Notes on blob algebras

P P Martin

Mathematics Department, City University, Northampton Square, London EC1V 0HB, UK.

1 Introduction

Blob algebras [4] are generalisations of the TL algebra [6] regarded as a diagram algebra [3]. They share with TL and with each other a number of combinatorial structures. We collect and summarize some of these here.

Note that this document is just intended to be a useful collection of formulae. Some appropriate references may be missing.

2 Structure

Exclude this for now.

3 Matrices

For each $d>1$ define $d \times d$ matrix

$$
M_{a, b, c}(d, L, R)=\left(\begin{array}{cccccccc}
a & b & 0 & & & & & \\
L & {[2]} & 1 & 0 & & & & \\
0 & 1 & {[2]} & 1 & 0 & & & \\
0 & 0 & 1 & {[2]} & 1 & 0 & & \\
& & & & \ddots & & & \\
0 & \ldots & 0 & 0 & 1 & {[2]} & 1 & 0 \\
0 & \ldots & 0 & 0 & 0 & 1 & {[2]} & R \\
0 & \ldots & 0 & 0 & 0 & 0 & c & c
\end{array}\right)
$$

Thus

$$
\operatorname{det}\left(M_{a, a, c}(d, L, R)\right)=a c \operatorname{det}\left(M_{1,1,1}(d, L, R)\right)
$$

and

$$
\operatorname{det}\left(M_{a, 1,1}(d, L, R)\right)=a \operatorname{det}\left(M_{[2], 1,1}(d-1,1, R)\right)-L \operatorname{det}\left(M_{[2], 1,1}(d-2,1, R)\right)
$$

In particular

$$
\operatorname{det}\left(M_{[2], 1,1}(d, 1, R)\right)=[2] \operatorname{det}\left(M_{[2], 1,1}(d-1,1, R)\right)-\operatorname{det}\left(M_{[2], 1,1}(d-2,1, R)\right)
$$

As is well known, the recurrence

$$
M(d)=[2] M(d-1)-M(d-2)
$$

is solved by $M(d)=\alpha[r+d]$ for any constants r, α. Noting that $\operatorname{det}\left(M_{[2], 1,1}(2,1, R)\right)=$ $[2]-R$, if we parametrise by $R=\frac{[r]}{[r+1]}$ we get

$$
\operatorname{det}\left(M_{[2], 1,1}(d, 1, R)\right)=\frac{[r+d]}{[r+1]}
$$

Altogether then

$$
\operatorname{det}\left(M_{1,1,1}(d, L, R)\right)=\frac{[r+d-1]}{[r+1]}-L \frac{[r+d-2]}{[r+1]}
$$

and parameterising by $L=\frac{[l]}{[l+1]}$ we get

$$
\operatorname{det}\left(M_{1,1,1}(d, L, R)\right)=\frac{[l+1][r+d-1]-[l][r+d-2]}{[r+1][l+1]}=\frac{[l+r+d-1]}{[r+1][l+1]}
$$

and

$$
\operatorname{det}\left(M_{L, L, R}(d, L, R)\right)=\frac{[r][l][l+r+d-1]}{[r+1]^{2}[l+1]^{2}}
$$

We also note

$$
\begin{equation*}
\operatorname{det}\left(M_{L, 1,1}(d, 1, R)\right)=\frac{[l][r+d-1]-[l+1][r+d-2]}{[r+1][l+1]}=\frac{[l-(r+d-2)]}{[r+1][l+1]} \tag{1}
\end{equation*}
$$

Define

$$
M^{\prime}(d, L, R)=\left(\begin{array}{cccccccc}
L & L & 1 & & & & & \\
L & {[2]} & 1 & 0 & & & & \\
1 & 1 & {[2]} & 1 & 0 & & & \\
0 & 0 & 1 & {[2]} & 1 & 0 & & \\
& & & & \ddots & & & \\
0 & \ldots & 0 & 0 & 1 & {[2]} & 1 & 0 \\
0 & \ldots & 0 & 0 & 0 & 1 & {[2]} & R \\
0 & \ldots & 0 & 0 & 0 & 0 & R & R
\end{array}\right)
$$

Thus
$\operatorname{det}\left(M^{\prime}(d, L, R)\right)=R([2]-L) \operatorname{det}\left(M_{L, 1,1}(d-1,1, R)\right)=\frac{[r][l+2]}{[r+1][l+1]} \frac{[l-(r+d-3)]}{[r+1][l+1]}$

4 Combinatorics and generating functions

4.1 Bracket sequences and trees

Let B_{n} denote the set of properly nested bracket sequences of n brackets. This begins

$$
\emptyset,\{()\},\{()(),(())\}, \ldots
$$

Write

$$
G(x)=\sum_{n=0} x^{n}\left|B_{n}\right|=x^{0}+x^{2}+2 x^{4}+5 x^{6}+\ldots
$$

for the generating function for the degrees of this sequence of sets - the Catalan numbers [1].

The set of rooted plane trees with n edges is in bijection with B_{n}. Noting that every tree with at least one edge may be 'factored' as a tree growing from the root together with a tree growing from the vertex at the end of this edge we have

$$
G(x)=1+x^{2}(G(x))^{2}
$$

so

$$
G(x)=\frac{1-\sqrt{1-4 x^{2}}}{2 x^{2}}
$$

Let B_{n}^{l} denote the set of composites of nested sequences with l propagating lines, with a total of n objects. This array begins

(see [?]).
The tree version of this is a forrest of $l+1$ trees with walls between. Accordingly we have

$$
\sum_{n=0} x^{n}\left|B_{n}^{l}\right|=G(x)(x G(x))^{l}=(G(x))^{l+1} x^{l}
$$

4.2 Exclude the rest for now!

Exercise: explain the relevance of all this to blob representation theory.

5 James-Murphy Gram determinants

The following recursion was introduced by James and Murphy [2] in case $q=1$. Let μ be an integer partition (or equivalently a Young diagram), I_{μ} the set of row positions of μ from which a box may be removed, and for $i \in I_{\mu}$, let μ^{i} be the corresponding subdiagram (we follow [5, Appendix B]). Define a function dim from integer partitions to integers by

$$
\operatorname{dim}(1)=1
$$

and

$$
\operatorname{dim} \mu=\sum_{i \in I_{\mu}} \operatorname{dim} \mu^{i}
$$

For $i \in I_{\mu}$ let J_{i} be the set of hook lengths of μ in the column above the removable box. Define a function from integer partitions to functions of q recursively by

$$
D_{(1)}=1
$$

and

$$
D_{\mu}=\prod_{i \in I_{\mu}} D_{\mu^{i}}\left(q^{x\left(\mu^{i}\right)} \prod_{j \in J_{i}} \frac{[j]}{[j-1]}\right)^{\operatorname{dim} \mu^{i}}
$$

(here x is a function whose details need not concern us for now - see [5, Appendix B] for this, and also for a number of examples).

The point of James-Murphy's contruction is that D_{μ} is the Gram determinant for the S_{n} Specht module with label μ or (as noted by James and Mathas) the corresponding Hecke algebra module for general q.

Theorem 1 This recursion is solved by the following explicit form in case $\mu=$ $\left(\mu_{1}, \mu_{2}\right)($ and $x=0)$:

$$
D_{\mu}^{\prime}=\prod_{l=0}^{\mu_{2}-1}\left(\frac{\left[\mu_{1}-l+1\right]}{\left[\mu_{2}-l\right]}\right)^{\left({ }_{1}^{\mu_{1}+\mu_{2}}{ }_{l}\right)-\binom{\mu_{1}+\mu_{2}}{l-1}}
$$

Proof: (We will just do the cases in which $\left|I_{\mu}\right|=2$.) In this case

$$
\operatorname{dim}\left(\mu_{1}, \mu_{2}\right)=\binom{\mu_{1}+\mu_{2}}{\mu_{1}}-\binom{\mu_{1}+\mu_{2}}{\mu_{1}+1}=\binom{\mu_{1}+\mu_{2}}{\mu_{2}}-\binom{\mu_{1}+\mu_{2}}{\mu_{2}-1}
$$

Sustituting D^{\prime} for D in the recursion, we require to compute

$$
\begin{gathered}
\mathcal{K}=D_{\left(\mu_{1}-1, \mu_{2}\right)}^{\prime} D_{\left(\mu_{1}, \mu_{2}-1\right)}^{\prime}\left(\frac{\left[\mu_{1}-\mu_{2}+2\right]}{\left[\mu_{1}-\mu_{2}+1\right]}\right)^{\binom{\mu_{1}+\mu_{2}-1}{\mu_{2}-1}-\binom{\mu_{1}+\mu_{2}-1}{\mu_{2}-2}} \\
\left.=\prod_{l=0}^{\mu_{2}-1}\left(\frac{\left[\mu_{1}-l\right]}{\left[\mu_{2}-l\right]}\right)^{\left(\mu_{1}+\mu_{2}-1\right.}\right)-\binom{\mu_{1}+\mu_{2}-1}{l-1} \\
\prod_{l=0}^{\mu_{2}-2}\left(\frac{\left[\mu_{1}-l+1\right]}{\left[\mu_{2}-l-1\right]}\right)^{\binom{\mu_{1}+\mu_{2}-1}{l}-\left({ }_{l}^{\mu_{1}+\mu_{2}-1} l\right)}\left(\frac{\left[\mu_{1}-\mu_{2}+2\right]}{\left[\mu_{1}-\mu_{2}+1\right]}\right)^{\bullet}
\end{gathered}
$$

We need to show that this can be equated with D_{μ}^{\prime}. The first factor has numerator

$$
\begin{aligned}
& \prod_{l=0}^{\mu_{2}-1}\left(\frac{\left[\mu_{1}-l\right]}{1}\right)^{\binom{\mu_{1}+\mu_{2}-1}{l}-\binom{\mu_{1}+\mu_{2}-1}{l-1}}=\prod_{l=1}^{\mu_{2}}\left(\frac{\left[\mu_{1}-l+1\right]}{1}\right)^{\binom{\mu_{1}+\mu_{2}-1}{l-1}-\binom{\mu_{1}+\mu_{2}-1}{l-2}} \\
= & \chi \prod_{l=0}^{\mu_{2}-1}\left(\frac{\left[\mu_{1}-l+1\right]}{1}\right)^{\binom{\mu_{1}+\mu_{2}-1}{l-1}-\left(\mu_{1-2}^{\mu_{1}+\mu_{2}-1}\right)} \quad\left(\frac{\left[\mu_{1}-\mu_{2}+1\right]}{1}\right)^{\binom{\mu_{1}+\mu_{2}-1}{\mu_{2}-1}-\binom{\mu_{1}+\mu_{2}-1}{\mu_{2}-2}}
\end{aligned}
$$

Here we have shifted the dummy l to get the argument as in D_{μ}^{\prime}, then applied appropriate correcting factors to get the range of the product right. In particular we have a correcting factor for the lower limit of the product

$$
\left.\chi=\left(\frac{1}{\left[\mu_{1}+1\right]}\right)^{\left(\mu_{1}+\mu_{2}-1\right.}\right)-\left(\mu_{-2}^{\mu_{1}+\mu_{2}-1}\right),=1
$$

The second factor has numerator

$$
\left.\prod_{l=0}^{\mu_{2}-2}\left(\frac{\left[\mu_{1}-l+1\right]}{1}\right)^{\binom{\mu_{1}+\mu_{2}-1}{l}-\left(\mu_{1-1}^{\mu_{1}+\mu_{2}-1}{ }_{l-1}\right.}\right)=\gamma \prod_{l=0}^{\mu_{2}-1}\left(\frac{\left[\mu_{1}-l+1\right]}{1}\right)^{\binom{\mu_{1}+\mu_{2}-1}{l}-\left({ }_{1}^{\mu_{1}+\mu_{2}-1} l_{-1}\right)}
$$

where

$$
\gamma=\left(\frac{1}{\left[\mu_{1}-\mu_{2}+2\right]}\right)^{\binom{\mu_{1}+\mu_{2}-1}{\mu_{2}-1}-\binom{\mu_{1}+\mu_{2}-1}{\mu_{2}-2}}
$$

Thus collecting these numerators we have

$$
\prod_{l=0}^{\mu_{2}-1}\left(\frac{\left[\mu_{1}-l+1\right]}{1}\right)^{\binom{\mu_{1}+\mu_{2}-1}{l-1}-\binom{\mu_{1}+\mu_{2}-1}{\mu_{2}}+\binom{\mu_{1}+\mu_{2}-1}{l}-\binom{\mu_{1}+\mu_{2}-1}{l-1}} \quad\left(\frac{\left[\mu_{1}-\mu_{2}+1\right]}{\left[\mu_{1}-\mu_{2}+2\right]}\right)^{\binom{\mu_{1}+\mu_{2}-1}{\mu_{2}-1}-\binom{\mu_{1}+\mu_{2}-1}{\mu_{2}-2}}
$$

The second factor has denominator

$$
\prod_{l=0}^{\mu_{2}-2}\left(\frac{1}{\left[\mu_{2}-l-1\right]}\right)^{\binom{\mu_{1}+\mu_{2}-1}{l}-\binom{\mu_{1}+\mu_{2}-1}{l-1}}=\prod_{l=1}^{\mu_{2}-1}\left(\frac{1}{\left[\mu_{2}-l\right]}\right)^{\binom{\mu_{1}+\mu_{2}-1}{l-1}-\left({\underset{1}{4}+\mu_{2}-1}_{l-2}\right)}
$$

Noting that

$$
-\binom{\mu_{1}+\mu_{2}-1}{l-2}+\binom{\mu_{1}+\mu_{2}-1}{l}=\binom{\mu_{1}+\mu_{2}}{l}-\binom{\mu_{1}+\mu_{2}}{l-1}
$$

altogether we have

$$
\mathcal{K}=\prod_{l=0}^{\mu_{2}-1}\left(\frac{\left[\mu_{1}-l+1\right]}{\left[\mu_{2}-l\right]}\right)^{\left(\mu_{1}+\mu_{2}\right)-\binom{\mu_{1}+\mu_{2}}{l-1}}
$$

as required.

References

[1] H W J Blote and M P Nightingale, Critical behaviour of the two-dimensional Potts model with a continuous number of states; a finite size scaling analysis, Physica 112A (1982), 405-465.
[2] G D James and G E Murphy, The determinant of a Gram matrix for a Specht module, J. Algebra 59 (1979), 222-235.
[3] P P Martin, Potts models and related problems in statistical mechanics, World Scientific, Singapore, 1991.
[4] P P Martin and H Saleur, The blob algebra and the periodic Temperley-Lieb algebra, Lett. Math. Phys. 30 (1994), 189-206, (hep-th/9302094).
[5] P P Martin and B W Westbury, On quantum spin-chain spectra and the representation theory of Hecke algebras by augmented braid diagrams, J Phys A 30 (1997), 5471-5495.
[6] H N V Temperley and E H Lieb, Relations between percolation and colouring problems and other graph theoretical problems associated with regular planar lattices: some exact results for the percolation problem, Proceedings of the Royal Society A 322 (1971), 251-280.

