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1 Introduction

Blob algebras [4] are generalisations of the TL algebra [6] regarded as a diagram
algebra [3]. They share with TL and with each other a number of combinatorial
structures. We collect and summarize some of these here.

Note that this document is just intended to be a useful collection of formulae.
Some appropriate references may be missing.

2 Structure

Exclude this for now.

3 Matrices

For each d > 1 define d x d matrix

a b 0
L 2] 1 0
0 1 [2] 1 0
0 1 [2] 1 0
Ma,b,c(da La R) = .
0 0 1 [2) 1 0
0 0 0 0 1 [2] R
0 0O 0 0 0 ¢ ¢
Thus
det(Mya.c(d, L, R)) = acdet(M;11(d, L, R))
and

det(MaJ,l(d, L, R)) = adet(M[gLLl(d - ]_, 1, R)) — Ldet(M[gLLl(d - 2, 1, R))
In particular

det(M[ng,l(d, 1, R)) = [2] det(M[ng,l(d — 1, ]_, R)) — det(M[g},Ll(d — 2, 1, R))

1



As is well known, the recurrence
M(d) =[2|M(d—1) — M(d—2)

is solved by M(d) = a[r-+d] for any constants 7, a. Noting that det(Mg11(2,1,R)) =

2] — R, if we parametrise by R = % we get
[r+ d]
det (M, d,1,R)) =

( [2},171( )) [7" + 1]

Altogether then
[r+d—1] [r+d—2]
det(My11(d, L, R)) = -
eWMianld L R) = = i+ 1]

and parameterising by L = % we get

4 rtd—1-[r+d—2 [+r+d—1]
det(My1,1(d, L, R)) = [+ 1 + 1] IS

and
[l +r+d—1]

det(Mpprld, L, B) = = = mr

We also note

r+d=1]—-[l+1]r+d—-2] [I—(r+d—2)]

det(Mra,(d,1, R)) = [r+ 1]+ 1] R CES VRS TR
Define
L L 1
L2 1 0
1 1 [20 1 0
0 1 2 1 0
M'(d,L,R) = .
0 0 0 1 [20 1 0
0 0 0 0 1 [2] R
0 0 0 0 0 R R

Thus

[Pl +2] [l—(r+d-3)]
[+l +1] [r+ 1]+ 1]

det(M'(d,L,R)) = R([2]-L) det(Mp11(d—1,1,R)) =

4 Combinatorics and generating functions

4.1 Bracket sequences and trees

Let B, denote the set of properly nested bracket sequences of n brackets. This

begins
0. {0} {00, (O} -
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Write
G(z) = Z:L’”]Bn] = 2%+ 2%+ 20" + 520 ..
n=0

for the generating function for the degrees of this sequence of sets — the Catalan
numbers [1].

The set of rooted plane trees with n edges is in bijection with B,. Noting that
every tree with at least one edge may be ‘factored’ as a tree growing from the root
together with a tree growing from the vertex at the end of this edge we have

G(z) = 1+ 2°(G(x))?

SO -
212
Let B! denote the set of composites of nested sequences with [ propagating lines,
with a total of n objects. This array begins

0

G(x) =

{1
{0} i
{01103 {1y

(see [?]).

The tree version of this is a forrest of [ 41 trees with walls between. Accordingly

we have
> a"|Bl| = G(x)(xG(x)) = (G(x))"'a!

4.2 Exclude the rest for now!

Exercise: explain the relevance of all this to blob representation theory.

5 James-Murphy Gram determinants

The following recursion was introduced by James and Murphy [2] in case ¢ = 1.
Let g be an integer partition (or equivalently a Young diagram), I, the set of row
positions of p from which a box may be removed, and for ¢ € I, let u' be the
corresponding subdiagram (we follow [5, Appendix B]). Define a function dim —
from integer partitions to integers by

dim(1) =1

and '
dim p = Z dim g’

i€l
For i € I, let J; be the set of hook lengths of 1 in the column above the removable
box. Define a function from integer partitions to functions of ¢ recursively by

D(l) - ]_
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and

D, = H D, (qx(ui) H j [i] 1])

i€l, jeJ;

(here x is a function whose details need not concern us for now — see [5, Appendix
B] for this, and also for a number of examples).

The point of James-Murphy’s contruction is that D, is the Gram determinant
for the S, Specht module with label p or (as noted by James and Mathas) the
corresponding Hecke algebra module for general q.

Theorem 1 This recursion is solved by the following explicit form in case p =
(p1, p2) (and x =0):

(mTuz)_(u%ﬂo)

U:ﬁKMJHU
! 1—0 12 — 1]
Proof: (We will just do the cases in which |I,| = 2.) In this case

: (e pit+pe\ e M1+ pho
dim(piq, p2) = - = —
1 pn+1 12 pe —1

Sustituting D’ for D in the recursion, we require to compute

Fpo—1)_(p1t+po—1
K=D D’ (w) (#1#2_21 ) (#1#2#—22 )
(1 =1,p2) " (p1,p2—1) (1 — pg + 1]
) uﬁl = )( RARERL: == 1])(”1+721)‘(”17”%1) (=)
[ — 1] o \lp2 —1—1] (11 — g + 1]

We need to show that this can be equated with DL. The first factor has numerator

TT(WEJU

=0

(u1+u2 ) (#1+u2 u1+#2*1),(#1+u2*1)

_H(MI_H])( & 3

H1tpg—1 #1""#2 1 pn1tpg—1 p1+ug—1

:X“ﬁl (w)( P -1 (M)( w2 )= ()

1 1
1=0

Here we have shifted the dummy [ to get the argument as in D], then applied
appropriate correcting factors to get the range of the product right. In particular
we have a correcting factor for the lower limit of the product

(#1+#2—1)_(u1+#2—1)

The second factor has numerator

?f<mr¥+u)WW230””U VW:(MVJ+])(

=0 l

Hl+72 1) (#1+#% 1)



where

u1+u2—1),(u1+u2—1)

()

Thus collecting these numerators we have

[I

()

=0

#1+H2*1)_(Hl?ﬁ%*1)+(H1+7271)_(H1?f%71)

The second factor has denominator

m+w*g (1+M 1 po—1

l:l?:f(ﬁ)( | H<M2—l

=1

1+u2 1)

)(“1?“%1) ("33

Noting that

(A pe =1 n prtpe =1\ St (e
[—2 [ [ [—1

altogether we have

p1+po

T (w) (i) =(1242)

I 12 — 1]

as required. O
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