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1 Introduction

The partition algebra and its Brauer and Temperley-Lieb (TL) subalgebras [10,
69, 50] have many applications and a rich representation theory. See for example
(12, 71, 34, 51, 59, 43]. In particular the representation theory of each of these
algebras has an intriguing geometric characterisation [37, 19, 48, 58].  The TL
case can be understood in terms of Lie Theoretic notions of alcove geometry and
geometric linkage [37], via generalised Schur-Weyl duality, and indeed Ringel duality
[49, 26]. However the Brauer case is much richer, for example in that, as the rank
gets large, there are cell modules of arbitrarily large Loewy depth and width [6] even
over the complex field [55]; and, although its complex representation theory is now
intrinsically well-understood, the paradigm for the corresponding alcove geometric
notions is more intriguing. Beautiful links with alcove geometry are implicit in the
generalisation to the orthosymplectic case [5] (cf. for example [68, 14]) of Brauer’s
original orthogonal group duality [10]; and appear explicitly in recent work of Ehrig
and Stroppel [27, 28, 29]. But this is not a straightforward generalisation of the TL
case, and the partition algebra case is again different [58].

Here we introduce, for each [ € {—1,0,1,2,...}, a tower of algebras J;,, (n € Ny).
Varying [ interpolates between the TL algebras, case [ = —1, and the Brauer alge-
bras, case | = co. (A general indication of this interpolation is given by comparing
the dimensions of the algebras in low rank — see Fig.1.) A particular aim is to
study the geometry in their representation theory by lifting this new connection to
the representation theory level. To this end we investigate the representation theory
of the new algebras using their amenability to tower of recollement (ToR) [18] and
monoid methods [64]. The representation theory for large [, n eventually becomes
very hard, but we are able to prove a number of useful general results, and results
over the complex field. For example we obtain the ‘generic’ semisimple structure in
the sense of [17].

By way of further motivation (although we will not develop the point here)
we note that both the Brauer and TL algebras provide solutions to the Yang—
Baxter (YB) equations [4, 65], and hence in principle integrable models in statistical
mechanics [48]. In addition to their interest from a representation theory perspective,
our new algebras can be seen as ways to address the problem of contruction of
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Figure 1: Table of dimensions of algebras J; .

natural solutions to the boundary YB equations in the TL setting (generalising the
blob approach and so on — see e.g. [23] and references therein). A paradigm here
is the XXZ spin chain — a ‘toy’ model of quantum mechanical interacting spins
on a l-dimensional spacial lattice derived from the Heisenberg model [7]; see e.g.
[46, Ch.6] or [14]. The motivation here would be to study spin chains with special
physical boundary conditions — conditions penetrating in a way controlled by the
parameter [ at one end (or both ends) of the chain of length n.

An outline of the paper is as follows. The partition category has a basis of set
partitions, and the Brauer and Temperley—Lieb categories are subcategories with
bases of certain restricted partitions. In particular the Temperley-Lieb category
has a basis of non-crossing partitions. (There are two distinct such realisations —
see [48, §6.2.1]. We will mainly focus on the realisation by non-crossing partitions
into pairs.) Here we provide a classification of partitions generalising the plane-
geometrical notion of non-crossing. Many such games are possible in principle (see
e.g. [15]), but we show that our classification (like non-crossing) is preserved un-
der the partition category composition. This closure theorem allows us to define a
sequence of new subcategories. Next we turn towards our motivating aim: investiga-
tion of the representation theory of algebras contained in these categories. We focus
in particular here on the extensions of the Temperley—Lieb category in the Brauer
category. In this paper we establish a framework for modular representation theory
of the corresponding towers of algebras. In particular we construct for each algebra
a set of modules over a suitable integral ground ring that, on base change to the
corresponding field of fractions, are a complete set of simple modules. In the case
that is modular over C in the sense of [11] we prove that the algebras are generically
semisimple. We observe an intriguing subset of parameter values for which they are
not semisimple, distinct from both TL and Brauer cases. We conclude by deter-
mining branching rules, and hence give combinatorial constructions for the ranks of
these algebras. Finally in §6 we note some open problems.

The TL algebra has a sequence of known generalisations using its characterisation
via an embedding of pair partitions in the plane — the blob algebras and the contour
algebras [56]; as well as various beautiful generalisations due to R. Green et al
[33, 30], tom Dieck [70] and others. The blob algebra also has a rich geometrically-
characterised representation theory [58]. However none of the previously known
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Figure 2: Graphs for the partition {{1,3,1'},{2,4}, {2'}} of the set {1,2,3,4,1',2'}.

cases serve to interpolate between the TL algebra and the Brauer algebra.

1.1 Preliminary definitions and pictures for set partitions

We need to recall a pictorial realisation of the partition algebra (i.e. of set partitions).
This realisation is in common use (see e.g. [51]), but we will need to develop it more
formally.

(1.1) A partition of a set T is a set of subsets of T" such that the subsets are pairwise
disjoint, and their union is 7. Let P(T") denote the set of partitions of set 7.
Noting the standard bijection between P(T') and the set of equivalence relations
on T we write a ~P b when a,b in the same part in p € P(T).
Suppose that p € P(T) and S C T. Write p|s for the restriction of p to S. Write
fs(p) == #{m € p|nNS =0}, the number of parts of p that do not intersect S.
(Here we follow [50, Def.20]. See also e.g. [53].)

(1.2) Let G denote the class of graphs; G(V') the subclass of graphs on finite vertex
set V; and G[S] the subclass of G of graphs whose vertex set contains set S. Define

Im:Gg(v)— P(V)
by v ~M9) o/ if v, v’ are in the same connected component in the graph ¢. Define
Ilg : G[S] — P(9)

by IIs(g) = I1(g)|s. Note that additional edges between vertices joined by an edge
in g have no effect on Ilg(g).

(1.3) We shall use drawings to represent graphs in a conventional way: vertices by
points and edges by polygonal arcs between vertex points, as in Fig.2 or 3. We shall
refer to these polygonal arcs as lines for brevity.

A picture d of a graph is thus (i) a rectangular region R of the plane; (ii) an
injective map from a finite set into R (hence a finite subset of points identified with
vertices); and (iii) a subset of R that is the union of lines. Line crossings are not
generally avoidable (in representing a given graph in this way), but we stipulate
‘line regqularity” that, endpoints apart, lines touch only at points in the interior
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of straight segments; and that a line does not touch any vertex point except its
endpoints, or the boundary of R except possibly at its endpoints.

Note: (I) Any finite graph can be represented this way (indeed with the vertices
in any position, see e.g. [20]). (II) The regularity condition ensures that a picture
gives the path of each line unambiguously. Thus no two distinct graphs have the
same picture, and indeed the process of following the path of each line gives us a
map ‘back’ from pictures to graphs.

For g € G[S] one thinks of S as a set of ‘external’ vertices, and draws them on the
horizontal part of the rectangle boundary. Interior vertices (v ¢ S) will generally
not need to be explicitly labelled here (the choice of label will be unimportant).

By (I) and (II), via IIg, we can use a picture of g € G[S] to represent a par-
tition. The drawings in Fig.2 all represent the same partition, when regarded
as pictures of set partitions of S = {1,2,3,4,1,2'}. Specifically in each case

HS(Q) = {{17 3, 1/}7 {27 4}7 {2/}}'

(1.4) A vacuum bubble in g € G[S] is a purely interior connected component [9] (cf.
Fig.3). The vacuum bubble number is

L(g) = fs(Il(9)) = #{mr €I(g) | NS =0}

(1.5) Let n:={1,2,...,n} and n' := {1',2,...,n'}, and so on. Let

P(n,m) := P(nUm’).

(1.6) An (n,m)-graph is an element of G(n,m) = GnUm/]. We draw them as in
Figures 2 and 3. We define II,, ,,, = I1,,up, SO

ILm : G(n,m) — P(n,m) (1)

(1.7) Next we recall the partition category P, as defined in [50, §7]. We first fix
a commutative ring k say, and 0 € k. The object set in P is Ny. The arrow
set P(n,m) is the free k-module with basis P(n,m). Noting (1) this means that
elements of P(n, m) could be represented as formal k-linear combinations of (n,m)-
graphs. In fact one generalises this slightly. In P an (n,m)-graph (as in (1.6)) maps
to an element of kP (n,m) via:

Ilp:g+— (5H’f“m(g)Hn,m(g)

For example the upper picture on the left in Fig.3 encodes §'{{1,2'},{1,3'}}.
The composition p * ¢ in P can be defined and computed in naive set theory
[50]. But it can also be computed by representing composed partitions as stacks
of corresponding pictures of graphs, as in Fig.3. First a composition o : G(n,m) X
G(m,l) — G(n,l) is defined: aob is the combination of graphs with m vertex subsets
identified and un-labelled as indicated in Fig.3. Here we only use the pictures as
a convenience to indicate the vertex asignments in the new graph. However by



Figure 3: Picture stacking composition.

stacking pictures of @ and b so that the m vertex sets in each meet and are identified
as in the Figure, we do get a picture of a o b. Then

p*q=1p(acb)

for suitable a,b. For example, in case p = {{1,2'},{1’,3'}} in P(1,3) and ¢ =
{{1,5'},{2,4'},{3,1'},{2/,3'}} in P(3,5) then the composition dp * g, or more ex-
plicitly

o{{1, 2} {17, 3}« {{1, 53, {2,4}, {3, 1}, {2, 3"} = o{{1,4'}, {1, 5}, {2, 3}}

can be verified via Fig.3. The independence of p * ¢ on the choice of a,b such that
[Ip(a) = p and TIp(b) = ¢ follows since connected components in a o b are chains of
paths in a and b, but any o’ € II'(p) has a path between two vertices if and only if
a has one. Denoting the stack of pictures for a o b by d|d’, top to bottom, then we
can write

p*q= Tp(dd) (2)
for any d, d' such that p = IIp(d) and ¢ = IIp(d'). To check associativity of * note
that a* (b* ¢) becomes a stack identical to that for (a * b) * c. We have defined the

category
P = (N0> kp(na m)> *)

This is equivalent to the original set theoretic definition [50].

Remark: From this partition category perspective the pictures constitute a mild
modification of the plane projection of arrows in the tangle category, in which arrows
(‘morphisms’) are certain collections of non-intersecting polygonal arcs in a 3D box
(see later, or e.g. [39]).

Write J(n,m) C P(n,m) for the subset of partitions of n U m’ into pairs; and

B = (Ng, kJ(n,m),*)

for the corresponding Brauer subcategory of P (see e.g. [53, §5.1] or [44]).
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1.2 Overview of the paper

We start with a heuristic overview and summary. Later, in order to prove the main
Theorems, we will give more formal definitions.

Besides the representation of a set partition p by a graph g, the task of con-
structing a picture d of p contains another layer — the embedding and depiction
of the graph ¢ in the plane. Both stages of the representation of set partitions are
highly non-unique. However, they lead to some remarkable and useful invariants.
To describe these invariants we will need a little preparation.

Suppose we have a picture d of a partition of this kind. Then each polygonal
arc | of d partitions the rectangle R into various parts: one or more connected
components of R\ [; and [ itself. Overall, a picture d subdivides R into a number
of connected components, called alcoves, of R\ d (regarding d as the union of its
polygonal arcs), together with d itself.

(1.8) Given a picture d, the distance dq(x,y) from point z to y is the minimum
number of polygonal arc segments crossed by a continuous path from x to y, among
all such paths. Examples (the second picture shows distances to y from points in
various alcoves):

Note that there is a well-defined distance between a point and an alcove; or between
alcoves.

(1.9) The height, or left-height, of a point in d is defined to be the distance from the
leftmost alcove. (By symmetry there is a corresponding notion of rightmost alcove;
and right-height may then be defined similarly to (left-)height.)

Given a picture d, a crossing point is a point where two polygonal arc segments
cross. Note that these points in particular have heights. For example the upper of
the two crossing points in the picture above has height 1, and the other has height
0.

The height ht(d) of a picture d with crossing points is defined to be the maximum
height among the heights of its crossing points. We shall say that the height of a
picture without crossings is -1.

(1.10) Although the picture d of a partition p is non-unique, we can ask, for example,
if it is possible to draw p without arc crossings — i.e. if among the drawings d of
p there is one without crossings. If it is not possible to draw p without crossings,
we can ask what is the minimum height needed — that is, among all the pictures
d representing p, what is the minimum picture height? We call this minimum the
height of partition p.



(1.11) Returning to the partition category P = (No, kP(n,m), *), the existence of
a Temperley-Lieb subcategory in P (see e.g. [48, §6.2], [53, §5.1]) corresponds to
the observation that the product p x p" in P of two partitions of height -1 (i.e. non-
crossing) gives rise to a partition that is again height -1. Our first main observation
is a generalisation of this:

The height of pxp’ in P does not exceed the maximum of the heights of p,p’. Thus:
For eachl € N_ := {—1,0,1,2,...} there is a subcategory spanned by the partitions
of height at most [.

We first prove this result. This requires formal definitions of ‘left-height’ and so
on, and then some mildly geometrical arguments. Recall that J(n,m) C P(n,m) is
the subset of partitions of nUm’ into pairs; and that the partitions of this form span
the Brauer subcategory: B = (Ny, kJ(n,m), ). The construction above induces a
sequence of subcategories here too. The rest of the paper is concerned with the
representation theory of the tower of algebras associated to each of these categories,
that is, the algebras that are the End-sets in each of these categories.

2 Formal definitions and notations

We start with a formal definition of a picture, a drawing as in (1.3). Notation is
taken largely from Moise [60] and Crowell-Fox [20].

(2.1) Given a manifold M we write dM for the manifold-theoretic boundary; and
(M) = M \ OM for the interior [60, §0].

(2.2) A polygonal arc is an embedding [ of [0,1] in R?® consisting of finitely many
straight-line segments. The open arc (I) of [ is the corresponding embedding of
(0,1). An arc-vertex in [ is the meeting point of two maximal straight segments.

(2.3) A polygonal graph is (i) an embedding € of the vertex set V' of some g € G(V)
as points in R?; and (ii) for graph edges E a polygonal embedding € : Ugcp(0,1) —
R3\ €(V') such that the closure points of (0,1). agree with the endpoints of e.

(2.4) Note that every g has an embedding for every choice of € : V «— R3.

(2.5) In our construction the vertex labels in a graph g are important data, but
edge labels are unimportant. Note that if the edge labels are unimportant then we
can recover the original graph from the map e : V' (labeling graph vertex points)
and the image €(g). Note well the distinction between graph vertices e(v € V') and
polygonal arc-vertices.

(2.6) Fix a coordinate system on R3. A polygonal graph G = €(g) is regular (in the
rectangle R C R?) if

(i) the projection p(z,y, z) = (x,y) is injective on vertices;

(ii) for k € G\ €(V) then |[p~(p(k))| < 2;

(iii) [p~'(p(k))| = 1 if k an arc-vertex;

(iv) for k € G, p(k) € p(e(V)) implies k € e(V);

(v) p(G) C R and p(k) € OR implies k € (V).



(2.7) A picture is a triple d = (V, A, L) consisting of a set V, an injective map
A :V < R? and a subset L C R? such that A\ = p o €|y for some regular polygonal
graph with g € G(V); and L is the image L = p(e(g)). (The datum also includes
the containing rectangle R, but notationally we leave this implicit.)

The point here is that such a d, consisting only of labeled points and a subset of
R, determines a graph g; and every graph has a picture. Note that d also determines
the set of points where [p~!(p(k))| = 2 in (2.6)(ii) — the set x(d) of crossing points.

(2.8) Let us consider pictures with R oriented so that its edges lie in the z and
y directions. If the vertex points on the northern (respectively southern) edge of
R are not labelled explicitly then they may be understood to be labeled 1,2, ...
(respectively 1/,2’,...) in the natural order from left to right.

In particular such a frame-drawn picture without any vertex point labels deter-
mines a graph in some G[n U m/] up to labelling of the other ‘interior’ vertices.

We identify pictures differing only by an overall vertical shift. Given our vertex
labelling convention above we could also identify under horizontal shifts, but the
horizontal coordinate will be a useful tool in proofs later, so we keep it for now.

2.1 Stack composition of pictures

Here we follow the usual construction of ‘diagram categories’ (e.g. as in [50, §7]),
but take care to emphasise specific geometrical features that we will need later.

(2.9) Given d = (V, A, L) in rectangle R write n(d) for the subset of R giving the
intersection of L with the northern edge of R (thus by (2.6)(v) the collection of
x-values of ‘northern’ exterior vertex points, or ‘marked points’). Write s(d) for the
corresponding southern set.

Write hg(a, b) for the class of pictures d with n(d) = a and s(d) = b, and L not
intersecting the two vertical edges of the containing rectangle.

(2.10) Note that for d € hg(a,b) there is an essentially identical picture with R
wider. Thus any two such pictures may be taken to have the same (unspecified,
finite) interval of R as their northern edges, and southern edges. The juxtaposition
of rectangles, R, R’ say, by vertical stacking of R over R’ thus produces a rectangle,
denoted R|R’. This is almost a disjoint union, except that the southern edge of R
is identified with the northern edge of R’.

Given a pair of pictures d and d’, stack R|R’ induces a corresponding pair of
subsets A(V)|N (V) and L|L’ in the obvious way. For example see Fig.3.

(2.11) PROPOSITION. The stack juztaposition of a picture d in hy(a, b) over a picture
d" in hy(b, ) defines a picture d|d" in hy(a,c).

Proof: As noted, the stack R|R' induces a corresponding pair of subsets A(V)|\ (V)
and L|L'. The former is a union of finite point sets which clearly agrees with a and
c on the relevant edges of R|R'. The latter is a union of lines, and the only new
meetings are at the marked points in b (as it were). These are now interior marked
points. Conditions (2.6)(i-v) hold by construction. O



(2.12) Remark: Recall from (2.8) that we identify pictures differing by overall verti-
cal shift, but not up to isotopy here. Note also that for d € hy(a, a) with a non-empty
then d has at least 2|a| vertices (the northern and southern exterior vertices), unless
we allow rectangles of zero vertical extent. Consider d,d € hg(a,a). If d has v
vertices and d' has v/ vertices then d|d’ has v + v/ — |a| vertices. Thus stack com-
position of pictures of non-zero vertical extent always produces a picture with more
(internal) vertices than either. Thus no such picture can be an identity of stack
composition. On the other hand, allowing rectangles of zero vertical extent in any
ho(a,a) allows for an identity element 1, of stack composition in hy(a, a). Write hy
for the ‘picture category’.

(2.13) PROPOSITION. For finite subsets a and b of R, there is a surjection
7. + ho(a, ) — P(lal, o) (3)

given by counting the elements of a (resp. b) from left to right and hence passing to
a graph by (2.8), and then using I1,, ,, from (1). O

(2.14) PROPOSITION. Fiz a commutative ring k and 0 € k, and let 7, denote the
generalisation of . corresponding to p from (1.7). Let d € hy(a,b), d" € hy(b,c).
Then my(d|d) = m,(d) % m,(d"), where the product on the right is in the partition
category P = (No, kP(n,m),*) as in (1.7).

Proof. Note from (2.7) and (2.8) that we have a well-defined map from pictures
to graphs, and hence in particular maps £ : hg(a,b) — G(|al,|b|). In (1.7) P is
defined using these graph sets G(n,m) and the map IIp. By construction we have
7, = Illp o K, that is, m, factors through G(n,m). O

(2.15) If d € ho(a,b) is a picture as above, let d* € hy(b,a) denote the picture
obtained by flipping d top-to-bottom.

Let p € P(n,m). Write p* for the element of P(m,n) obtained by swapping
primed and unprimed elements of the underlying set.

Note that if d is a picture of p € P(n,m) then d* is a picture of p* € P(m,n).
Furthermore, this * is a contravariant functor between the corresponding partition
categories.

(2.16) Note that for any picture in the category hy with distinct northern and
southern edge we can vertically rescale to arbitrary finite separation of these edges.
Thus we can make any two pictures have the same separation. For two such pictures
d, d’ there is a picture d ® d’ obtained by side-by-side juxtaposition.

(2.17) We call a picture a chain picture if every exterior marked point (as in (2.9)) is
an endpoint of precisely one line, and every interior marked point is an endpoint of
precisely two lines (e.g. as in Fig.3). Write hZ(a,b) C hy(a, b) for the subset of chain
pictures. Note that every p € J(n,m) has a chain picture. We have the following.

(2.18) LEMMA. The stack composition (2.11) closes on the subset of chain pictures.
This gives a subcategory of the category in (2.12). The corresponding m,— quotient
category (as in (2.14)) coincides with the Brauer category B = (No, kJ(n,m),*)
from (1.7). O



(2.19) A pair partition is plane if it has a frame drawn picture (as in (2.8)) without
crossings of lines. We write 7'(n, m) for the subset of plane pair partitions (TL parti-
tions) and 7 = (Ng, kT (n, m), ) for the corresponding Temperley—Lieb subcategory
of B.

2.2 Paths and the height of a picture/a partition

(2.20) REMARK. Fix a rectangle R. Each non-self-crossing line [ with exterior
endpoints in R can be considered to define a separation of R into three parts — the
component of R\ [ containing the left edge of R; the other component of R\ [; and
l.

(2.21) An alcove of picture (V, A, L) is a connected component of R\ L.

(2.22) A simple point of a subset U of R? is a point having a neighbourhood in U
that is an open straight segment. (For example in some picture d = (V, A, L), with
L = p(e(g)), the non-simple points of L \ A(V) are the arc-vertices and crossing
points.)

Given a picture (V, A\, L), a path in (V,\ L) is a line [ in R such that every
k € (I) N L is a simple point of (/) and also a simple point of L \ A(V).

Thus a path [ in (V, A, L) has a well-defined number of line crossings, dy(1).

(2.23) LEMMA. Given a path l in picture d connecting points x,y € R and a distinct
point z € (1), there is a path l' connecting x,y that does not contain z.

Proof. Since z € (1) it has a neigbourhood either containing only a segment of [;
or only a crossing of | with a straight segment of L (by the simple point condition
on path [). If we modify the path inside the neighbourhood by a small polygonal
detour around z then the modification is a path in d and does not contain z. O

(2.24) LEMMA. For each picture d and x,y € R there is a path in d from x to y.

Proof. Draw a small straight line [; from x to a point 2’ in an adjacent alcove,
choosing 2’ so that the tangent of the straight line 2/ — y is not in the finite set of
tangents of segments of lines of L; and the line does not contain any element of the
finite set of crossing points of d. Then x — 2’ — y is a path. O

(2.25) By (2.22) and (2.24) we have established that the notion of distance dg(z,y)
in (1.8) is well-defined. For our notion of height we will need only distances from
a certain reference point. Given a picture d = (V, A, L), and points 7,z in R, the
x-height dy(r, z) (or di,(r, z)) of r is the minimum value of d, (), as defined in (2.22),
over paths [ in d from r to x.

We suppose that L does not intersect the left edge Ry of R. The (left)-height
ht(r) =dp(r,z) in case x is any point on Ry. (Note that this is well-defined.)

The (left)-height of an alcove A is the left-height of a point in A. See Fig.4 for
examples.

(2.26) Given a picture d = (V, A\, L), recall x(d) is the set of crossing points of lines in
d (recall from (1.3) that, vertex points aside, lines in d only meet at crossing points).
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dy = dy =

Figure 4: Example pictures with left-heights of alcoves. (Remark: By [60, §6]
piecewise linear and piecewise smooth lines are effectively indistinguishable as far
as physically drawn figures are concerned.)

The left-height ht(d) is the greatest of the left-heights of the points x € x(d); or is
defined to be -1 if there are no crossings.

For example, d; in Fig.4 has left-height 2; and ds has left-height -1.
(2.27) Finally we say that a partition p € P(n,m) has left-height ht(p) = [ if it has
a frame drawn picture of left-height [, and no such picture of lower left-height. For
example, both pictures in Fig.4 give the same partition p, so ht(p) = —1.

Since every p has a picture, it will now be clear that p — ht(p) defines a function

ht : P(n,m) — {—1,0,1,2,...}.

A path realising the left-height of a point in a picture is called a low-height path.
A picture realising the left-height of a partition is called a low-height picture.

(2.28) Define P(n,m) as the subset of partitions in P(n,m) of left-height [, and

Poi(n,m) = U P;(n,m).
J<l
Define J;(n,m) as the corresponding subset of J(n,m), and J<;(n, m) analogously.

(2.29) ExaMPLE. Here we give the Ji(3,3) subsets of J(3,3). Each element is
represented by a low-height picture (of course, other pictures could have been chosen
instead). Note that it is a Proposition that a given picture is low-height. (In our
examples this can be proved using the Jordan curve Theorem. In general it is not
so easy, but we will only need existence of low-height pictures, which is clear.) One
should keep in mind that the elements of J;(3,3) are pair partitions, not pictures!

e =LA T TS LA
wes =LAl L2 el A )
LA

J1(373):{ > ) >§< ) ) }
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More generally the Brauer algebra identity element 1, € J_i(n,n); the symmetric
group Coxeter generator o1 € Jy(n,n); o; € J;_1(n,n);

Ji1(9,9) 3 | \—=J : J5(10,10) > (@
~_ ) —~ 1~

15(10,10) 3 % %

(2.30) Remark: Observe that for p € J(n,n), ht(p) < n — 2. Hence, in particular,
J<r(n,n) = J<p_o(n,n) for any n — 2 < r < oo.

(2.31) LEMMA. Removing part or all of a line from a picture cannot produce a
picture with higher height.

Proof. The number of crossings of a path cannot be increased by removing a line.
Let d’ come from d by removing a line. Fach crossing point that occurs in d’ was in
d, and so its height cannot increase. O

(2.32) In particular, if a line has a self-crossing then we can ‘short-circuit’ the
path without increasing the height, or changing the partition. The self-crossing
point becomes an arc-vertex with a regular neighbourhood, so the regularity of the
picture remains to hold. Thus for each low-height picture there is a low-height
picture without line self-crossings.

3 Algebraic structures over J<(n,n)

We denote by k the commutative ring k = Z[d], where 0 is an indeterminate; and
k =Z[5,671.

(3.1) Recall the Brauer category B from (1.7) and consider the case of the ground
ring k. Thus for each n we have the Brauer k-algebra BX = kJ(n,n). Recall
(e.g. from [10] or (2.18)) that the multiplication in BYX may be defined via vertical
juxtaposition of representative diagrams.

(3.2) Define Jf, as the k-subalgebra of Bf generated by J<(n,n). For k a fixed
commutative ring and J. € k we write J;,, = J;,(d.) for the base-change:

Jin(8e) = k@ Jf, (4)
(i.e., regarding k as a k-algebra in which ¢ acts as d.). For example J;, (1) is the
monoid k-algebra for the submonoid of the Brauer monoid associated to B, (1) [59].

(3.3) Define J, as the subcategory of B generated by the sets J<;(n,m), over all
n,m € Ny (that is, the smallest k-linear subcategory such that the collection of
arrows J;(n, m) contains J<;(n, m) for each n, m).

Note that the smallest possible height for a crossing is 0. Thus, noting (2.26),
J_1(n,m) denotes the subset with no crossings. That is J_(n,m) = T'(n,m) from
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(2.19). It will be clear then that Jfl,n is the Temperley—Lieb algebra. Comple-
mentarily, J<oo(n,m) = J(n,m), so J&_, . (= J& ,, by Remark 2.30) is the Brauer
algebra. Next we will show (our first main Theorem) that the ‘interpolation’ by
varying [ between these is proper in the following sense:

(3.4) THEOREM. (I) The sets J<;(n,m) form a basis for the k-linear category J,.
That is, J = (No, kJ<i(n,m), ). (II) The set J<i(n,n) is a k-basis for Jy,.

Proof. (I) Recall from definition (3.3) that the n, m-arrow set in J; is generated
by J<i/(n,m). Note that J<;(n,m) is linearly independent over k in 7, as it is
linearly independent in the Brauer category B. It is thus enough to show that
J<i(n,m) x J<(m, j) maps to kJ<;(n,j) under the Brauer category product. For
this, we need to show that for every pair of pair-partitions (pi,p2) € J<i(n,m) X
J<i(m, 7), determining a partition ps € J(n, j), we have p3 € J<;(n, j). By (2.27) the
pair-partitions pi, po have composable minimum-height pictures, denoted by d, ds,
respectively. By (2.14) their vertical juxtaposition d;|dy gives ps, so it is sufficient
to show that ht(d;|ds) < 1.

Observe that by construction the set of crossing points of di|ds is precisely the
disjoint union of those of d; and dy. Now, also by construction a low-height path
from any point z in d; remains a (not necessarily of low height) path in d;|dy. See
the path from z in the figure below for example.

J

Thus, the left-height of a point (in d; or dy) cannot increase after concatenation.
Hence ht(d;|dy) < (. (II) follows immediately. O

(3.5) REMARK. As illustrated in Fig.5, the left-height of d|d’ may be smaller than
that of d and d’, due to paths in d|d’, which are not paths in either d or d'.

(3.6) THEOREM. There is a subcategory Py = (No, kP<;(n,m),*) of P.

Proof. The proof of (3.4) works mutatis mutandis. O

We will discuss connections with known constructions in §6.2.

4 Representation theory of J;,

We now begin to examine the representation theory of .J;,. We broadly follow a
tower of recollement (ToR) approach [18], extending as in [32, §6] and [55].
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ht(ds)=2
ht(d,)=-1
ht(cld,)=0
ht(dg)=1
ht(dg)=1
ht(ds|dg)=0

Figure 5: Examples with heights shown.

A part in p € P(n,m) is propagating if it contains both primed and unprimed
elements of n Um' (see e.g. [48, 50]). Write P(n,l,m) for the subset of P(n,m) of
partitions with [ propagating parts; and similarly J(n,l,m). Define

Ji(n,rym) = Ji(n,m) N J(n,r,m).

We write #P(p) for the propagating number — the number of propagating parts.
Define u as the unique element in J(2,0). Note that P and B are isomorphic to
their respective opposite categories via the opposite mapping ¢ +— c¢*. Thus u* is the
unique element in J(0,2). Define U to be the pair partition in J(2,2) determined
by the following picture.
U= = J
)
We use ® to denote the monoidal/tensor category composition in P (that is, the
image of the side-by-side concatenation of pictures from (2.16), extended k-linearly).
For any given n > 2, set e = e, where

en:LH®U::“w‘U € J(n,n) (5)
()

Given a partition p in P(n,n) we write p|,_o for the natural restriction to a partition
in P(n—2,n—2). (Note that this restriction does not take J(n,n) to J(n—2,n—2).)

4.1 Index sets for simple J; ,-modules

Here we assume we have base-changed as in (4) to an algebraically closed field k.
We write J;,, for J;,(d.) if we do not need to emphasise J.. Write £* for the group
of units.

(4.1) PROPOSITION. Suppose § € k* orn > 2. There is a k-module map
W eJl,ne = Jlm,Q

given by ¥ : ede — ede|,_o. For 6 € k* this VU is an algebra isomorphism.
Letf =1, 30U ®1y (¢f. (5)) and h = ef. Then efe = e and eJ, ef = ef J, ,ef =
hJi,h. Forn > 2, and any ¢, there is an algebra isomorphism hJ; ,h = J;,,_.

14



Proof. Note ede = d' ®@U for some d' € J;,,_5, so ¥(ede) = d’ so the map is injective
(just as in the ordinary Brauer case). To show surjectivity in case § € k* consider
d in Jy, by the natural inclusion of J,,,_o < J;, (the key point here is that the
natural inclusion J,_o — J, takes J;,_o — J;, since the embedding does not
change the height of crossings in the d' part, as it were, and does not introduce
further crossings), so U(ed'e) = dd’ for any d' € J;,,_2. Other cases are similar. O

(4.2) COROLLARY. Suppose that A(J,,,) denotes an index set for classes of simple

modules of J; ,,, for any n. Then for n > 2 the set of classes of simple modules S of
Jin such that €S # 0 may be indexed by A(J;,—2).

Proof. Note that §~'e (respectively ef) is idempotent and apply Green’s Theorem
in [32, §6.2]. O

(4.3) COROLLARY. Forn > 2 the index set A(J,,) may be chosen so that

A(Jin) \ MJin—2) = AMJin/(Jinedin))

where A(J; ./ (Jin€Jin)) is an index set for simple modules of the quotient algebra by
the relation e = 0 (i.e. the quotient by the ideal Ji,eJ; ). In other words A(J),) =
A Jin—2) UAN(J1n/(Jinedin)) and the sets {A(Jin)}n are determined iteratively by
the sets {A(Jyn/(Jinedin))}n. O

Define Jy(n,<m,n) = U,<pnJi(n,r,n) and so on (e.g. J<;(n,<n,n) includes
every pair partition in J<;(n,n) with submaximal number of propagating lines).

(4.4) PROPOSITION. The ideal J;neJi,, = kJ<i(n,<n,n) as a k-space.

Proof. Let p € J<(n,n) have submaximal number of propagating lines, that is
#P(p) < n — 2 (see page 14), so that it has at least one northern and one southern
pair. Let d be a low-height picture of p. We will use d to show that p € J; ,eJ, ..

For X some subset of {N, S}, let d[—X] denote the picture obtained from d by
deleting the lines from north to north (IV), south to south (), or both. Thus d[—S]
is a picture of some p; € J(n,j,j) where j = #P(p). Similarly, abusing notation
slightly by writing u* for some low-height picture of u*, then d[—S]®u* is a picture
of some p' € J(n,j,j+2).

By the Deletion Lemma 2.31 the height of d[—N] does not exceed that of d,
and similarly for d[—NS] and d[—S]. Note that, since d[—NS] is a picture of a
permutation (of the propagating lines); and d[—NS]* is a picture of the inverse, we
have that in the picture category (Prop.2.11),

d = d[=S]|d[-NS]" | d[-N] (6)

is another picture for p. (An example is provided by Fig.6: the original picture of p
is on the left, whereas d[—S] | d[—NS|* | d[—N] is on the center-left.)

Next, observe that one can add some loops on the right of this picture, (red circles
in the example Fig.6) with no change to the height of the picture, or the resulting
partition p. Thus, up to an overall factor of a power of §, p can be expressed in
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Figure 6: Writing p o< p'ep”.

the form p'ep” where a picture for p is (d[—S] | d[-NS]*) @ (u*)®"=9)/2 (a picture
of height < [ by construction), and p” is d[—N] @ u®"=)/2 and hence p',p" € Jj .
Finally note that the red loops can be replaced by suitable non-crossing deformations
of lines from above and below (cf. the rightmost picture in example Fig.6). O

(4.5) By (4.4) the quotient algebra J;,,/(J; ,eJ; ) has a basis which is the image of
J<i(n,n,n). Note that these elements of .J; ,, form a subgroup as well as their image
spanning a quotient algebra.

For n < [ + 2 this group is isomorphic to .5,,; otherwise it is isomorphic to S; 2
(since there can be no crossings after the first [ +2 lines). The quotient itself is then
the corresponding group algebra.  That is, A(J;,/(Jinedin)) = A(KSmintni+2)),
where A(kS,,) denotes an index set for simple k.S,-modules, which we can take to be
the set of char.k-regular integer partitions [35]. Combining with Prop.4.3; we thus
have the following.

(4.6) THEOREM. Let A,, denote the set of integer partitions of n and A, the subset
of char.k-regular partitions as in [35] (so that A(CS,) = A, for anyn and A(kS,) =

A, i for any k). Let AP = {p} x A, (so that AL and AP are disjoint copies of
A,), and similarly for A, . Define I'y, = {n,n —2,...,1/0}.  Then, with 6 # 0,

‘]l n U Amln (p,l+2),k

peln

and specifically over k = C, with § # 0,

0

k=C
A(‘]lﬂl) - U Amin p,1+2)

[+1 n
(») . o (U/Ap> U ( |—|/Al+2>
pEl'n p=0 p=I+2
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where U; denotes a range including only p congruent to n mod.2; and |_|p,/\z+2
denotes disjoint copies of N o with the same constraint on the range. For d =0 the
result is the same except to omil the integer partition of 0 when n is even.

Proof. The cases not covered by Prop.4.3 are for n < 2 (in particular when § = 0).
These are simple direct calculations (cf. [55]). O

(4.7) Let Jl(n,1,m) denote the subset of .J(n,,m) of elements p having a picture d
for which d[—NS] has no crossings. Recall (e.g. from [55]) the polar decomposition
of an element of J(n,m,n): the inverse of the map v : Jll(n,m, m) x J(m,m,m) x
Jl(m,m,n) = J(n,m,n), given by the category composition. Note that if p €
J<i(n,m,n) then [ bounds the height of all three factors in the polar decomposition.
(The argument is analogous to the argument at (6). Firstly note that if d is a
low-height picture of p then d[—S] | d[-NS]* is a picture of the northern polar
factor of no higher height. The other factors are similar.) That is, the restriction
vt Jg(n,m,n) — Jﬂl(n, m,m) X J<;(m, m,m) x Jﬂl(m, m,n). On the other hand
the image of v on this codomain lies in J<;(n,m,n) by Th.3.4, so the restriction as
given is a bijection.

4.2 On quasihereditary cases of J,,

The proof of the main result of this section (Thm.4.12) follows closely the Brauer
algebra case, as for example in [19]. We focus mainly on the new features required
for the present case.

(4.8) For n > 2t define e,; = 1,9 ® U®" and (when 6 € k*) e, , = 0 "e,. Note
that e, € J_1(n,n — 2t,n). For example e = ¢,,; and

U U
()

We have the following useful corollary to the proof of Prop.4.4.

(4.9) COROLLARY. The ideal JipeniJ1n = kJ<i(n,<n —2t,n).

Proof. The proof is the same as for Prop.4.4 except that we use a different ‘mean-
dering” deformation of the path in the final stage of the construction of d € J;(n, <
n—2t,n), as in Fig.6. Specifically changing, for example, from the first to the second
here:

Ammﬂ ﬂmmﬂ

i | A
|SAWANS) Uw

Note that there is room for enough meanders because of the bound on the number
of propagating lines in d. O
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(4.10) Define the quotient algebra

Jl,n,t - Jl,n/Jl,nen,t+1Jl,n
By Cor.4.9 this algebra has basis J<;(n, > n — 2t,n).

(4.11) PROPOSITION. For each triple n,l,t the following hold when § € k*.

(i) The algebra A = e, 4 Jip i€y is isomorphic t0 kSpinn—211+2)-

1) The multiplication map Ji,€nt @A €ntdint B Jiminiding is a bijection o
n,tCn, Y, n,tCntdin, )

(Jints Jint)-bimodules.

Proof. (i) The number of propagating lines must be at least n — 2¢, but with the
ent's present this is also the most it can be, so every propagating line in e, is
propagating in A, and indeed A is isomorphic to the group algebra of a symmetric
group. The group is Spin(n—2t,+2) by the height condition.

(ii) The map is clearly surjective. We construct an inverse using the polar decompo-
sition (4.7). Note that J;,, e, has a basis in bijection with J<;(n,n — 2t,n — 2t) =
J!l(n, n—2t,n—2t) x Jo(n —2t,n — 2t,n — 2t). Subset e, ;J;,,+ can be treated
similarly. It then follows from the definition of the tensor product that the left-hand
side has a spanning set whose image is independent on the right. O

(4.12) THEOREM. If 0 invertible in k = C then J,, is quasihereditary, with heredity
chain given by (1,¢€,, 1,€l 5, ...) as defined in (4.8).

»¥n,1y Y n,2»

Proof. Noting that CS,yip(n—2t,+2) is semisimple, this follows immediately from (4.11).
Specifically (4.11) shows, via e.g. [22, Statement 7], that (1,e; ;,€;, ,,...) gives a
heredity chain in the sense of [16, 21] (to strictly match their conventions, one re-

verses the order of elements). Cf. e.g. [24, 19]. O

4.3 Aside: Slick proof of quasiheredity in the monoid case

Note that for a € J(n,n) we have aa*a = a in .J;,. Since the height of a* is the
same as a we have the following.

(4.13) PROPOSITION. The algebra J,,(1) is a regular-monoid k-algebra (i.e. a €
aJina for all a € Jy(n,n)). O

(4.14) COROLLARY. The algebra J; (1) is quasihereditary when k = C.

Proof. Use Putcha’s Theorem [64], that a regular-monoid C-algebra is quasiheredi-
tary. O

4.4 Standard modules of J,

We may construct a complete set of ‘standard modules’ for each J;,, as follows. The
modules we construct are ‘standard’” with respect to a number of different compatible
axiomatisations (the general idea of standard modules, when such exist, is that they
interpolate between simple and indecomposable projective modules). For example
(I) we can construct quasihereditary standard modules by enhancing the heredity
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chain in Th.4.12 to a maximal chain cf. [24]; (II) we can construct the modular
reductions of lifts of ‘generic’ irreducible modules in a modular system cf. [6]; (III)
we can construct globalisations of suitable modules from lower ranks cf. [51, 42, 55].
We are mainly interested in a useful upper-unitriangular property of decomposition
matrices that we establish in (4.27).

(4.15) Note that kJ<;(n,m), with m < n say, is a left .J; ,, right J; ,,-bimodule, by the
category composition. By the bottleneck principle it has a sequence of submodules:
kJ<i(n,m) =kJ<(n,<m,m) D kJgn,<m—2,m) D ...

For given [, each section

3ﬁm = ngl(”;SI%m)/ngl(n,Sp_Qam)

)

thus has basis J<;(n, p,m). In particular the top section has basis J<;(n, m, m).

(4.16) The above holds in particular for the case m = n, where our sequence is an
ideal filtration of the algebra, cf. Corol.(4.9). Define the quotient algebra

TP = Jia/kDi(n, < p,n)

Note that this is the same as J; ,,; with p+ 2 = n — 2t (but now without restriction
on 0). The index p tells us that partitions with p or fewer propagating lines are
congruent to zero in the quotient.

(4.17) In particular, as noted in (4.5), Jl{Z_Q = kSmin(n,i+2)- Specifically JZ{Z_Q has
basis J<;(n,n,n), which is of the form J(I+2,142,14+2)®1,_ (42, i.e. Sio®@1,_(49),
when n > [+ 2 (since there can be no crossing lines after the first [ 4 2 in this case).

(4.18) Note that J?

P o is also a left Jz/, P2 right Jl/7 "2 himodule. Thus we have a
functor

3o ® 2 = JZ?Q —mod — Jz/,iﬁ — mod
and in particular a functor
Inp ks, — 1 kSy —mod — JZ{TZZ*Q — mod (p<1+2)

Ihp Oksyy —  kSpp2 —mod — Jl{Z_Q — mod (p>1+2)

(in case p > [ + 2, the right action of kS, = kS;o in the form kS; 1o ® 1,45 is
understood).

(4.19) With this functor in mind we recall some facts about the symmetric groups.
For any symmetric group 5, and a partition A = m, let S, denote the corresponding
Specht module of S,,, — see e.g. [35, 36]. Recall that there is an element €, in kS,
such that Sy = kS,,ex. If £ D Q then €, may be chosen idempotent. Example: The
element €5y € kS, is unique up to scalars: €z) = 15 + 0y (in the obvious notation).
Thus a basis for S is b = {€@2) }
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(4.20) Recall that, for given k, A(J;,) denotes the index set for simple modules as
in (4.6). Let us also define a set

- o (p)
A (i) = U Arﬁin(p,l+2),k

peln

as in (4.6), indepently of k. (Note that for & = C and § # 0 we have A(J;,,) =
A (Jin).)

For given [ define p; := min(p,l+2). For any p and A\ F p;, that is for
(p, \) € A(Jin), we define a global-standard J; ,-module using (4.18)

A;,)\ = Apy = 3%13 Ok, Sy
(4.21) For given I,p let A - p,. We can consider kS,, — kJ(p;, pi), indeed kS,, =
kJ<i(pi,pi,m1) by the inclusion in (4.5), and hence €x € kJ<i(pi, pi, pr). Thus
Eu(p,\) =€ ® 1, @ U0/

lies in J;,,. For any €, we may write the image in P schematically as with 2 X ||
legs; e.g. | (2) | with two pairs of legs. Thus for example with [ = 1 we have:

[ ‘ U U
E10(6,A|_3) = A
(A1)

Define another J; ,,-module by
Dy = J{22Eu(p, \)

PRrOPOSITION. If £ D Q and § € k* then the elements F,(p, A) are (unnormalised)

idempotents serving to refine the chain (1, €], 1, €, 5,...) in (4.12) and {D,x | (p, \) €
A(J;,)} are the quasihereditary-standard modules [24, §A1] of the quasihereditary
structure in Theor.4.12. O

Proof. Let A be a quasihereditary algebra with heredity chain e™ = (e!, €2, ..., ¢, ..., €');
and define A" = A/Ae™ A. To refine towards a maximal heredity chain from hered-
ity chain e~ we first decompose each e’ into a primitive idempotent decomposition
of it regarded as the identity in e’ A’e’ (cf. e.g. [24, §A3]). Let ey be any idempotent
in this decomposition (A labeling a simple module of e'A’¢") that lifts from A to A.
Then the lift ¢} can be the first idempotent in the refinement at ‘level’ i (again cf.
[24]). In our case, comparing the construction with (4.11) we see that each of the
E,(p,\)’s provides such an idempotent.

Subsequent steps in a full chain refinement involve partial sums of such idempo-
tents. But since any order may be used to introducing these into the chain (within
level i), and A()) is independent of this choice [24], then A()\) = A’ey may be taken
to be the corresponding standard module. O
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Example: For any [, a basis of Dj (9) for n = 4 is in bijection with JQZ(ZL, 2,2)
(as in 4.7). Indeed, omitting an arc in the bottom-right that is irrelevant to the

algebra action:
‘ - O
A
N~ (7)

the full basis for [ > 0 may be depicted:

T
& € € € & &

Note that the action of the algebra in this depiction is from above. Note that, if
[ =0, then J!O(Zl, 2,2) is smaller.

(4.22) PROPOSITION. Let (p,\) € A (Jin), so A p, and fix a basis by for Sy =
kSp€ex, as in [35, §4]. Let

Bux = {o(y® 1yp) |« € J4(n,p,p); y € ba}
regarded as a subset of Jh .. Then By, \ gives a basis for the Jy,-module Dy up to
isomorphism (in which (n — p)/2 irrelevant arcs are omitted as in (7)).

Proof. By definition D), , = J/p E,(p,\) is spanned by elements z(y 1,-,,) asin
B, » except with z € J(n, p, p) (again ignoring irrelevant arcs in the bottom-right).
Thus we need to show that we can omit z’s with crossing propagating lines without
breaking the spanning property. Some example elements of D5y with p > 1+ 2 (in
case p =5, [ = 1) provide a useful visualisation here:

A

First note that a basis element must have p propagating lines by the quotient. Any
crossing in the first min(p,! + 2) of these can be ‘absorbed’ by the by part of the
basis. There cannot be a crossing in any remaining propagating lines by the height
restriction, cf. (4.7). O

(4.23) COROLLARY. D, = A, )

Proof. Compare our basis B, ) in (4.22) above with the construction for A, ) in
(4.20). The main difference is combination via ®ys,, rather than multiplication.
This gives us a surjective map right to left. One then compares dimensions. O

(4.24) PROPOSITION. Suppose k O Q and either 6 # 0 or p # 0. Then for given I,
En(p,A) I3 Ea(p,\) = kEa(p,\).
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Proof. Pictorially/schematically we have:

‘]l":z ks\‘z

ara
[ AR e L[] o e

That is, firstly

il
il

i

(x@1pp, ®U®(n7p)/2)‘]l/,£72 (ex®1pp, ®U®(n7p)/2) = ((ex®1,-p,) Jl/,zzji2 (e2®1p—p,)) RUET-P)/2

by (4.1). But then J/;Z*Q 2 kSmin(pi+2) by (4.17). Finally exkSmin(pi42)€x = kex by
the Specht property (4.19) [36], which implies that €, is primitive idempotent in
kS| when kS), is semisimple (and so for example when £ 2 Q). O

(4.25) COROLLARY. Suppose k O Q and either § # 0 or p # 0. Then for (p,\) €
A(J1n), Dy is indecomposable projective as a Jl{g_2—m0dule,' and hence indecompos-
able with simple head as a J; ,-module. O

Note the natural inclusion of J;,,_o in J;,. Note that this J;,,_» commutes with
en. Thus given a left J; ,-module M then e, M is a left J; ,_s-module, and similarly
on the right. In particular J;,e, is a right-.J;,,_s-module (isomorphic as such to
kJ<i(n,n —2)). Alternatively, using (4.1) both .J; ,e, (when ¢ # 0) and J; ,h (when
n > 2) are right J;,,_s-modules by ‘idempotent inclusion’. The two right-module
structures on J; ,e, are isomorphic, when the second is defined. First using J; e,
then, for each n we have also the pair of functors

Ge
Jin—2 — mod < Jin — mod

e

given by G.M = Jj,e, ®5, , M and F.N =e,N. Similarly for n —2 > 0 we
have functors Gy, and Fy,. By (4.1) and [32, §6] the pair (G, Fh) is adjoint; and the
pair (G, F,) is adjoint when § # 0.

(4.26) PROPOSITION. For § € k*, and for 6 =0 with (n,p) # (2,0),
G An, = A2 (9)
For 6 € k*, and for 6 = 0 with (n,p, ) # (0,2, (2)),

Ay P<n

0 p=n-+2 (10)

FAM? = {

Forn > 0 and any § € k the functors Gy, and Fy, act as in (9) and (10) respectively.
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Proof. Consider the functor &7, : J;,, — mod — J;,, — mod given by M —
kJ<(n,m) ®,,,, M. By (4.23) we have that A7\ = G}Sy (with Sy understood as
a J;p-module in the obvious way). From the definition of the G functor note then
that the first result follows if the multiplication map kJ<(n,m) ®;,, kJ<i(m,p) —
kJ<i(n,p) is an isomorphism for n > m > p. This holds, by a routine calculation,
except in case m = 2 with 6 = 0. (These manipulations are essentially the same
as in the Brauer case, see e.g. [19, 54, 55]. In this proposition our new geometrical
constraints do not affect the argument.) The G|, and F' cases are similar. O

Note that G}, is right exact and preserves projectivity and indecomposability
(see e.g. [32, §6]). It follows that it preserves the simple-head property. Iterating, it
follows that A, ) is indecomposable when S, is, i.e. when char.k # 2 [35, cor.13.18].
Similarly it follows that A, ) has simple head when Sy has, i.e. when A is char.k-
regular (in the sense of [35]). The case not covered by Gy, or G is A = () when 6 =0
and n = 2. But here Ag is simple and hence simple head by direct calculation (one
proceeds by direct analogy with [55]).

For k as in (4), a field that is a k-algebra by giving a value § € k, let A*(.J;,,)
denote the subset of A(.J;,,) of pairs (p, A) in which A is char.k-regular (and if 6 =0
then p # 0). Thus A(J;,) = A¥(J;,) for any given k, by (4.6), and in particular
AC(J1) = A (J,) (when § # 0). Fixing k, for (p, \) € A¥(J;,,) we can now write
L, =head (A, ) for the simple head (see e.g. [6, §1.2]). Note from (10) that these
are pairwise non-isomorphic. Write [A, ) : L, | for the multiplicity of L, » as a
composition factor in A, 5; and C* = ([A,\ 1 Ly, »]) ),y for the corresponding
decomposition matrix.

(4.27) PROPOSITION. (I) The modules {A,\} are a complete set of standard mod-
ules of Ji, in the quasihereditary algebra cases (6 invertible and char.k > 1+ 2, for
example k = C). (II) The simple decomposition matriz C® for this set of modules
is upper unitriangular (when written out in any order so that (p,\) > (p/, ') when
p>1p'). (III) More generally C® may be written in the form

DO . . . D

D? . . 153

n even n odd
ch " ch"E

)

Dmin(n,l—i—?) ' Dmin(n,l—i—?)

where D™ is the decomposition matriz for the Specht modules of kS, (in our case
it is natural to order integer partitions in increasing dictionary order, cf. [35])
and D° = (1); blank block-entries denote zero blocks, and dot block-entries are not
necessarily zero. If 6 = 0 then the D° row is omitted.

Proof. (I) Follows from Corol.4.23 and (4.21) Proposition, and the proof of The-
orem 4.12. For (II) and (III) note that Prop.4.26 implies, cf. [32, §6.6], that the
composition factors with the same label in A7\ and A;}Q have the same multiplic-
ity. The only possible new factors in AZ;L\2 have the property e,.25 = 0. Applying
this iteratively on n gives the claimed result. O
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4.5 Towards the Cartan decomposition matrices

The Cartan decomposition matrix encodes the fundamental invariants of an algebra
[6]. Given the difficulty experienced in computing them in case [ = —1 and par-
ticularly [ = oo [55] we can anticipate that they will not be easy to determine in
general. However, the main tools used in cases [ = —1 and [ = oo can be developed
in general, as we show next. We start with a corollary to Prop.4.27(I-11).

For each A, , we will use a contravariant form as in [32, §2.7]. The form here is
the analogue of the usual form for the Brauer algebra with respect to the involutive
antiautomorphism * [34, 55]. That is, for e;,e; € A, , a suitable inner product
(i, €j) is given by efe; = (e;, e;)E,(p,A). This is well-defined for k O Q by (4.24).
The form rank is given by the matrix rank of the Gram matrix over a basis.

Example: A basis for A%@) is given in (8). In particular then (with A = (2)):

S
g 1 =

Al -

so (e, e4) = 1 (noting that 1€y = €2)).

The form can be generalised to arbitrary &, but then the final stage of reduction
uses the form on Specht modules from [35], which introduces an integer factor. These
factors can be computed, but in our example we focus on characteristic zero.

N

(4.28) COROLLARY. Fiz k = C and 6 € k. Module A, \ has a contravariant form
(with respect to *) that is unique up to scalars. The rank of this form determines
the dimension of the simple module L, ).

Proof. The space of contravariant forms is in bijection with the space of module
maps from A, ) to its contravariant dual (the analogous right-module E, (p, )‘)Jz/, P
treated as a left-module via ordinary duality). But by the upper-unitriangular prop-
erty (4.27) this space is spanned by any single map from the head to the socle. O

In our A @ example, setting f;; = (e;, e;), one computes the Gram matrix

—_ O O = =
Shh = = = O =
—

—_

—_

N—

The lines in (11) indicates the restrictions to a basis {e;,i = 1,2,3} for A;l’(l) for
[ = —1 (by a mild abuse of notation); and the basis {¢;,7 = 1,2,3,4} for [ = 0.
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As noted, when the determinant vanishes (e.g. as a polynomial in ) then the
indecomposable module A contains a proper submodule L. Thus this gives the cases
where the algebra is non-semisimple. The roots in the example are given by

0,+v2 if 1=-1
§=1q 0,1, 240 i =0
0,0,0,~4,2,2 if I=1

The ‘classical’ first and last cases are known (they may be determined from
[48] and [55] respectively), but the middle case shows that new features appear for
intermediate [. The details of this example are therefore most intriguing. Here,
however, we note only that it will be clear that every such Gram matrix is a finite
polynomial in §. It follows that, with k& = C say, the rank of the form is submaximal
only on a Zariski-closed subset of d-parameter space. In other words:

(4.29) THEOREM. For each 1, J;,(0) is generically semisimple over C, and non-
semisimple in finitely many d-values. O

The example shows that non-semisimple cases exist. But computing Gram de-
terminants is not easy in general. In the classical cases they are most efficiently
calculated using translation functors, which combine use of the F' and G functors
with an alcove-geometric structure obtained via induction and restriction. We begin
to address this in §5 by looking at branching rules.

Remark: The semisimplicity condition for the Brauer algebra cases are given explic-
itly in, for example, [67, 2].

5 Standard Bratteli diagrams

(5.1) Given a pair of semisimple algebras A D B, with simple modules labelled
by sets A(A) and A(B) respectively, then the Bratelli diagram is the graph with
vertices A(A) U A(B), and an edge (of multiplicity m) p — v whenever simple B-
module L, is a composition factor of the restriction Res4 L, of simple A-module L,,,
of composition multiplicity m (see e.g. [47] for a review and references).

If Ay D Ay D Ay D ... is a sequence of subalgebras then the pairwise Bratelli
diagrams may be chained together in the obvious way. This is the Bratelli diagram
for the sequence.

(5.2) More generally, suppose that A D B (or a sequence as above) are quasihered-
itary algebras, and that the restrictions to B of the standard modules of A have
filtrations by the standard modules of B (NB such filtrations, if they exist, have
unique multiplicities of factors up to isomorphism, since standard modules are a ba-
sis for the Grothendieck group [16]). Then the standard Bratelli diagram encodes the
standard filtration multiplicities in the same way as the ordinary Bratelli diagram.

(5.3) PROPOSITION. Fiz I. There is a standard Bratelli diagram for the tower
{J1n C Jint1}nen (inclusion by adding a line on the right). The standard restriction
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rules for the J;,+1-modules A,y are given as follows.
For p <1+ 2 we have a short exact sequence:

0— @iAI(’n—)l,)\—ei - Resjﬁ:+lAl(:;rl) - @iAl(ﬁ-)l)\-i-ei — 0
where the sums are over addable/removable boxes of the Young diagram — hence
A — e; denotes X\ with the i-th removable box removed and so on (we have noted the
value of n explicitly when different values appear in the same sequence).

Forp=1+42:

0— @iA,(Jn_)LA—ei - Resjj:ZHA;?;l) - AS—?LA —0
Forp>1+42:
0— A;”_)L/\ — ResZHAI(:;D — AI(:-ZI—)LA — 0.

Proof. The proof closely follows [50, Prop.13] or [51]. The main differences are due
to the fact that here we are working, for p > [ + 2, with ‘inflations’ of a subgroup
Sit2 of Sy, rather than inflations of 5, itself.

First note that, combinatorially, we may separate the basis B, \ into two subsets:
(I) elements in which the component z from JlH(n, p, p) has the last line propagating
(i.e. northern marked-point n is connected to southern marked-point p’); and (II)
elements in which it does not (i.e. northern marked-point n is connected to some
earlier northern marked-point). For example, in (8) the first three elements have
the last line propagating:

|| | || \ || [ || \
\J

==l ==l 2ol ==
P
@ @ @ @ @ @

U
o o e & o &

Next note that the subset in (I) is indeed a basis of a submodule with regard to
the J;,,—1 action (which acts trivially on the last line). For p > [+ 2 it is isomorphic,
as it were, to the basis of A;”JL/\. Furthermore (II) spans a submodule modulo (1)
— i.e. it is a basis for the quotient. It is easy to check that this quotient module is
Az(:k)l, \» hoting again that the last line acts trivially, so that there is an isomorphism
obtained by ‘deforming’ the last marked-point from the top to the bottom of the
picture (effectively adding another propagating line).

The p < [ + 2 cases are similar, except that the deformation takes the ‘seed’
Siy-module, in the sense of (4.18), from the Specht module Sy to the induction of

this module to Sy

One thus lifts the induction (and in case (I) the restriction) rules for symmetric
group Specht modules. Cf. e.g. [50, Prop.13], [25]. O
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z— /H/HJ_HJ_HJ_

BB 8

Figure 7: The J;,, C J; n41 standard Rollet diagram in case [ = 1 and case [ = 2.

(5.4) Note in particular that the restriction is multiplicity free here; and is essentially
independent of n. The standard Bratteli diagram in the [ = 1 case and in the [ = 2
case is encoded in Fig.7, in the form of the corresponding Rollet diagram R;. Rollet
diagrams are described, for example, in [47] (and cf. [31]). In brief, a Rollet diagram
arises when there is a global (large n) limit for the index set for standard or simple
modules of a tower of algebras (such as J;,,, n =0, 1,2, 3, ...), induced in the manner
of Prop.4.1; and also for the corresponding restriction rules. Often, as here, there is
a global limit for the index sets for odd and even n sequences of algebras separately
(localisation and globalisation change n in steps of 2). The Rollet graph is an
encoding of all the data in the Bratteli diagram on a vertex set consisting just of
the union of the odd and even global limits. One takes this vertex set, and an edge
of multiplicity m from A to p whenever restriction of Ay contains m copies of A,
— this being well-defined by the independence-of-n property.

In particular R; is an undirected bipartite graph in our case (cf. the directed
Bratteli graph). That is, it is multiplicity free, and whenever there is an edge there
is an edge in both directions.

(5.5) Note that this gives a beautiful combinatorial approach to the dimensions of
standard modules, and of the various algebras (cf. [43, 47]), and in particular the
following.

(5.6) THEOREM. Let W'\ () denote the set of walks of length n on R; from vertex
0 to vertex (p,\) (the vertex with label A at distance p from ). Then dim(A7 ) =
(WD and dim(J;,) = \W O

27



6 Discussion

The construction of 7; and P; raises many interesting collateral questions. In this
section we assemble some brief general observations on our construction, on further
developments and on open problems (we defer full details to a separate note [38]).

6.1 Next steps in reductive representation theory of J,

The next steps parallel the program for the Brauer algebra used in [55], but now
for each [ in turn. Essentially we should compute the blocks, and construct ‘trans-
lation functors’; and then construct corresponding analogues of Kazhdan—Lusztig
polynomials, cf. [55, 19, 27, 29].

We write Ind— for the induction functor adjoint to Res— as in (5.3) above. The
precursor of translation functors in the Brauer case is the natural isomorphism of
functors expressed as Ind = Res G. The general setup here is as follows.

(6.1) LEMMA. Suppose we have a sequence of algebras A D B D C' and an idempo-
tent e in A such that eAe = C'. If B and Ae are isomorphic as left-B right-C'-modules
then functors Ind = Res G (G = G, defined as in (4.26)).

Proof. We have Indg— = Bc ®c — and Gé— = Ae ®c —. O

In the Brauer case we have the ‘disk lemma’: Consider a partition in J(n+1,n+
1). Replacing the vertex n+1" with a vertex n+2 definesamap n : J(n+1,n+1) —
J(n+2,n). One easily checks that this is a bijection; and an isomorphism of n+1, n-
bimodules. On the other hand B, se has a basis of partitions in J(n+2,n+2) with
a pair {n + 1',n + 2'}. There is a natural bijection of this basis with J(n + 2,n)
(simply omit the indicated pair). Altogether then, B,,; and B, e are isomorphic
as bimodules. In our case we have the following.

(6.2) LEMMA. There is a well-defined restriction of n to a map 0 : Jypy1 — Jinioe;
and this is an isomorphism of left-J 1 right-J; ,-modules.

Proof. One checks that n does not change height. O
Thus we have the following.

(6.3) PROPOSITION. Fiz any l. Then for all n we have Ind = Res G. O

This is a powerful result since, for example, the Ind— functor takes projectives
to projectives, while Prop.5.3 tells us what Res— does to standard modules. Thus
we have an iterative scheme for computing the A-content of projective modules, cf.

[55].

(6.4) Closely related to Prop.6.3, a generalised Jones Basic Construction [47] applies
here (cf. the original Jones Basic Construction [31]). It is analogous to the case in
[52].

(6.5) We can use the graphs R; from (5.4) to give an explicit contruction for the basis
states of the standard modules; and indeed of the entire algebra — a generalised
Robinson-Schensted correspondence [41]. See [38] for details.
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6.2 Remarks on J;, construction

The J; construction is amenable to several intriguing generalisations. Here we briefly
mention just one particular such generalisation, which case makes a contact with
existing studies.

(6.6) The first case with crossings, J;—¢ ., is connected to the blob algebra [57]:
We say a picture is left-simple if the intersection of the 0-alcove (as for example
in Fig.4) with the frame of R is connected. A partition is left-simple if every picture
of it is left-simple. (For instance the identity in B, is left-simple, while the example
in Fig.4 is not.) Define JL,(n, m) as the subset of J<;(n, m) of left-simple partitions.

(6.7) REMARK. The subspace kJLy(n,n) is a subalgebra of Jo,. This subalgebra

is isomorphic to the blob algebra b,_1(q,q"), with q,q" determined by & as follows.

Parameterising (as in [57]) with x = q+q~' as the undecorated loop parameter; and
5t

y=4q + ¢ as the decorated loop parameter, we have x = & and Y=

Proof. (Outline) It is easy to check that the subspace is a subalgebra. It is also easy
to show a bijection between JL,(n,m) and the set of (n — 1,m — 1)-blob diagrams.
This does not lift to an algebra map, but shows the dimensions are the same. A
heuristic for the algebra isomorphism is to note that the intersection of the propa-
gating number zero ideal (4.16) with the subset of left-simple partitions is empty, so
there is no Ag g representation. With this node removed, the Rollet diagram from
§5 becomes a (‘doubly-infinite’) chain, which is the same as for the blob algebra.
See [38] for an explicit proof.

(6.8) On the other hand one can check using §5 that higher [ cases such as the
algebra generated by JZ,(n,n) do not coincide with the higher contour algebras [56]
or the constructions in [30, 33, 70].

(6.9) Diagram bases may be used to do graded representation theory (in the general
sense, for example, of [13]) for graded blob and TL algebras (see e.g. [63]), regarded
as quotients of graded cyclotomic Hecke algebras. It would be interesting to try to
generalise [63] to J;,,. Of course given an algebra defined via a specific basis as here,
there is no reason why the underlying homogeneous basis for a given grading should
be the same. There is not a canonical lift of the Plaza-Ryom-Hansen construction to
the full Brundan—Kleschev Hecke algebra [13], and there now exist graded versions
of the Brauer algebras [45, 29, 27| that again do not use the basis of set partitions
from this paper. The interpolation .J;,, is thus intriguing also from this perspective.

(6.10) As noted (cf. (1.7), (2.16) and (2.19)), P, B,7 are monoidal categories with
object monoid (N, +) and monoid composition visualised by lateral (as opposed to
vertical) juxtaposition of diagrams. Note however that the categories J;, P, do not
directly inherit this structure (except in cases J_1 = 7 and J, = B).

6.3 Recent developments and further open problems

There have been several further exciting developments on Brauer algebras since
this work was first reported (in arxiv:1401.1774). One should mention again some
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beautiful new developments on gradings of Brauer algebras, such as the works of
Ge Li [45], and Ehring and Stroppel [29]. In particular [29], together with [27],
relate Brauer algebras with geometry and alcove geometry. Furthermore both give
an answer, for the Brauer algebra, to the problem addressed in (6.9) here.

Also potentially related are Lehrer and Zhang’s treatment of duality with or-
thosymplectic groups [44] and Ehrig and Stroppel’s treatment [28] of the Lie super-
algebra case (both of which follow on from Benkart et al [5]). The restriction of this
‘super’ construction to the corresponding TL algebra has been considered [53], but
the general [ case is open.

For TL there is a module defined over a suitable integral ground ring that base-
changes to a full-tilting module in every quasihereditary specialisation. Indeed in
this case the Schur-Weyl duality provides such a module [66, 49, 24]. It would be
interesting to have such a uniform construction for full-tilting modules for all the
Brauer algebras, so the J;,, interpolation is interesting from this perspective.

Related to the last point, it is very interesting to ask if there is a lift of our con-
struction to generalisations such as the Birman-Murakami-Wenzl (BMW) algebra
(62, 8, 40, 61, 72]. See also e.g. [65, 3, 1].
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