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1 Introduction

Blob algebras [4] are generalisations of the TL algebra [6] regarded as a diagram
algebra [3]. They share with TL and with each other a number of combinatorial
structures. We collect and summarize some of these here.

Note that this document is just intended to be a useful collection of formulae.
Some appropriate references may be missing.

2 Structure

Exclude this for now.

3 Matrices

For each d > 1 define d × d matrix

Ma,b,c(d, L, R) =



























a b 0
L [2] 1 0
0 1 [2] 1 0
0 0 1 [2] 1 0

. . .

0 . . . 0 0 1 [2] 1 0
0 . . . 0 0 0 1 [2] R

0 . . . 0 0 0 0 c c



























Thus
det(Ma,a,c(d, L, R)) = ac det(M1,1,1(d, L, R))

and

det(Ma,1,1(d, L, R)) = a det(M[2],1,1(d − 1, 1, R)) − L det(M[2],1,1(d − 2, 1, R))

In particular

det(M[2],1,1(d, 1, R)) = [2] det(M[2],1,1(d − 1, 1, R)) − det(M[2],1,1(d − 2, 1, R))
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As is well known, the recurrence

M(d) = [2]M(d − 1) − M(d − 2)

is solved by M(d) = α[r+d] for any constants r, α. Noting that det(M[2],1,1(2, 1, R)) =

[2] − R, if we parametrise by R = [r]
[r+1]

we get

det(M[2],1,1(d, 1, R)) =
[r + d]

[r + 1]

Altogether then

det(M1,1,1(d, L, R)) =
[r + d − 1]

[r + 1]
− L

[r + d − 2]

[r + 1]

and parameterising by L = [l]
[l+1]

we get

det(M1,1,1(d, L, R)) =
[l + 1][r + d − 1] − [l][r + d − 2]

[r + 1][l + 1]
=

[l + r + d − 1]

[r + 1][l + 1]

and

det(ML,L,R(d, L, R)) =
[r][l][l + r + d − 1]

[r + 1]2[l + 1]2

We also note

det(ML,1,1(d, 1, R)) =
[l][r + d − 1] − [l + 1][r + d − 2]

[r + 1][l + 1]
=

[l − (r + d − 2)]

[r + 1][l + 1]
(1)

Define

M ′(d, L, R) =



























L L 1
L [2] 1 0
1 1 [2] 1 0
0 0 1 [2] 1 0

. . .

0 . . . 0 0 1 [2] 1 0
0 . . . 0 0 0 1 [2] R

0 . . . 0 0 0 0 R R



























Thus

det(M ′(d, L, R)) = R([2]−L) det(ML,1,1(d−1, 1, R)) =
[r][l + 2]

[r + 1][l + 1]

[l − (r + d − 3)]

[r + 1][l + 1]

4 Combinatorics and generating functions

4.1 Bracket sequences and trees

Let Bn denote the set of properly nested bracket sequences of n brackets. This
begins

∅, {()}, {()(), (())}, . . .
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Write
G(x) =

∑

n=0

xn|Bn| = x0 + x2 + 2x4 + 5x6 + . . .

for the generating function for the degrees of this sequence of sets — the Catalan
numbers [1].

The set of rooted plane trees with n edges is in bijection with Bn. Noting that
every tree with at least one edge may be ‘factored’ as a tree growing from the root
together with a tree growing from the vertex at the end of this edge we have

G(x) = 1 + x2(G(x))2

so

G(x) =
1 −

√
1 − 4x2

2x2

Let Bl
n denote the set of composites of nested sequences with l propagating lines,

with a total of n objects. This array begins

∅
{|}

{()} {||}
{()|, |()} {|||}

(see [?]).
The tree version of this is a forrest of l+1 trees with walls between. Accordingly

we have
∑

n=0

xn|Bl
n| = G(x)(xG(x))l = (G(x))l+1xl

4.2 Exclude the rest for now!

Exercise: explain the relevance of all this to blob representation theory.

5 James-Murphy Gram determinants

The following recursion was introduced by James and Murphy [2] in case q = 1.
Let µ be an integer partition (or equivalently a Young diagram), Iµ the set of row
positions of µ from which a box may be removed, and for i ∈ Iµ, let µi be the
corresponding subdiagram (we follow [5, Appendix B]). Define a function dim−
from integer partitions to integers by

dim(1) = 1

and
dim µ =

∑

i∈Iµ

dim µi

For i ∈ Iµ let Ji be the set of hook lengths of µ in the column above the removable
box. Define a function from integer partitions to functions of q recursively by

D(1) = 1
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and

Dµ =
∏

i∈Iµ

Dµi

(

qx(µi)
∏

j∈Ji

[j]

[j − 1]

)dim µi

(here x is a function whose details need not concern us for now — see [5, Appendix
B] for this, and also for a number of examples).

The point of James-Murphy’s contruction is that Dµ is the Gram determinant
for the Sn Specht module with label µ or (as noted by James and Mathas) the
corresponding Hecke algebra module for general q.

Theorem 1 This recursion is solved by the following explicit form in case µ =
(µ1, µ2) (and x = 0):

D′

µ =

µ2−1
∏

l=0

(

[µ1 − l + 1]

[µ2 − l]

)(µ1+µ2
l )−(µ1+µ2

l−1 )

Proof: (We will just do the cases in which |Iµ| = 2.) In this case

dim(µ1, µ2) =

(

µ1 + µ2

µ1

)

−
(

µ1 + µ2

µ1 + 1

)

=

(

µ1 + µ2

µ2

)

−
(

µ1 + µ2

µ2 − 1

)

Sustituting D′ for D in the recursion, we require to compute

K = D′

(µ1−1,µ2)D
′

(µ1,µ2−1)

(

[µ1 − µ2 + 2]

[µ1 − µ2 + 1]

)(µ1+µ2−1

µ2−1 )−(µ1+µ2−1

µ2−2 )

=

µ2−1
∏

l=0

(

[µ1 − l]

[µ2 − l]

)(µ1+µ2−1

l )−(µ1+µ2−1

l−1 ) µ2−2
∏

l=0

(

[µ1 − l + 1]

[µ2 − l − 1]

)(µ1+µ2−1

l )−(µ1+µ2−1

l−1 )( [µ1 − µ2 + 2]

[µ1 − µ2 + 1]

)

•

We need to show that this can be equated with D′

µ. The first factor has numerator

µ2−1
∏

l=0

(

[µ1 − l]

1

)(µ1+µ2−1

l )−(µ1+µ2−1

l−1 )
=

µ2
∏

l=1

(

[µ1 − l + 1]

1

)(µ1+µ2−1

l−1 )−(µ1+µ2−1

l−2 )

= χ

µ2−1
∏

l=0

(

[µ1 − l + 1]

1

)(µ1+µ2−1

l−1 )−(µ1+µ2−1

l−2 ) (

[µ1 − µ2 + 1]

1

)(µ1+µ2−1

µ2−1 )−(µ1+µ2−1

µ2−2 )

Here we have shifted the dummy l to get the argument as in D′

µ, then applied
appropriate correcting factors to get the range of the product right. In particular
we have a correcting factor for the lower limit of the product

χ =

(

1

[µ1 + 1]

)(µ1+µ2−1

−1 )−(µ1+µ2−1

−2 )
= 1

The second factor has numerator

µ2−2
∏

l=0

(

[µ1 − l + 1]

1

)(µ1+µ2−1

l )−(µ1+µ2−1

l−1 )
= γ

µ2−1
∏

l=0

(

[µ1 − l + 1]

1

)(µ1+µ2−1

l )−(µ1+µ2−1

l−1 )
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where

γ =

(

1

[µ1 − µ2 + 2]

)(µ1+µ2−1

µ2−1 )−(µ1+µ2−1

µ2−2 )

Thus collecting these numerators we have

µ2−1
∏

l=0

(

[µ1 − l + 1]

1

)(µ1+µ2−1

l−1 )−(µ1+µ2−1

l−2 )+(µ1+µ2−1

l )−(µ1+µ2−1

l−1 ) (

[µ1 − µ2 + 1]

[µ1 − µ2 + 2]

)(µ1+µ2−1

µ2−1 )−(µ1+µ2−1

µ2−2 )

The second factor has denominator

µ2−2
∏

l=0

(

1

[µ2 − l − 1]

)(µ1+µ2−1

l )−(µ1+µ2−1

l−1 )
=

µ2−1
∏

l=1

(

1

[µ2 − l]

)(µ1+µ2−1

l−1 )−(µ1+µ2−1

l−2 )

Noting that

−
(

µ1 + µ2 − 1

l − 2

)

+

(

µ1 + µ2 − 1

l

)

=

(

µ1 + µ2

l

)

−
(

µ1 + µ2

l − 1

)

altogether we have

K =

µ2−1
∏

l=0

(

[µ1 − l + 1]

[µ2 − l]

)(µ1+µ2
l )−(µ1+µ2

l−1 )

as required. 2
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