. Note that in order to solve
an analogous problem for a polynomially complete universal algebra of another kind, namely, for
a finite field, we can use interpolation formulas that allow us to express any map of a finite field
into itself as a polynomial over this field. However, this solution is of no practical value unless the
field is of small order, since constructing the corresponding polynomial via the interpolation formula
requires a number of calculations comparable to the order of the field. Arguments of this kind, but
only in the superlative degree, are also applicable to polynomials over finite simple non-Abelian
groups. Indeed, at present interpolation formulas are only known for one, the smallest, group of
this kind, the alternating group Alt(5) of degree 5 (see [64, 13]). However, transitive polynomials
that were obtained in this way are of length about 104; that is, k ≈ 104 in representation (13)
of these polynomials. This is absolutely unacceptable for practical purposes, e.g., for cryptology,
especially being compared to the order of the group, which is only 60. There is no hope that in
the nearest future somebody will find out whether there exist short transitive polynomials over
large finite simple non-Abelian groups, e.g., for Alt(n), n > 5, let alone express these polynomials
explicitly.

By virtue of what has been said, it is reasonable to exclude finite simple non-Abelian groups from
further consideration. But then, together with these groups, all nonsolvable groups must necessarily
be excluded as well. Indeed, suppose that G is a finite nonsolvable group with a set of operators Ω,
w(x) is transitive polynomial over G, and N is a fully invariant subgroup; that is, N is closed under
the action of all endomorphisms from End(G). Let |G : N | = k. Then it is easy to see that the
kth iterate wk(x) is an ergodic polynomial over the group N considered as a group with the set of
operators End(N) (cf. Proposition 1.2). Furthermore, if K is a fully invariant subgroup in N , then,
by Proposition 1.2, wk(x) induces a transitive polynomial transformation on the factor group N/K.
However, since the group G is nonsolvable, there exist fully invariant subgroups N and K such that
the factor group N/K is isomorphic to the direct power of a finite simple non-Abelian group H,
i.e., N/K ∼= Hm. Indeed, as G is nonsolvable, at least one factor Gi/Gi+1 of the composite fully
invariant series G = G0 � G1 � . . . � Gn = {1} must be non-Abelian. Recall that a series is called
fully invariant if every Gi is a fully invariant subgroup in G; a series is composite if Gi+1 is a maximal
fully invariant subgroup of G that is a subgroup of Gi. So Gi/Gi+1 is a minimal fully invariant
subgroup in Gi−1/Gi+1. However, a minimal fully invariant subgroup of a finite group is isomorphic
to a direct power of a simple group, either Abelian or non-Abelian. This means that if we know
how to construct an ergodic polynomial w(x) over the finite nonsolvable group G (with some set of
operators), then we can also construct an m-dimensional ergodic polynomial transformation on the
finite simple non-Abelian group H (with operators). But the arguments used above show that there
is no hope of solving the latter problem in the nearest future. Hence, all finite groups for which we
may hope to explicitly find transitive polynomials must not contain simple non-Abelian sections5;
thus, we have to restrict our considerations to solvable groups only.

Now we state some important properties of groups having transitive polynomials.
Proposition 3.1. Let G be a finite group with a set of operators Ω, let w(x) be a transitive

polynomial on G, let N be an Ω-invariant normal subgroup of G, and let |G : N | = k. Then the
following is true:

1. The polynomial wk(x) is transitive on the group N, which is considered as a group with a
set of operators Ω.

5Recall that a section of a group is a factor group of a subgroup.
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2. The polynomial (wϕ)(x), where ϕ is a canonical epimorphism of G onto G/N, is transitive
on the group G/N, which is considered as a group with a set of operators Ω.

3. The subgroup N is a normal Ω-invariant closure of some g ∈ N ; that is, N is a minimal
subgroup of G that contains all ghω, where h ∈ G and ω ∈ Ω.6

4. If N is Abelian, then either N is a cyclic group or N is isomorphic to the direct product of
the Klein group K4 by a cyclic group C(m) of odd order m, m ∈ N (i.e., the case m = 1 is
also possible).

5. If N ∼= K4, then there exists either an element a ∈ G or an operator α ∈ Ω that acts on N
as an automorphism of order 2.

Claims 1 and 2 of Proposition 3.1 in combination with Proposition 1.2 can serve as a tool to
determine whether a given polynomial w(x) is transitive on a finite group G. The following obvious
corollary holds:

Corollary 3.2. Let G, N, ϕ, and k be the same as in Proposition 3.1. Then a polynomial
w(x) is transitive on G if and only if the polynomial (wϕ)(x) is transitive on G/N and wk(x) is
transitive on N .

Using Corollary 3.2, we are able to determine whether a polynomial w(x) is transitive on a
solvable group G: We first verify whether (wϕ)(x) is transitive on the factor group G/G′, where
ϕ : G → G/G′ is a canonical epimorphism; then we verify whether (wkψ)(x) is transitive on the
factor group G′/G′′, where ψ : G → G/G′′ is a canonical epimorphism and k = |G : G′|, etc.

Example 3.3. The polynomial w(x) = ax2uvx5b is transitive on the symmetric group Sym(4)
whenever Sym(4) is represented as a semidirect product A � B � K4, where A is a cyclic subgroup
of order 2 with a generator a, B is a cyclic subgroup of order 3 with a generator b, K4 = {1, u, v, uv}
is the Klein group of order 4, ba = b−1, ua = u, va = uv, ub = v, and vb = uv.

Indeed, (wϕ)(x) = ax7b, where ϕ : Sym(4) → Sym(4)/K4 = A�B ∼= Sym(3) is an epimorphism.
As #Sym(3) = 6, the polynomial (wϕ)(x) induces the same transformation on the factor group
Sym(4)/K4 as the polynomial w(x) = axb on the group A � B. Since every element from A � B
has a unique representation in the form aibj, where i ∈ Z/2Z and j ∈ Z/3Z, the polynomial w(x)
is transitive on A � B.

Now we calculate w6(h) for h ∈ K4. Using derivation formulas from Subsection 2.1, for s ∈
A � B ⊂ Sym(4) we obtain w(sh) = w(s)h∂w(s) = w(s) · (uv)s

5b · h∂w(s); hence for i = 1, 2, . . . we
have

wi(sh) = wi(s) · (uv)
∑i−1

k=0(w
k(s))5·b·

∏i−1
�=k+1 ∂w(w�(s)) · h

∏i
k=0 ∂w(wk(s)).

Note that the products in this formula are not commutative; e.g.,

(wk(s))5 · b ·
i−1∏

	=k+1

∂w(w	(s)) = (wk(s))5 · b · ∂w(wk+1(s)) · ∂w(wk+2(s)) . . . ∂w(wi−1(s))

in that order (we assume as usual that a product over an empty set of indices is 1). Note that we
make all these calculations in the ring End(K4) of all endomorphisms of the group K4. As the latter
group is merely the additive group of the 2-dimensional vector space over the two-element field F2,
we may actually work with 2×2 matrices over F2: We arbitrarily choose a basis in this vector space,
for instance, associating u ∈ K4 with the vector (1, 0) and v ∈ K4 with the vector (0, 1); then, as
ub = v and vb = uv, we associate, e.g., the element b with the matrix

(
0 1
1 1

)
. Alternatively, rather

than working with matrices, we can perform multiplications in Aut(K4) = A � B and perform
6Everywhere in this section we assume that Ω contains the identity operator Id.
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additions with the use of the following relations that hold in the (noncommutative) ring End(K4)
of all endomorphisms of the group K4:

α1 + α1 + α3 = 0, α1, α1, α3 are automorphisms of order 2 of K4, (14)

β1 + β2 + 1 = 0, β1, β2 are automorphisms of order 3 of K4. (15)

Here 1 stands for the identity automorphism, and 0, for the zero endomorphism of the group K4

(i.e., g1 = g and g0 = 1 for all g ∈ K4). Recall that the group K4 is isomorphic to the additive group
of the 2-dimensional vector space over the field F2, so End(K4) is isomorphic to the algebra of all
2 × 2 matrices over F2; hence, the above-mentioned identities can be verified directly. As a and b
are just automorphisms of respective orders 2 and 3 in Aut(K4) (which are induced by conjugation
by a, b ∈ Sym(4)), relations (14) and (15) of the ring End(K4) can be rewritten in the following
form:

ab2 + ab + a = 0, (16)

b2 + b + 1 = 0. (17)

Using either of these ways, we calculate the values of the derivative ∂w(t) = (t + 1)t5b + (t4 + t3 +
t2 + t + 1)b for relevant t = wi(1) and finally obtain

w6(h) = (uv)b
2+ab2ha = vuha.

However, by Remark 1.4, the transformation h �→ vuha is transitive on K4. By Proposition 1.2 this
finally proves that the polynomial w(x) = ax2uvx5b is transitive on Sym(4).

3.2. Finite solvable groups having ergodic polynomials. In this subsection, we char-
acterize finite solvable groups (with operators) having ergodic polynomials. First, we consider the
multivariate case. We characterize finite solvable groups G with a system of operators Ω such
that there exist a transitive transformation W = (w1, . . . , wn) : Gn → Gn, where w1, . . . , wn are
polynomials in n variables.

3.2.1. The multivariate case. It turns out that actually only univariate or bivariate transitive
polynomial transformations may exist over finite solvable groups with operators:

Proposition 3.4. Let G be a finite solvable group with a system of operators Ω. If the map
W = (w1, . . . , wn) : Gn → Gn is transitive, where w1, . . . , wn are polynomials in variables x1, . . . , xn

over the group G with operators Ω, then either n = 1, or n = 2 and #G = 2.
Now, to characterize finite solvable groups (with operators) having ergodic polynomials, we can

restrict our considerations to univariate polynomials. However, we must first impose some more
constraints on the system of operators.

Clearly, the existence of a transitive polynomial over a certain group G with a system of opera-
tors Ω not only restricts the possible structure of the group G, but also imposes certain constraints
on Ω. A transitive polynomial may exist for a given group G with one system of operators and
may not exist for the same group G with another system of operators. The Klein group K4, an
elementary Abelian group of type (2, 2), can serve as an example: If we take the whole group
Aut(K4) of automorphisms of the group K4 as Ω, then such a polynomial exists, but if we take as Ω
the set of all automorphisms of order 3, then the group K4 with this system of operators has no
ergodic polynomial by Theorem 1.3. Therefore, in order to characterize all finite solvable groups
with operators that have ergodic polynomials, it is reasonable to do the following. We should first
try to find a description of all finite solvable groups G that admit ergodic polynomial functions
and possess a maximal system of operators Ω, i.e., a system such that any endomorphism of the
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group G can be induced by a certain operator from Ω, or, to put it another way, Ω = End(G),
where End(G) is the set of all endomorphisms of the group G. Then we should describe all ergodic
polynomials over each of the finite solvable groups G with the system of operators Ω = End(G) and,
in particular, for every ergodic polynomial w make a list E(w) of endomorphisms ω that occur in the
canonical representation (5) of the polynomial w. Then the final formulation of the corresponding
classification theorem will be as follows: A finite solvable group G with a system of operators Ω has
ergodic polynomials if and only if the group G with the system of operators End(G) has ergodic
polynomials and Ω induces on G all endomorphisms from E(w) for a certain ergodic polynomial w
over the group G with the system of operators End(G). In other words, actually we must describe all
finite solvable groups G with operators Ω = End(G) having ergodic polynomials, and then describe
all ergodic polynomials over every such group.

The corresponding classification theorem may be proved, although the proof would require
significant technical efforts and split into a number of separate cases. Actually the proof does not
yet exist since the significance of such a general theorem for applications is questionable in our view.
However, to demonstrate methods of proof, we consider further in this paper several cases that look
the most instructive and also may be useful in applications to cryptography and computer science.
Namely, we will describe solvable groups G having transitive polynomials in three cases, Ω = ∅,
Ω = Aut(G), and Ω = End(G). So denote by C0, CA, and CE the classes of all finite groups with
the systems of operators Ω = ∅, Ω = Aut(G), and Ω = End(G), respectively, that have ergodic
polynomials. Clearly, C0 ⊆ CA ⊆ CE. When describing solvable C0-, CA-, and CE-groups, we will
mainly follow the paper [2].

After we determine solvable groups in all these three classes, we describe ergodic (i.e., transitive)
polynomials over some of these groups that we consider the most important in view of possible
applications. The latter problem turns out to be a problem of characterization of polynomial
ergodic transformations on infinite pro-2-groups endowed with a non-Archimedean metric.

We note that part of the work is already done in the paper [49], which studies the so-called
single orbit groups. Recall that the latter are groups G having transitive affine transformations,
i.e., transitive transformations of the form x �→ axα, where a ∈ G and α ∈ Aut(G). It turns
out that all these finite groups are extensions of cyclic groups by cyclic groups: They have cyclic
normal subgroups such that the corresponding factor groups are cyclic. Groups of this type are
called cyclic-by-cyclic or metacyclic groups; note that the derived length of every such group is 2
whenever the group is non-Abelian. The paper [49] also describes automorphisms α that occur in
transitive affine transformations of these groups.

As we will see, all three classes of solvable C0-, CA-, and CE-groups are wider than the class
of finite single orbit groups: There are a number of finite solvable groups that have ergodic (i.e.,
transitive) polynomials but do not have transitive affine transformations.

3.2.2. The univariate case: Nilpotent groups. Now we determine which finite nilpotent groups G
with operators Ω have transitive polynomials for the cases Ω = ∅, Ω = Aut(G), and Ω = End(G);
i.e., we find all nilpotent groups in the classes C0, CA, and CE. Here and in what follows we represent
groups by generators and relations, if necessary. For instance, the cyclic group C(m) of order m
generated by c will be written as C(m) = gp(c ‖ cm = 1).

The following theorem is true:

Theorem 3.5. A finite nilpotent group lies in CE if and only if it is either trivial or isomorphic
to one of the following groups:

(1) the cyclic group C(m) of order m, m = 1, 2, 3, . . . ;

(2) the Klein group K4;

(3) the dihedral group Dn = gp(u, v ‖ u2 = v2n
= 1, vu = v−1) of order 2n+1, n = 2, 3, 4, . . . ;
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(4) the (generalized) quaternion group Qn = gp(u, v ‖ v2n
= 1, vu = v−1, u2 = v2n−1

) of
order 2n+1, n = 2, 3, 4, . . . ;

(5) the semidihedral group SDn = gp(u, v ‖ u2 = v2n
= 1, vu = v2n−1−1) of order 2n+1, n =

3, 4, 5, . . . ;
(6) the direct product H × C(m), where H is a group of type (2), (3), (4), or (5) and m > 1

is odd.

Out of these groups, the groups SDn and SDn × C(m) with an odd m, and only these groups, do
not lie in CA. Finally, the class C0 consists exactly of all cyclic groups C(m), m = 1, 2, 3, . . . .

Remark 3.6. Note that Theorem 3.5, together with the results of [49], implies that all CA-
groups are single orbit groups, whereas CE-groups are not: Semidihedral groups SDn lie in CE \ CA.

3.2.3. The univariate case: Solvable groups. Here we determine which finite solvable groups G
with operators Ω have transitive polynomials for the cases Ω = ∅, Ω = Aut(G), and Ω = End(G);
i.e., we find all solvable groups in the classes C0, CA, and CE. It turns out that there are not too
many types of finite solvable nonnilpotent groups of this kind. Loosely speaking, these groups are
either noncyclic metacyclic groups or extensions of (meta)cyclic groups by groups that in some sense
“look like” either a symmetric or an alternating group of degree 4. Moreover, the derived lengths of
all CE-groups are not greater than 3, although from Theorem 3.5 we know that there exist nilpotent
CE-groups of arbitrarily large class.

In order to formulate the corresponding theorem, we introduce the following groups:

• M(m,k, s) = gp(c, d ‖ cm = dk = 1, dc = ds).
Here m,k = 2, 3, 4, . . . , s �≡ 1 (mod k), sm = 1 (mod k), and m and k are coprime; so M(m,k, s) =
C(m) � C(k). These groups are metacyclic and, thus, metabelian, i.e., solvable of derived length
exactly 2. Note that we assume that the groups M(m,k, s) are non-Abelian (otherwise s = 1 and
the group is cyclic, C(mk)). It is clear that all Sylow p-subgroups of these groups M(m,k, s) are
cyclic: If pn is the maximum power of a prime p that divides mk, then either pn | m or pn | k, so
the Sylow p-subgroup of M(m,k, s) is conjugate either to a Sylow p-subgroup of the group C(m)
or to a Sylow p-subgroup of the group C(k). Furthermore, these groups M(m,k, s) form a class of
the so-called Z-groups, i.e., finite groups whose Sylow p-subgroups are all cyclic, for every prime
p | mk (see, e.g., [96]). As C(m) � C(k) = (C(m1) × C) � C(k) = C(m1) � (C(k) × C), where C
is the direct product of all Sylow p-subgroups of C(m) that centralize the subgroup C(k), different
triples m,k, s may correspond to isomorphic groups. Among all representations of a Z-group G as
a semidirect product of cyclic groups of coprime orders, one is distinguished: G = C(m) � C(k)
with Z(G) ∩ C(k) = {1}; so the action of the generator of C(m) on C(k) fixes only one element
from C(k), namely, 1. This representation will be referred to as a canonical representation of a
Z-group and denoted by Z(m1, k1, s1); so M(m,k, s) ∼= Z(m1, k1, s1) for suitable m1, k1, and s1.
From [96, Proposition 12.11] it follows, in particular, that s1 − 1 is coprime to k1. Note that
M(2, 3, 2) = Z(2, 3, 2) = Sym(3) is a symmetric group of degree 3.

• A(r) = gp(b, u, v ‖ b3r
= u2 = v2 = 1, uv = vu, ub = v, vb = uv).

The group A(r) is a split extension of the Klein group K4 by a cyclic group of order 3r, r = 1, 2, 3, . . . :
A(r) = C(3r) � K4. The group A(r) is solvable of derived length 2, i.e., is a metabelian group; in
particular, A(1) = Alt(4), the alternating group of degree 4.

• S(r) = gp(a ‖ a2 = 1) � A(r), r = 1, 2, 3, . . . .

Here ba = b−1, ua = u, and va = uv. This group is a split extension of the group A(r) by the cyclic
group C(2) of order 2. The derived length of S(r) is 3; in particular, S(1) = Sym(4) is a symmetric
group of degree 4.

• AQ(r) = gp(b ‖ b3r
= 1) � Q2, r = 1, 2, 3, . . . .
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Here ub = v−1 and vb = uv−1. The group AQ(r) is a split extension of the quaternion group Q2 of
order 8 by a cyclic group C(3r) of order 3r. The group AQ(r) is a metabelian group.

• SQ1(r) = gp(a ‖ a2 = 1) � AQ(r), r = 1, 2, 3, . . . .

Here ba = b−1, ua = u−1, and va = uv. This group is a solvable group of derived length 3.

• SQ2(r) = gp(a, b, u, v ‖ b3r
= v4 = 1, ba = b−1, ua = u−1, va = uv, ub = vu = v−1, vb =

uv−1, a2 = u2 = v2), r = 1, 2, . . . .

The group SQ2(r) is a partial semidirect product of the group AQ(r) by the cyclic group A =
gp(a ‖ a4 = 1) of order 4; the amalgamated subgroups (those generated by a2 ∈ A and by u2 ∈
Q2 ⊂ AQ(r)) are cyclic groups of order 2. The group SQ2(r) is a solvable group; its derived
length is 3.

Neither of the above groups is nilpotent. These groups are main “building blocks” of solvable
groups with operators that have transitive polynomials. It turns out that the latter groups are
(semi)direct products of the above groups and of nilpotent groups from Theorem 3.5.

Theorem 3.7. A finite solvable group lies in CE if and only if it is isomorphic to one of the
following groups:

(1) C(m);

(2) M(m,k, s);

(3) K4;

(4) Qn;

(5) Dn;

(6) SDn;

(7) A(r);

(8) AQ(r);

(9) S(r);

(10) SQ1(r);

(11) SQ2(r);

(12) A�B, where the orders of the groups A and B are coprime, A is any group of types (3)–(11),
and B is any group of type (1) or (2).

Out of these groups, the following groups lie in CA: All groups that are isomorphic to groups of
types (1)–(5), (7)–(11) and all groups that are isomorphic to certain groups of type (12), namely, to
groups of the following types (13)–(15):

(13) A×B, where A is any group of types (3)–(5), (7)–(11) and B is any group of type (1) or (2);

(14) A is any group of types (3)–(5), B is any group of type (1) or (2), A acts on B by an
automorphism of order 2, and the centralizer of B in A is cyclic 7;

(15) A is any group of types (9)–(11), and B is any group of type (1) or (2).

Finally, out of these groups, exactly all groups that are isomorphic to groups of types (1), (2),
(9)–(11), and (15) lie in C0.

7This means that if A is either a dihedral group or a generalized quaternion group of order > 8, the centralizer is
a subgroup generated by v; see the representation of these groups by generators and relations in the statement
of Theorem 3.5.
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4. ERGODIC THEORY FOR PROFINITE GROUPS

In this section, we develop ergodic theory for polynomials over profinite groups. Actually we con-
sider groups (with operators) that can be approximated by finite solvable groups. These groups can
be naturally endowed with a non-Archimedean metric and a probabilistic measure, the normalized
Haar measure. Polynomials over these groups induce continuous and measurable transformations
on these groups, and we study conditions under which these transformations are measure-preserving
or ergodic.

The main problem we are concerned with is how to determine bijective and/or transitive poly-
nomials over finite groups with operators. In this section we will see that this problem leads to the
question of how to determine measure-preserving/ergodic polynomial transformations on a profinite
group. As a matter of fact, we will act in a manner similar to that we proceeded during the study of
ergodic polynomial transformations over residue rings. In the latter case, we considered a spectrum
of residue rings modulo pk, k = 1, 2, . . . , p prime,

. . .
mod pk+1

−−−−−−→ Z/pk+1
Z

mod pk

−−−−−→ Z/pk
Z

mod pk−1

−−−−−−→ . . .
mod p−−−−→ Z/pZ,

where the projection epimorphisms are the reductions modulo pk. The inverse limit of this spectrum
is the ring Zp of p-adic integers

Zp = lim←−
k→∞

Z/pk
Z,

and Theorem 1.8 states that a 1-Lipschitz transformation on Zp is ergodic if and only if it is
transitive modulo pk (i.e., ergodic on Z/pk

Z) for all k = 1, 2, . . . . In particular, the corresponding
result for polynomials (Corollary 1.11) is as follows: a polynomial over Zp is ergodic if and only
if it is transitive modulo p3 for p ∈ {2, 3} or modulo p2 for other p. A practical impact of this
result is that if one needs to determine whether a polynomial is transitive modulo pk, where k is
large, he only has to determine whether it is transitive on a much smaller set, of order p3. This is a
general effect that follows from the compatibility of polynomial maps and from the properties of the
measure on Zp. In this section, we demonstrate that a similar effect takes place for noncommutative
algebraic structures, namely, for non-Abelian groups with operators. We prove a group-theoretic
analog of the result on ergodic polynomials over p-adic integers for polynomials over the inverse
limits of finite solvable groups. We also develop a similar technique to determine measure-preserving
polynomials. The difference between these two cases is that measure-preserving polynomials exist
over the inverse limits of arbitrary finite solvable groups, whereas ergodic polynomials exist only
over the inverse limits of some special finite solvable groups, namely, those described in Theorem 3.7.

4.1. Metric and measure on a profinite group. First, following [58], we recall some facts
about profinite groups. Let

. . .
ϕn+1−−−→ Gn

ϕn−−→ Gn−1
ϕn−1−−−→ . . .

ϕ1−→ G0
ϕ0−→ {1}

be an inverse spectrum of groups Gn, n = 0, 1, 2, . . . , and let

G∞ = lim←−
n→∞

Gn

be the corresponding inverse limit. That is, the group G∞ possesses an (infinite) decreasing chain
of normal subgroups G∞ � Nn,

G∞ � N0 � N1 � N2 � . . . � {1}
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such that G∞/Nn = Gn,
⋂∞

n=0 Nn = {1}, and ker ϕn = Nn−1/Nn, n = 1, 2, . . . . The group G∞ is
said to be profinite if all Nn are of finite indices, that is, if all Gn are finite groups, n = 0, 1, 2, . . . .
A profinite group G∞ can be endowed with a natural topology, a profinite topology, where N =
{Nn : n = 0, 1, 2, . . .} form a base of open neighborhoods of 1, and so all cosets with respect to all
these normal subgroups Nn form a base of this topology. The group G∞ is compact with respect to
this topology. Moreover, if B is the smallest σ-algebra containing the compact subsets of G∞, then
there is a unique measure μ on B such that μ(gS) = μ(Sg) = μ(S) for g ∈ G∞ and S ∈ B, μ is
regular, and μ(G∞) = 1. The measure μ is the (normalized) Haar measure on G∞; actually μ is a
natural probability measure on G∞. Now, given a measurable transformation g �→ w(g), g ∈ G∞
(where, e.g., w(x) ∈ G∞[x] is a polynomial over G∞), we may consider whether this transformation
is measure-preserving or ergodic with respect to μ. Note that a polynomial transformation of G∞
is a measurable transformation as it is a composition of multiplications, which are measurable.
Furthermore, the group G∞ can be endowed with a metric d that agrees with the profinite topology
on G∞ and is a non-Archimedean metric. If πn : G∞ → G∞/Nn is a canonical epimorphism, put

d(x, y) = 2−	, where � = min{n : πn(x) �= πn(y)},

and d(x, y) = 0 if πn(x) = πn(y) for all n ≥ 0. Note that given a sequence G = (gn ∈ Gn)∞n=0

such that ϕn(gn) = gn−1 for all n = 1, 2, . . . , we consider a sequence G′ = (g′n ∈ G∞)∞n=0 such that
πn(g′n) = gn for all n = 0, 1, 2, . . . . The latter sequence G′ converges with respect to the metric d
to some element g ∈ G∞, which has the following property: πn(g) = gn for all n = 0, 1, 2, . . . .
The element g ∈ G∞ does not depend on the choice of representatives g′n in cosets with respect
to the normal subgroups Nn; so we call the element g a limit of the sequence G = (gn ∈ Gn)∞n=0.
Every element g ∈ G∞ is then a limit (in this sense) of a suitable sequence (gn ∈ Gn)∞n=0 such that
ϕn(gn) = gn−1, n = 1, 2, . . . .

Further, if f : G∞ → G∞ is a compatible map (i.e., f(gN) ⊂ f(g) · N for every g ∈ G∞
and N � G∞), then the map f mod N : π(g) �→ π(f(g)), g ∈ G∞, where π : G∞ → G∞/N is a
canonical epimorphism, is a well-defined map of G∞/N into G∞/N ; so we may speak of bijectivity
and transitivity of the map f modulo the normal subgroup N meaning the bijectivity (respectively,
transitivity) of the map f mod N : G∞/N → G∞/N . As usual, when we speak about maps induces
by polynomials, we do not distinguish between polynomials and the respective polynomial maps; so
in what follows we speak of measure-preserving, ergodic, transitive, etc. polynomials meaning the
respective properties of the corresponding polynomial maps. The following analog of Theorem 1.8
holds:

Theorem 4.1 [58]. Let w(x) ∈ G∞[x] be a polynomial over a profinite group G∞. Then, the
following statements are equivalent :

• w is measure-preserving with respect to the Haar measure μ;

• w is bijective modulo Nn for all n = 0, 1, 2, . . . ;

• w is an isometry with respect to the metric d.

Also, the following statements are equivalent :

• w is ergodic with respect to μ;

• w is transitive modulo Nn for all n = 0, 1, 2, . . . .

Theorem 4.1 is a special case of [58, Theorem 1.1]; we refer the reader to [58] for proofs and
more detailed information on topological, metric, and other relevant properties of profinite groups.
We note that similar statements remain true for groups with a set of operators Ω; we only must
consider Ω-invariant normal subgroups rather then ordinary normal subgroups.
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4.2. Equations, noncommutative Hensel’s lemma, and measure-preserving polyno-
mials over profinite groups. Let w(x) be a polynomial over the profinite group G∞ from Sub-
section 4.1. We wonder how to determine whether there exists a solution of the equation w(x) = 1
in G∞, i.e., whether there exists g ∈ G∞ such that w(g) = 1, a “root of the polynomial w(x).” It is
clear that such g exists if and only if the equation w(x) = 1 is solvable in all Gn, that is, if and only
if there exist gn ∈ Gn such that (wπn)(gn) = 1 in Gn for all n = 0, 1, 2, . . . . Indeed, if for every
n = 0, 1, 2, . . . we denote Rn = {g ∈ G∞ : πn(w(g)) = 1}, then Rn is closed in G∞ with respect to
the profinite topology, these Rn form a nested sequence (i.e., Rn+1 ⊂ Rn for all n = 0, 1, 2, . . . ),
and the intersection R =

⋂∞
n=0 Rn is nonempty (see, e.g., [60, Ch. 3, Section 34, I]).

In the notation of Subsection 4.1, let G∞ be the inverse limit of finite solvable groups Gn,
n = 0, 1, 2, . . . . We may assume that An = Nn/Nn+1 is a minimal normal subgroup in Gn+1 =
G∞/Nn+1 for all n = 0, 1, 2, . . . ; otherwise we make corresponding refinements. Thus, every An is
an elementary Abelian pn-group for a suitable prime pn. Denote by ψn = ϕ1 ◦ . . .◦ϕn : Gn → G0 the
composition of epimorphisms ϕn, . . . , ϕ1. Then the following analog of Hensel’s lemma for profinite
groups holds:

Proposition 4.2. If the equation w(x) = 1, where w(x) ∈ G∞[x], has a solution g0 modulo N0

(i.e., (wπ0)(g0) = 1 in G0) and if for all n = 0, 1, 2, . . . the derivative ∂Anw(g′0) is a nonsingular
matrix over Fpn for some (equivalently, for any) g′0 ∈ ψ−1

n+1(g0), then this equation has a solution
g ∈ G∞ such that π0(g) = g0.

Proof. Induction on n shows that for any n = 1, 2, . . . there exists a solution gn ∈ Gn of the
equation (wπn)(x) = 1 such that ψn(gn) = g0. Indeed, if gn ∈ Gn, (wπn)(gn) = 1, and ψn(gn) = g0,
then (wπn+1)(g′n) ∈ An for any g′n ∈ ϕ−1

n (gn); thus, in view of (11), we can choose h ∈ An so that
(wπn+1)(g′nh) = 1, and then put gn+1 = g′nh.

It is now obvious that the sequence gn has a limit g ∈ G∞ and that g is the required solution. �
From the proof of Proposition 4.2, with the use of (12) we immediately deduce the following:
Corollary 4.3. If, under the conditions of Proposition 4.2, all groups Gn are p-groups for

some prime p and if p � deg w, then the equation w(x) = 1 has a solution in G∞.
The latter result has interesting connections with the 2-adic dynamics: Now we can solve func-

tional equations in the group Syl2(∞) of 1-Lipschitz measure-preserving transformations on the
space Z2 of 2-adic integers. The latter group is the inverse limit of 2-groups (of orders 22n−1,
n = 1, 2, . . . ). Actually this group is isomorphic to a Sylow 2-subgroup Syl2(2n) of the symmetric
group Sym(2n) of all permutations on Z/2n

Z.
Example 4.4. Given arbitrary measure-preserving transformations a and b on Z2, every 1-Lip-

schitz measure-preserving transformation g on Z2 can be represented as f(a(f(b(f(x))))) = g(x)
for a suitable 1-Lipschitz measure-preserving transformation f on Z2.

Indeed, we can rewrite this representation as an equation f ◦ a ◦ f ◦ b ◦ f = g for the unknown f
in the group Syl2(∞), where ◦ stands for the composition of transformations. The conclusion now
follows from Corollary 4.3.

To conclude, we note that combining Theorem 4.1 and Theorem 2.5, we obviously obtain a
criterion for determining measure-preserving polynomials over the profinite group G∞, which is the
inverse limit of finite solvable groups Gn:

Theorem 4.5. A polynomial w(x) ∈ G∞[x] is measure-preserving if and only if it is bijective
modulo the subgroup N0 and all derivatives ∂Anw(g) are nonsingular matrices over Fpn for all
g ∈ Gn+1 and all n = 0, 1, 2 . . . .

Remark 4.6. Theorem 4.5 remains true if G∞ is a group with a nonempty set of operators Ω;
we must only consider Ω-invariant minimal normal subgroups An rather than merely minimal normal
subgroups.
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Corollary 4.7. If, under the conditions of Theorem 4.5, all Gn are p-groups for some prime p,
then the polynomial w(x) is measure-preserving if and only if p � deg w.

Proof. We may assume that G0 is an (Abelian) group of order p; otherwise we make refine-
ments to the inverse spectrum using the chief series of G0. Furthermore, we may assume that all
Nn/Nn+1 ∈ Z(Gn) for the same reason. Thus, ∂Anw(g) = deg w for all g ∈ Gn+1, n = 0, 1, 2, . . . , and
(wπ0)(g) = (wπ0)(1)·gdeg w for all g ∈ G0. However, given a ∈ G0, the equation (wπ0)(1)·xdeg w = a
in the unknown x has a solution in G0 if and only if p � deg w. �

In view of Example 4.4 the following assertion is obvious:
Example 4.8. For arbitrary 1-Lipschitz measure-preserving transformations a, b, c, d∈ Syl2(∞)

on Z2, the polynomial axbxcxd over Syl2(∞) induces a measure-preserving transformation on this
group.

4.3. Ergodic polynomials over profinite groups. In contrast to the case of measure-
preserving polynomials over groups, ergodic ones exist not over every profinite group G∞, even
if all the groups Gn forming the corresponding inverse spectrum are solvable. From Theorem 4.1
it follows that whenever a profinite group G∞ has an ergodic polynomial, the group must be the
inverse limit of finite groups having transitive polynomials; and not every finite solvable group has
a transitive polynomial. From Theorems 3.5 and 3.7 we can see that the groups listed there fall
into several inverse spectra. For instance, all dihedral groups Dk, k = 2, 3, 4, . . . , form an inverse
spectrum

. . .
ϕk+1−−−→ Dk

ϕk−→ Dk−1
ϕk−1−−−→ . . .

ϕ3−→ D2,

where the kernels of the epimorphisms ϕk are the centers of the corresponding dihedral groups:

ker ϕk = Z(Dk+1) =
{
1, v2k−1}

, k = 2, 3, 4, . . . .

The limit group of this inverse spectrum is a group D∞, which is a split extension of the additive
group Z

+
2 of 2-adic integers by a cyclic group of order 2; the latter group acts on Z

+
2 by taking

negatives: z �→ −z, z ∈ Z2.8 Thus, we may think of elements of the group D∞ as pairs (ε, z), where
ε ∈ F2 = {0, 1} and z ∈ Z2. The multiplication · of these pairs is defined by the rule

(ε1, z1) · (ε2, z2) =
(
ε1 ⊕ ε2, (−1)ε2z1 + z2

)
,

where ⊕ stands for addition modulo 2. The subgroup Z ∼= Z
+
2 and the subgroup V ⊂ Dk, which

is a cyclic subgroup of order 2k generated by v ∈ Dk, are characteristic subgroups in D∞ and Dk,
respectively. Hence, combining Corollary 3.2 with Theorem 4.1, we conclude that a polynomial
w(x) over the group D∞ with operators Ω = Aut(D∞) is ergodic if and only if it is transitive on
the factor group D∞/Z and the polynomial w2(x) is ergodic on Z. However, as every automorphism
of Z ∼= Z

+
2 is a multiplication by a unit from Z2 (and vice versa), the polynomial w2(x) induces

an affine transformation x �→ a + bx on Z2 for suitable a, b ∈ Z2. By Theorem 1.9, an affine
transformation is ergodic on Z2 if and only if it is transitive modulo 4. So we have finally proved
the following result:

Proposition 4.9. A polynomial over the group D∞ with operators Aut(D∞) is ergodic if and
only if it is transitive on the dihedral group D2 of order 8.

Example 4.10. The polynomial w̃(x) = zxα̃, where z = (1, 1) ∈ D∞ and the automorphism α̃
takes (1, 0) to (1, 1) and acts on the subgroup Z

+
2 ⊂ D∞ identically, is ergodic on the group D∞

with operators Aut(D∞).
8Note that the group D∞ is not the infinite dihedral group D∞; the latter group is a split extension of Z

+ by the
group of order 2.
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Consider a polynomial w(x) = uvxα over the group D2 with operators Aut(D2), where the
automorphism α takes u to uα = uv and v to vα = v. The polynomial w(x) is transitive on the
dihedral group D2. Indeed, the second iterate w2(x) = vxα2 induces a transitive transformation
vi �→ vi+1 on the subgroup V generated by v ∈ D2, and the polynomial w(x) induces a transitive
transformation x �→ ux on the factor group D2/V , so the conclusion follows from Corollary 3.2. In
view of Proposition 4.9, this proves the ergodicity of the polynomial w̃(x) on the group D∞.

After minor modification the argument that proves Proposition 4.9 can be applied to the
group D∞ with operators End(D∞). Since the subgroups Z and V are not fully invariant in the
respective groups, we must use the first derived groups D′

∞ and D′
k instead. Note that D′

∞
∼= 2Z

+
2

and D′
k is a cyclic group of order 2k−1 generated by v2. Thus we obtain

Proposition 4.11. A polynomial over the group D∞ with operators End(D∞) is ergodic if
and only if it is transitive on the dihedral group D3 of order 16.

Combining Theorem 4.1 with Proposition 1.2, from Propositions 4.9 and 4.11 we immediately
deduce the following corollary:

Corollary 4.12. A polynomial over the dihedral group Dk with operators Aut(Dk) (respec-
tively, End(Dk), k ≥ 3) is transitive if and only if it is transitive on the dihedral group D2 of
order 8 (respectively, on the dihedral group D3 of order 16).

We can now determine whether a given polynomial over a semidihedral or generalized quaternion
group is transitive on these groups, although neither semidihedral groups nor generalized quaternion
groups form inverse spectra. Indeed, by Corollary 3.2 a polynomial w(x) over the semidihedral group
SDk with operators End(SDk) is transitive on this group if and only if w(x) is transitive modulo the
derived group SD′

k (i.e., on the factor group SDk/SD′
k
∼= K4) and the polynomial w4(x) is transitive

on the subgroup SD′
k, which is a fully invariant cyclic subgroup of order 2k−1 generated by the

element v2. Note that (v2)u = v2(2k−1−1) = v−2. Since End(SD′
k) ∼= Z/2k−1

Z, the polynomial
w4(x) acts on SD′

k
∼= (Z/2k−1

Z)+ as an affine map, which is transitive on this subgroup if and only
if it is transitive modulo 4, by Theorem 1.9. However, by this theorem an affine polynomial on a
cyclic group of order 2s is transitive on this group if and only if it is transitive modulo 2s−i for some
(equivalently, any) i ≤ s − 2, i.e., on an arbitrary proper factor group whose order is ≥ 4. Hence,
the polynomial w4(x) is transitive on SD′

k if and only if the polynomial (w4ψ)(x) is transitive on
the factor group SD′

k/V , where V is a cyclic subgroup generated by v2k−1 and ψ : SDk → SDk/V is
a canonical epimorphism. However, V = Lk(SDk), the kth subgroup from the lower central series of
the group SDk; so V is fully invariant. Furthermore, SDk/V ∼= Dk−1, the dihedral group of order 2k,
SDk/SD′

k
∼= Dk−1/D′

k−1
∼= K4, and thus w(x) is transitive on SDk/SD′

k if and only if (wψ)(x) is
transitive on Dk−1/D′

k−1. So we conclude that the polynomial w(x) is transitive on SDk if and only
if the polynomial (wψ)(x) is transitive on the dihedral group Dk−1. However, by Corollary 4.12, a
polynomial over the dihedral group Dk−1 with operators End(Dk−1) is transitive if and only if it is
transitive on the dihedral group of order 16. Thus, we have proved the following statement:

Corollary 4.13. A polynomial w(x) over the semidihedral group SDk, k ≥ 4, with operators
End(SDk) is transitive on this group if and only if the polynomial (wϕ)(x) is transitive on the
dihedral group D3 of order 16. Here ϕ : SDk → D3 is an epimorphism with a kernel L4(SDk),
which is a cyclic subgroup generated by v8.

Remark 4.14. The statement of Corollary 4.13 remains true after replacing the semidihedral
group SDk by the generalized quaternion group Qk. Furthermore, if we also replace End(Qk) by
Aut(Qk), then we may replace D3 by D2 without affecting the validity of the statement. The proof
mimics the one for semidihedral groups, and we omit it.

Example 4.15. The polynomial w(x) = uvxα, where the automorphism α takes u to uα = uv
and v to vα = v, is transitive on the generalized quaternion group Qk with operators Aut(Qk).
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Indeed, by Remark 4.14 it suffices to consider a transformation induced by this polynomial on
the dihedral group D2. By Example 4.10, the latter transformation is ergodic on D∞; thus, it is
transitive on all Dk.

It is clear now that in a similar manner one can prove ergodicity criteria for other groups that
are the inverse limits of groups listed in Theorem 3.7. We will not consider all these inverse limits,
restricting our considerations to some typical examples.

The cyclic groups C(pk), k = 1, 2, . . . , p prime, are groups of type (1) of Theorem 3.7. They form
a spectrum whose inverse limit is isomorphic to the additive group Z

+
p of p-adic integers. As follows

from the definition of a polynomial over a universal algebra (see, e.g., [65]), all polynomials over this
group are of the form w(x) = g+hx, where g, h ∈ Zp. Thus, they induce affine transformations. By
Theorem 1.9, the latter transformations are ergodic on Z

+
p if and only if they are transitive either

on Z/pZ if p is odd or on Z/4Z if p is even.
The groups of type (2) of Theorem 3.7 are metacyclic groups M(m,k, s). They fall into different

inverse spectra. For instance, let p and q be distinct primes, p | q−1. Consider a group M(p, q, s) =
Z

+
p � Z

+
q , where the action of Z

+
p on Z

+
q is defined as follows: Take an arbitrary pth root s ∈ Zq

of 1, s �= 1. Then for every z ∈ Zp the element sz ∈ Zq is well defined. Note that sz = 1 for all
z ∈ pZp. The elements of the group M(p, q, s) can be considered as pairs (g, h), where g ∈ Zp and
h ∈ Zq, and the multiplication · of these pairs is defined as

(g1, h1) · (g2, h2) = (g1 + g2, s
g2h1 + h2).

It is clear that the group M(p, q, s) is a limit group of the inverse spectrum formed by metacyclic
groups of type M(pn, qn, s mod qn):

. . .
ϕn−−→ M(pn, qn, s mod qn)

ϕn−1−−−→ . . .
ϕ1−→ M(p, q, s mod q).

If we represent the elements of the group M(pn, qn, s mod qn) by pairs (g, h), where g ∈ Z/pn
Z

and h ∈ Z/qn
Z, and define the multiplication of these pairs in the same way as for the group

M(p, q, s), then the epimorphism ϕn−1 is the reduction modulo pn−1 and qn−1 of the respective
coordinates; i.e., ϕn : (g, h) �→ (g mod pn−1, h mod qn−1). By Corollary 3.2, a polynomial w(x)
over the group M(pn, qn, s mod qn) is transitive if and only if, first, the polynomial w(x) induces a
transitive transformation on the factor group M(pn, qn, s mod qn)/Zqn ∼= Zpn ∼= C(pn), where Zqn ∼=
C(qn) and Zpn are cyclic subgroups generated by (0, 1) and (1, 0), respectively, and, second, the pnth
iterate wpn

(x) of the polynomial w(x) induces a transitive transformation on the subgroup Zqn . As
these transformations are affine transformations of the residue rings Z/pn

Z and Z/qn
Z, respectively,

Theorem 1.9 gives sufficient and necessary conditions for their transitivity. So we conclude that a
polynomial over the group M(p, q, s) is ergodic if and only if it induces a transitive transformation
either on the factor group M(p, q, s mod q) if p is odd or on the factor group M(4, q2, s mod q2) if
p = 2. The cases when p and/or q are composite can be reduced to the considered case in view of
the Chinese reminder theorem.

Example 4.16. The polynomial w(x) = (1, 0) · x · (0, 1) is ergodic on the group M(p, q, s).
Indeed, this polynomial induces a transformation (g, h) �→ (g + 1, h + 1), which is obviously

transitive on the respective group.
In a similar manner we could obtain criteria of ergodicity for polynomials over the inverse limits

of other groups listed in Theorem 3.7. Loosely speaking, all these criteria say that a polynomial over
the inverse limit of a spectrum of groups is ergodic if and only if it induces a transitive transformation
on the smallest group of the spectrum.

For instance, consider the groups SQ1(n)�M(pn, qn, s mod qn) of type (15), n = 1, 2, . . . , where
p, q, and s are as above and p, q > 3. These groups obviously form an inverse spectrum. The group
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SQ1(n) � M(pn, qn, s mod qn) can be represented as follows:

SQ1(n) � M(pn, qn, s mod qn) =
(
(C(2) � C(3n)) × C(pn)

)
� (Q2 × C(qn)).

Thus, the limit group SQ1 � M(p, q, s) of this inverse spectrum can be represented as ((C(2) �
Z

+
3 ) × Z

+
p ) � (Q2 × Z

+
q ), where SQ1 = C(2) � Z3 � Q2, the cyclic group C(2) of order 2 acts

on Z
+
3 and on Z

+
q by the negation z �→ −z, the group C(2) � Z

+
3 acts on the quaternion group

Q2 as a symmetric group Sym(3) (so 3Z3 centralizes Q2),9 and Z
+
p centralizes Q2 and acts on Z

+
q

by multiplication by s, the nonidentity pth root of 1. As in the case of metacyclic groups, we can
prove that a polynomial over this inverse limit is ergodic if and only if it is ergodic on the group
SQ1(1) � M(p, q, s mod q).

Example 4.17. Let the group G = SQ1 � M(p, q, s) be represented as above. Then the
following polynomial w(x) is ergodic: w(x) = acx2uvx5bx24nd, where

• a is a generator of the subgroup C(2),
• b ∈ Z

+
3 ⊂ G is any 3-adic integer congruent to 1 modulo 3,

• c ∈ Z
+
p ⊂ G is any p-adic integer congruent to 1 modulo p,

• d ∈ Z
+
q is any q-adic integer congruent to 1 modulo q,

• n is an arbitrary rational integer such that 6 + 24n ≡ 0 (mod pq); i.e., 4n ≡ −1 (mod pq).

Note that we write the operation in the subgroups Z
+
3 , Z+

p , Z+
q ⊂ G additively, although the opera-

tion in the group G is written in the multiplicative form.
By what was said, we only need to show that the polynomial w(x) = (wϕ)(x) is transitive on the

group SQ1(1) � M(p, q, s mod q), where ϕ : G → SQ1(1) � M(p, q, s mod q) is an epimorphism that
maps Z

+
3 , Z

+
p , and Z

+
q onto C(3) ⊂ SQ1(1), C(p) ⊂ M(p, q, s mod q), and C(q) ⊂ M(p, q, s mod q),

respectively. However, this was already shown during the proof of the sufficiency of the conditions
of Theorem 3.7 (see [2]).

It is clear that in the general case the inverse limit of groups listed in Theorem 3.7 is, loosely
speaking, a group that is an extension of an additive group of k-adic integers by a group composed
of additive groups of m-adic integers and/or small finite groups K4, Q8, and C(2). We do not
list all these profinite groups here, leaving this work as an exercise to the interested reader; we
only mention that actually the corresponding dynamics can be reduced to affine actions on �-adic
integers Z	, and the latter actions form a nonautonomous dynamical system on Z	.

It is worth mentioning that the methods developed here for polynomials over groups with opera-
tors work in a much more general setting, for polynomial dynamics over noncommutative universal
algebras such as groups with multioperators, which are merely groups with extended group sig-
nature. Although the latter groups arise in numerous applications, there were no reason, in our
view, to develop in this paper a general theory of the corresponding dynamical systems. However,
we emphasize that our approach works in a much more general situation, for the inverse limits of
finite universal algebras of a very general nature; and we mention once again that the corresponding
dynamical systems will inevitably be non-Archimedean.
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