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Abstract

We construct the Specht modules and determine the corresponding de-
composition matrix, and the Cartan decomposition matrix, for the partial
Brauer algebras Rn(δ, δ′) (n ∈ N) in all cases over the complex field. We also
determine the Specht module restriction rules for the restriction Rn−1 →֒ Rn.

1 Introduction

Let k be a commutative ring, and k× its group of units. For each choice of δ, δ′ ∈ k,
and n ∈ N0, the partial Brauer algebra Rn(δ, δ′) is a k-algebra [9, 16, 17, 11] with
a finite basis of certain set partitions (or partition diagrams [12]). Specifically the
partial Brauer algebra is the subalgebra of the partition algebra [12] with basis only
of partitions into pairs and singletons. We show that these algebras are generically
semisimple over k = C, and construct ‘Specht’ modules — modules over k = Z[δ, δ′]
that pass to a full set of generic simple modules over C. In the remaining non-
semisimple cases over C the decomposition matrices for these Specht modules, and
hence the Cartan decomposition matrices, become very complicated, however we
determine them via a string of Morita equivalences that end up with direct sums of
Brauer algebras, whose decomposition matrices are known by [5, 14].
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Figure 1: (a) Brauer diagram; (b) Basic composition of partial Brauer partitions
(the straightening factor here is δδ′2).

1.1 Between the Brauer algebra and the partition algebra

The partial Brauer algebra is a unital diagram subalgebra of the partition algebra
[12] (i.e. a subalgebra with basis a subset of partition diagrams); itself containing
the Brauer algebra [3] as a unital diagram subalgebra. It is convenient to define the
partial Brauer algebra in terms of these classical objects. A Brauer diagram depicts
two rows of n vertices, connected in pairs, as in Figure 1(a). The Brauer algebra
Bn over k is a k-algebra with a basis of Brauer diagrams. The composition is by
first juxtaposing diagrams and then applying a straightening rule, i.e. a δ-dependent
rule for writing any juxtaposition as an element of the k-span of basis diagrams (see
[3]). The Brauer algebra is a subalgebra of the partition algebra Pn, which has a
basis consisting of all partitions of the same vertex set (see [12]). There is a larger
subalgebra of Pn with basis the set of partitions into pairs and singletons. This has
a 2-parameter version Rn(δ, δ′), with a two-parameter straightening rule: a factor δ
for each loop and a factor δ′ for each open string removed. The rule is well illustrated
by Figure 1(b), which shows an example from the corresponding diagram category
(see also Mazorchuk [16]). This Rn(δ, δ′) is the partial Brauer algebra. We call the
diagrams in the corresponding diagram basis partial Brauer diagrams.

1.2 The result

We will use ≡ to denote Morita equivalence. Our key theorem is the following.
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(1.1) Theorem. For δ′, δ − 1 ∈ k× we have

Rn(δ, δ′) ≡ Bn(δ − 1) ⊕Bn−1(δ − 1)

In §2 we prove this theorem (using a direct analogue of the method used for the par-
tition algebra variation treated in [13]). In §3 we combine the theorem with results
on the representation theory of Bn from [14] to describe the complex representation
theory of Rn(δ, δ′). In particular we give an explicit construction for a complete set
of Specht modules for Rn(δ, δ′), and show that these are images under the Morita
equivalence of corresponding Brauer Specht modules (or ∆-modules). This means in
particular that we can use the Brauer ∆-decompositon matrices from [14]. Provided
that δ′ is a unit then it can be ‘scaled out’ of representation theoretic calculations,
as the theorem suggests. However we also deal with the non-unit cases excepted in
the theorem (see §§4, 5.1).

Acknowledgement. Thanks are due to the Faculty of Natural Sciences of Uppsala
University for supporting Paul’s visit to Walter at Uppsala in November 2010 (during
which visit this work was mainly done).

2 Constructing the Morita equivalences

In order to construct the Morita equivalences in Theorem 1.1 we will introduce a
little more notation.

2.1 Partition categories

As a matter of expository efficiency (rather than necessity) we note the following.
The partition and Brauer algebras extend in an obvious way to k-linear categories
[12, 14], here denoted P and B respectively. The partial Brauer category R is defined
similarly. The category P is a monoidal category with monoidal composition a⊗ b
defined as in figure 2; and an involutive antiautomorphism ⋆ (in terms of diagrams
as drawn here, the ⋆ operation is reflection in a vertical line — see e.g. [14], and
Figure 2(b)). It is then generated as a k-linear category with ⊗ and ⋆ by

u =
•

, 11=
• •

, v = •

• •

, x =
•

•

•

•
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Figure 2: (a) Tensor product of partition diagrams; (b) ⋆ operation.

that is to say, the minimal k-linear subcategory closed under ⊗ and ⋆ and containing
these four elements is P itself (this follows immediately from [12, Prop.2]). Similarly,
B is generated by 1, x and

vu = •

• •

= •

•

Finally, R is generated by B and u.

2.2 Some basics of the partition diagram calculus

For S a set we write PS for the set of partitions of S. For n,m ∈ N0, n :=
{1, 2, ..., n}, n′ := {1′, 2′, ..., n′}, and Pn,m := Pn∪m′ . A partition in which each
part (each subset) has two elements is called a pair partition or Brauer partition.
A partition in which each part has at most two elements is here called a partial
partition. Define Bn,m as the subset of Pn,m of pair partitions; and Rn,m as the subset
of partial partitions. That is, the algebra Rn := Rn(δ, δ′) has basis Rn,n.

Let S be a set as before. Any graph G with a ‘structure map’ λ from S to the
vertex set of G (a partial labelling of vertices by labels from S) defines an element
π(G) ∈ PS as follows: two elements of S are in the same part in π(G) if and only if
their image vertices are in the same connected component of G. A partition diagram
for a partition in Pn,m is such a graph drawn in the interior of a rectangular frame,
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in which the vertices are arranged on two opposite edges of the frame, and λ is a
bijection.

In a partition diagram or Brauer diagram d, say, a part with vertices in both edges
is called a propagating part or a propagating line. The number #p(d) of propagating
lines is called the propagating number (in the literature this is sometimes also known
as rank).

When two diagrams d, d′ are concatenated in composition, we call the ‘middle’
layer formed (before straightening) the equator. We write d|d′ for the concatenated
unstraightened ‘diagram’.

The following elementary exercise will illustrate the diagram calculus machinery,
and also be useful later on. Define R

+(l)
n,n as the subset of partial partitions with l

singletons. For d ∈ R
+(l)
n,n and d′ ∈ R

+(l′)
n,n then the singletons from d and d′ appear in

d|d′ in three possible ways: (i) in the exterior (becoming singletons of dd′); (ii) as
endpoints of open strings in the equator, i.e. in pairs connected by a (possibly zero
length) chain of pair parts; (iii) as endpoints of chains terminating in the exterior.

Let 2m be the number of singletons in d|d′ of type-(ii). Then

dd′ ∈ kδ′
m
R

+(l+l′−2m)
n,n (1)

One should keep in mind that every partial Brauer diagram d encodes a partition.
Thus the assertion {i, j} ∈ d means that there is a line between vertices i and j in
d. If {i, j} ∈ d then one can decompose partition d as

d = {{i, j}} ∪ d′ where d′ = d− {i, j} (2)

A useful diagram shorthand for certain linear combinations of diagrams is to decorate
a line {i, j} with a box. In case δ′ ∈ k× the resultant decorated diagram denotes
the combination d− (1/δ′)d0 where d0 = {{i}, {j}} ∪ d′. For example

= −
1

δ′

It will be clear from (2) that this diagram shorthand extends naturally to decorations
on any number of lines.

2.3 Idempotents

It is convenient to treat the special case of Rn(δ, δ′) with δ′ = 0 separately — see
§5.1. Thus we will assume for now that δ′ ∈ k×.
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(2.1) For δ′ ∈ k×, define a map 〈〉 : Rn,n → Rn that takes diagram d to the linear
combination 〈d〉 obtained by decorating every line with a box.

For example, with U := uu⋆ ∈ R1,1 we have:

〈11 ⊗ 11〉 = (11 −
1

δ′
U) ⊗ (11 −

1

δ′
U) = 11 ⊗ 11 −

1

δ′
(11 ⊗ U + U ⊗ 11) +

1

δ′2
U ⊗ U

We can alternatively represent 〈d〉 simply using the diagram for d itself, with the
boxes implicit. We call this the ‘ψ-realisation’. Of course in this case diagrams will
have a different composition rule — in this role, we call them ψ-diagrams.

(2.2) Lemma. For δ′ ∈ k×, another basis for Rn(δ, δ′) is 〈Rn,n〉.

Proof. The coefficient matrix for 〈Rn,n〉 in the Rn,n basis is upper-unitriangular in
any order refining the partial order by number of pair parts of d. 2

(2.3) Lemma. For d, d′ ∈ Rn,n, the product 〈d〉〈d′〉 in Rn(δ, δ′) is given by:

〈d〉〈d′〉 =







0 if, when the (decorated) diagrams 〈d〉, 〈d′〉 are
concatenated, a singleton part meets a pair part,

〈dd′〉|δ;δ−1 otherwise

Here δ ; δ − 1 means that the factor associated to a closed loop is δ − 1 not δ.

Proof. Let d, d ∈ Rn,n. Recall that if a line from d meets a line from d′ in concate-
nation then the composite is a line in the product dd′ (as per Figure 1). Passing
to 〈d〉, 〈d′〉 these two lines are replaced by decorated lines. But by the idempotent
property

(11 −
1

δ′
U)(11 −

1

δ′
U) = (11 −

1

δ′
U)

the corresponding single line in dd′ is replaced by a single decorated line in 〈dd′〉.
Case (i) is verified in one example by Equation(3):

= −
1

δ′
= (1 −

δ′

δ′
) = 0

(3)
It is easy to see however, using the decomposition (2), that this example is repre-
sentative. Case (ii) may be verified as follows:
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= − 1
δ′

= (δ − 1
δ′
δ′)

2

(2.4) Notice that a diagram in Rn,n with l propagating lines and n − l odd has an
odd number of singletons on both the top and bottom edges. It follows immediately
that the product 〈d〉〈d′〉 in Rn is zero unless d, d′ both have even or both have odd
number of propagating lines.

We call a partition/diagram d odd if n− #p(d) is odd, and even otherwise. Let
R

o
n,n denote the subset of odd diagrams, and R

e
n,n the subset of even diagrams.

For example, the identity diagram in Rn, denoted 1n (or 1 where this is unam-
biguous), is even.

(2.5) Proposition. Suppose δ′ ∈ k×. The subset 〈Ro
n,n〉 (respectively 〈Re

n,n〉) of
〈Rn,n〉 is a basis for an idempotent subalgebra, denoted R1

n (respectively R0
n). The

algebra Rn is a direct sum of odd and even subalgebras:

Rn = R0
n ⊕ R1

n

Proof. We just need to show for all d, d′ that if 〈d〉〈d′〉 nonzero then the parity of
dd′ is the same as the parity of d and d′.

By (2.3)(i) the product 〈d〉〈d′〉 is zero unless the singletons in the equator match
up. Consider the contribution of a propagating line in d, say, to dd′. This either
forms part of a propagating line in dd′ (possibly via a chain of arcs in the equator)
in combination with precisely one propagating line from d′; or else is joined, via a
chain of arcs in the equator, to another propagating line in d, and hence does not
contribute to a propagating line in dd′. 2

Suppose δ′ ∈ k×. For any given n let

χ = 〈1〉.

(2.6) Proposition. Suppose δ′ ∈ k×. For any given n:
(i) χ is idempotent.
(ii) For any d ∈ Rn,n we have χdχ 6= 0 if and only if d ∈ Bn,n.
(iii) The idempotent subalgebra χRnχ has basis {χdχ | d ∈ Bn,n}.
(iv) The map

γ : χRn(δ, δ′)χ
∼
→ Bn(δ − 1)

7



given on the basis by χdχ 7→ d is a k-algebra isomorphism.

Proof. (i) follows from the definition. (ii) follows from Lemma 2.3. (iii) follows from
(ii); and (iv) from (iii) and Lemma 2.3. 2

2.4 Idempotent induction functors

(2.7) Consider the usual idempotent induction functor construction (see e.g. [8])

χRnχ−mod
Gχ

--

Rn − mod
Fχ

nn

Gχ : M 7→ Rnχ⊗χRnχ M Fχ : N 7→ χRn ⊗Rn
N ∼= χN

By (2.6), this construction relates Bn(δ − 1) and Rn(δ). This is directly analogous
to the partition algebra case [13]. However a significant difference with the partition
algebra case is that Rnχ ⊗ χRn 6∼= Rn, so Bn-mod fully embeds in but is not
Morita equivalent to Rn-mod. Our main task in determining the structure of Rn is
to deal with this difference. In fact, by the construction of R1

n,

χR1
n = R1

nχ = 0

and we have

(2.8) Proposition. Let µ : R0
nχ ⊗χRχ χR

0
n → R0

nχR
0
n be the multiplication map.

For δ′, δ − 1 ∈ k×

Rnχ⊗χRχ χRn = R0
nχ⊗χRχ χR

0
n

µ
∼= R0

nχR
0
n = R0

n

is an isomorphism of R0
n-bimodules. That is, the functors Fχ and Gχ induce a

Morita equivalence between R0
n(δ) and Bn(δ − 1).

For δ = 1 the failure of isomorphism is a degeneration (in the sense of §4); and
the Morita equivalence is replaced by a saturated full embedding.1

Proof. By a general argument (see e.g. [1, §21 Ex.6] or [6]) it is enough to prove the
last identity. We do this by way of the following Lemma. 2

We write sn for the all-singletons diagram sn = U⊗n in Rn.

1That is, Specht modules are taken to Specht modules (or at least ‘combinatorial Specht mod-
ules’ — modules with the same composition factors as Specht modules), with no gaps; but a simple
module is killed by Fχ. See §4.
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(2.9) Lemma. For any 〈d〉 in 〈Re
n,n〉 there exist x, y ∈ 〈Re

n,n〉 such that

〈d〉 =

{
xχy d 6= sn

1
δ−1

xχy d = sn

Proof. It is convenient to describe our proof using ψ-diagrams. In this realisation
χ is drawn like the ordinary identity diagram. Thus it is enough to show that the
ψ-diagram for 〈d〉 can be drawn with the middle band of this form. First note that
any line can be extruded to ‘meander’ across (repeatedly traverse) a middle band of
the diagram — as illustrated on the left here:

(NB, picture drawn in the ψ-realisation). If there are propagating lines then χ may
be realised as a mixture of meander and propagating lines, as illustrated in the other
two pictures above.

The exception — the all-singletons diagram in case n even — can be expressed
in the form 1

δ−1
dχd′ by adding a loop which traverses the middle in the same way.

2

We now have the following reformulation of our Theorem.

(2.10) Theorem. For δ′ 6= 0, Rn = R0
n ⊕ R1

n and then for δ 6= 1

R0
n(δ, δ′) ≡ Bn(δ − 1)

R1
n(δ, δ′) ≡ R0

n−1(δ, δ
′)

that is we have the Morita equivalence

Rn(δ, δ′) ≡ Bn(δ − 1) ⊕Bn−1(δ − 1)

(We will deal with the excepted cases later.)

Proof. Only the second Morita equivalence is still to prove. We do this via the
following Lemma. Here U = uu⋆ and U1 = uu⋆ ⊗ 1n−1 ∈ Rn,n.

(2.11) Lemma. For δ′ 6= 0, U1R
1
nU1

∼= R0
n−1
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Proof. Consider the augmented basis 〈Ro
n,n〉 of R1

n. Since this is the odd part, each
diagram d has an odd number of singleton vertices top and bottom (left and right
as we are drawing it). But in each case one of these vertices must match up with
the singleton in U1, else U1dU1 = 0. The map is to ignore these vertices, so that we
end up with a diagram in Rn−1, which then has an even number of singletons, and
hence is an even diagram. It is clear that all even (n−1)-diagrams arise in this way.
2

(2.12) Lemma. For δ′ 6= 0, the multiplication map µ : R1
nU1 ⊗UR1

nU U1R
1
n

∼
→ R1

n is
a R1

n-bimodule isomorphism.

Proof. Since R1
n is spanned by diagrams with at least one singleton, and hence with

no more than n−1 propagating lines, we can always express them in the form aU1b,
that is, R1

nU1R
1
n = R1

n. Now use the same argument as for Proposition 2.8. 2

It follows from (2.11) that R1
nU1 is a left-R1

n right-R0
n−1-module; and from (2.12)

that GU = (R1
nU1 ⊗R0

n−1
−) is a Morita equivalence functor. This concludes the

proof of the Theorem. 2

In short this, together with the construction of Rn-Specht modules which we
give in §3.4, reduces the representation theory of Rn to a problem whose solution is
known. The remainder of the paper is concerned with extracting this representation
theory in practice. (And dealing with the couple of special cases excluded above.)

2.5 Applying the Morita equivalence

(2.13) Recall that if A,B are Morita equivalent finite dimensional algebras over
a field then there is a bijection between the sets of equivalence classes of simple
modules; and this induces an identification of Cartan decomposition matrices [2].

(2.14) For each Brauer algebra over C the Cartan decomposition matrix C is de-
termined in [14] (using heavy machinery such as [5, ?, ?]). Thus theorem 2.10 and
theorem 2.13 determine the Cartan decomposition matrix CR for Rn over C for
δ′, δ − 1 ∈ k×.

However, knowledge of CR does not lead directly to constructions for simple
or indecomposable projective modules, or simple characters. To facilitate this for
Rn it is convenient to introduce an intermediate class of modules with a concrete
construction, and to tie these also to the Brauer algebra case. In [14] the Cartan de-
composition matrix is determined in the framework of a splitting π-modular system
(in the sense of Brauer’s modular representation theory, although the prime π here

10



is a linear monic not a prime number). That is, the Brauer–Specht module decom-
position matrix D, which gives the simple content of ‘modular’ reductions of the lifts
of generic (i.e. in this case δ-indeterminate) simple modules, is determined. The
Morita equivalence gives a correspondence between Brauer–Specht modules ∆B

n (λ)
of Bn and corresponding modules for Rn, thus it only remains to cast the partial
Brauer algebras in the same framework and construct their Brauer–Specht modules
∆R

n (λ); and show that each Gχ.∆
B
n (λ) = ∆R

n (λ).

3 Specht modules for Rn

We call the case of Rn over Z[δ, δ′] the integral case. We want to construct a set of
modules in the integral case that pass, on extending to a suitable field, to a complete
set of simple modules. Our construction for these partial Brauer Specht modules
(or ∆-modules) is closely analogous to the construction for the partition and Brauer
algebras.

(3.1) It is convenient to write ◦ for the bare composition of diagrams (i.e. ignoring
factors of δ). Define

R
l
n,m := Rn,l ◦ Rl,m ⊂ Rn,m

Note that this is the subset of partial partitions with at most l propagating lines.
Define

R
=l
n,m = R

l
n,m \ Rl−1

n,m

(3.2) Examples: R
=1
1,1 = {11}; while R

=2
2,2 = {12, x} (with 12 := 11 ⊗ 11). Note that

(R=n
n,n, ◦) gives a copy of the symmetric group Sn.

(3.3) Proposition. For any δ, δ′ ∈ k we have that

kRn,n ⊃ kRn−1
n,n ⊃ kRn−2

n,n ⊃ ... ⊃ kR0
n,n (4)

is a chain of two-sided ideals in Rn. The l-th ideal is generated by U l = U⊗l. That
is

kRn−l
n,n = RnU

lRn

The section kRl
n,n/kR

l−1
n,n in (4) has basis R

=l
n,n. Let us write R

l/
n,n for this section

of the regular bimodule. 2

(3.4) Note that a bimodule R
l/
n,m may be defined similarly starting from Rn,m. In

particular R
l/
n,l has the nice property that its basis consists of all diagrams in R

l
n,l

such that each vertex on the bottom edge is in a distinct propagating part.
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(3.5) We may consider the parts of p ∈ Pn,m that meet the top set of vertices to
be totally ordered by the natural order of their lowest numbered elements (from the
top set). We may define a corresponding order for parts that meet the bottom set
of vertices. We say that p is non-permuting if the subset of propagating parts has
the same order from the top and from the bottom.

For a partition in Rn,m, the property of being non-permuting is the same as
having a diagram with no crossing propagating lines.

(3.6) Let R
||
l,n denote the subset of R=l

l,n of non-permuting partitions.

(3.7) Lemma. As a left-module

Rl/
n,n

∼=
⊕

w∈R
||
l,n

R
l/
n,lw

Every summand is isomorphic to R
l/
n,l. We have that R=l

n,l is a basis for R
l/
n,l, and

R
=l
n,l = R

||
n,l ◦ R

=l
l,l (5)

where R
=l
l,l = Sl. 2

(3.8) Note that R
l/
n,l is also a free right kSl-module in a natural way. For each λ ⊢ l

let us choose an element fλ ∈ kSl such that

Sλ = kSlfλ (6)

is the corresponding Specht module [10]. Then define ‘inflation’

∆n(λ) := R
l/
n,lfλ

Including fλ ∈ kSl in Rl in the obvious way allows us to draw a picture for this —
see for example Fig.3.

(3.9) Proposition. For each basis b(λ) of Sλ there is a basis

bR(λ) = {rb | (r, b) ∈ R
||
n,l × b(λ)}

of ∆n(λ).

Proof. Note that the module is spanned by elements of form abfλ where a ∈ R
||
n,l

and b ∈ Sl (consider (5)). 2
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(3.10) Note that the regular module has a filtration by ∆-modules (cf. [14, Prop.3.4]
— a sufficient condition for well-defined filtration multiplicities is char.k = p > 3).
Indeed the regular module has a filtration in which all the modules labelled with
partitions of a given degree l (say) are consecutive. Indeed, if k = C (or at least
contains Q so that kSl is semisimple) the modules {∆n(λ) | λ ⊢ l} do not extend
each other (so can be arranged, among themselves, in any order in the filtration).

(3.11) Define quotient algebra

Rl
n = Rn/RnU

l+1Rn

(3.12) Note that if δ′ 6= 0 and fλ idempotent (as can always be chosen over C) then

RnU
n−|λ|fλ is a projective Rn-module; and R

n−|λ|
n Un−|λ|fλ is an indecomposable

projective R
n−|λ|
n -module.

(3.13) Proposition. For δ′ ∈ k×, Rn(δ, δ′) is quasihereditary over C.

Proof. In case δ′ = 1 one readily checks that Un, Un−1, ..., U0 (as in Prop.3.3) are a
set of heredity idempotents [6]. Other cases are similar. 2

3.1 Images of ∆-modules under the Morita equivalence

We have given a simple concrete construction for the ∆-modules of Rn(δ, δ′). Let
Λl denote the set of integer partitions of l; Λ the set of all integer partitions; and
Λn = ∪l∈{n,n−2,...}Λl. We will see that over C the modules {∆n(λ) : λ ∈ Λn ∪Λn−1}
are, for generic δ, δ′ ∈ C, a complete set of simple modules for Rn. Thus if DR

is the decomposition matrix for these modules for some k and δ, δ′ ∈ k then C =
DR(DR)T is the Cartan decomposition matrix (see e.g. [2]). Next we show that
these modules are the images of the ∆-modules of the appropriate Brauer algebra
(generally denoted ∆B

n (λ) here) under the Morita equivalence, and hence determine
DR for k = C.

Note that the modules R
l/
n,l and so on have direct correspondents in the Brauer

algebra case, so long as n − l is even. Accordingly we use the notation B
l/
n,l and so

on there. Thus (see e.g. [5]) for each l ∈ {n, n− 2, ...}, for each λ ⊢ l:

∆B
n (λ) = B

l/
n,lfλ

with basis
bB(λ) = {db | d ∈ B

||
n,l, b ∈ b(λ)}. (7)
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Applying the (exact) ME functors we get the following. Firstly

χRn ⊗Rn
∆n(λ) = χ⊗Rn

χ∆n(λ) = χ⊗Rn
χ∆B

n (λ) ∼= ∆B
n (λ) (8)

where we note that χ kills all the diagrams with singletons in the basis bR(λ) for
∆n(λ); and in effect simply decorates all the lines on other diagrams. The last
isomorphism then follows on comparing bases, noting that Bn is to be considered in
its χRnχ realisation (in which χ acts like 1).

(3.14) Lemma. For δ − 1 ∈ k×

Rnχ⊗χRnχ ∆B
n (λ) ∼= ∆n(λ)

Proof. Equating ∆B
n (λ) with χ∆n(λ) ⊂ ∆n(λ) as before gives us a well-defined

multiplication map µ : a⊗ b 7→ ab, with ab in ∆n(λ). For example:

⊗

+

7→

+

(9)

— here we understand the left-hand factor to be drawn in the ψ-realisation; while
the right-hand factor is a basis element of ∆B

n (λ), regarded via the isomorphism as a
χRnχ-module, so this is also, in a suitable sense, in the ψ-realisation. The outcome
ab is then also in the ψ-realisation (remark: because of the quotient used in the
definition of ∆n(λ), ψ-decorations on propagating lines are irrelevant).

Besides bR(λ) another basis is ψ(bR(λ)) (one draws the same set of pictures,
but considers them to be in the ψ-realisation). Note that every basis element in
ψ(bR(λ)) can be realised (up to a scalar) as an image under µ, so µ is surjective.
(The restriction to δ − 1 ∈ k× arises because of the case λ = ∅ (n ≥ 2), where
multiplication involves a loop.)

To see that the µ-map is injective we proceed as follows. For T a set let Peven(T )
denote the set of subsets of T of even order; and Pm(T ) the set of subsets of order

m. Note from (??) and (7) that {dL(a) ⊗ db | a ∈ Pn−l(n), d ∈ B
||
n,l, b ∈ b(λ)} is

a spanning set for R0
nχ ⊗ ∆B

n (λ). Note that µ takes elements of this set to (scalar
multiples of) diagrams. Distinct diagrams are independent, so it is enough to show
that two elements only pass to the same diagram if they are equal. Apart from cases
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where dL(a) ⊗ db = 0 (due to too few propagating lines), no two diagrams dL(a)
give rise to the same image since they have singletons in different positions. On the
other hand, if two elements have the same dL(a) factor then they are the same only
if their ‘Brauer diagram part’ (the lines from dL(a) and the factor db) is the same.
But this part passes through the tensor product so they are then (possibly up to a
scalar) the same element. 2

3.2 Representation theory examples

We conclude with a few examples illustrating how to import results from Bn(γ)
representation theory in practice. (We use γ rather than the usual δ as the parameter
here to avoid confusion with our δ.)

A convenient way to summarize the complex representation theory of Bn(γ) (γ ∈
C) is for each integer partition λ to describe the nonzero entries in the corresponding
row of the ∆B-decomposition matrix D. That is,

Dλ,µ = [∆B(µ) : LB(λ)]γ

gives the multiplicity of simple Bn(γ)-module LB(λ) (the simple head of ∆B(λ)) as
a composition factor of ∆B(µ). Characterised in this way, we can treat all n at once.
We restrict attention to γ ∈ Z since all other cases are semisimple. For such a γ,
matrix D may then be given as follows [15].

First we define the map e : R × Λ → RN by

e(γ, λ) = λ− (0, 1, 2, ...) −
γ

2
(1, 1, 1, ...)

The image e(R,Λ) is a set of strongly decreasing sequences, such as

e(2, (4, 1)) = (3,−1,−3,−4, ...),

but it includes sequences with pairs of terms of equal magnitude (as in the example).
Those sequences without any such pairs are said to be regular. For v a sequence
in e(R,Λ) we define Reg(v) as the (regular) sequence obtained by deleting all such
pairs. For v regular we define o(v) as the list of ‘signed’ positions in the magnitude
order of terms in v. The sign of o(v)i is the sign of vi unless vi = 0 in which case it
is chosen so that there are an even number of positives. Note in any case that o(v)
is now a descending signed permutation of (−1,−2,−3, ...). We define a subset of
N from this o(v), denoted o(v)|+, by keeping the positive terms, except toggling the
presence of 1 if necessary to have a set of even order. Using this we define

oγ(λ) = o(Reg(e(γ, λ)))|+.

15



For example, o2((3
2)) = {1, 2}. Note that oγ(λ) is a (finite) element of the power

set P (N). To any q ∈ P (N) we associate a binary sequence b ∈ {0, 1}N by bi = 1 if
i ∈ q; and bi = 0 otherwise. We hence associate a binary sequence bγ(λ) ∈ {0, 1}N

to oγ(λ) (one may omit the infinite string of 0s on the right).
The next step in the determination of the decomposition matrix D for Bn(γ)

is, for each λ, to pair certain terms in the {0, 1}-sequence bγ(λ), as follows. Every
adjacent 01 is paired. Every 0...1 between which are only paired terms is paired;
and this step is iterated. If there is a 1...1 between which are only paired terms,
where the first 1 is the first unpaired term, then these 1s are paired; and this
step is iterated (see [14] for examples). Using this construction we may define a
certain hypercubical digraph on a subset of P (N), with oγ(λ) at the head. Each
descending edge corresponds to toggling a pair, either 01 to 10, or 11 to 00. The
resultant collection of elements of P (N) occur at most once each in this construction.
Each element is oγ(µ) for some µ ∈ [λ]γ, where [λ]γ is the block of λ (this can be
characterised as the orbit of elements in Λ whose images under e(γ,−) are related
by a sequence of signed permutations [5]). Indeed fixing a block by a choice of λ we
may define oλ

γ : Peven(N) → Λ to take oγ(µ) to µ [15].
Finally let hγ(λ) denote the hypercube regarded as a (partially ordered) set of

these µs. For example, (32) ∈ [∅]2 and o2((3
2)) = {1, 2}, so the corresponding

hypercube contains only (32) and o∅2(∅) = ∅.
For λ, µ ∈ Λ, define (hγ(λ) : µ) as the number of times µ appears in hγ(λ) (i.e.

either 1 or 0). Then

(3.15) Theorem. [15] For given γ,

DλT µT = [∆B(µT ) : LB(λT )]γ = (hγ(λ) : µ)

2

Combining with Theorem 2.10 and the results of Section 3.1 we have

(3.16) Theorem. Fix δ′ ∈ k×. The λT -row of the Rn(δ, δ′) ∆-decomposition matrix
DR for δ = γ+1 contains a 1 in the µT -column for each µ ∈ hγ(λ); and zero otherwise.
That is

[∆(µT ) : L(λT )]δ = (hδ−1(λ) : µ)

(NB, besides δ = γ + 1, the other difference from Bn(γ) is the range of values of
λ, µ). 2

(3.17) Consider the example o2((3
2)) again. One readily checks that among λs with

|λ| ≤ 6, hγ((3
2)) is the only hγ(λ) containing µ = ∅ (besides hγ(∅) itself); and since
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δ− 1 = γ = 2 here, giving δ = 3 in the Morita equivalent part of Rn(δ, δ′), this tells
us, for example, that

0 → L6((2
3)) → ∆6(∅) → L6(∅) → 0

is a short exact sequence of R6(3, δ
′)-modules; where Ln(λ) is the corresponding

simple head of ∆n(λ). The dimensions of L6((2
3)) = ∆6((2

3)) and ∆6(∅) are clear
from our construction, so this determines also the dimension of the other simple.

This concludes the analysis of the main body of complex representation theory
of Rn.

We now turn to the excepted cases. This is not only for completeness. They
exhibit some very interesting properties, as we shall now start to explain.

4 Representation theory in the case δ = 1, δ′ 6= 0

The Brauer algebra in case γ = 0 is special in that (for n even) there is one fewer
simple module than ∆B-modules (noting that simple modules are counted up to iso-
morphism, whereas the set of ∆B-modules has a construction formally independent
of such checks). Indeed for n = 2, γ = 0, ∆B

2 ((2))
∼
→ ∆B

2 (∅).
On the other hand γ = 0 is also the case δ − 1 = γ = 0 where our Morita

equivalence in Prop.2.8 fails degenerately (in the sense described there: — the claim
is that Fχ, Gχ preserve ‘combinatorial’ ∆-modules, but Fχ = χRn ⊗− kills a simple
module). This is manifested, for example, as follows.

(4.1) Example. Case n = 2. First note that R2χ⊗ ∆B
2 (∅) has basis

⊗ , ⊗

The first element spans a submodule, upon which s2 = U⊗2 acts like δ′2. There is no
such submodule in ∆2(∅), so R2χ⊗∆B

2 (∅) 6∼= ∆2(∅). Indeed R2χ⊗∆B
2 ((2)) 6∼= ∆2((2))

either (∆2((2)) has the same rank as ∆B
2 ((2))). Thus ∆B

2 ((2))
∼
→ ∆B

2 (∅) does not
induce an isomorphism of R2 ∆-modules; and indeed there are the same number of
simple Rn-modules as ∆-modules.

(4.2) What happens to Specht modules under functors Fχ, Gχ in case δ = 1 (δ′ ∈ k×)
in general? As a first step we see how the Morita equivalence itself degenerates. To
do this we look at what happens to Proposition 2.8 when δ = 1.
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Write Reven′

n,n for Reven
n,n excluding the all-singletons diagram sn = U⊗n. For δ = 1

we see that kψ(Reven′

n,n ) = RnχRn is a proper ideal in R0
n. We have a non-split short

exact sequence of bimodules

0 → RnχRn → R0
n → R0

n/RnχRn → 0 (10)

where R0
n/RnχRn has basis {s̄n} (where s̄n = sn + RnχRn). On the other hand

there is an element in Rnχ ⊗ χRn whose image under µ formally contains a single
loop (so it lies in the kernel of µ). For example

Call this element s′n. It spans the sub-bimodule it generates since, for example,

∝ = = 0

Then
0 → ks′n → Rnχ⊗ χRn → Rnχ⊗ χRn/ks

′
n → 0

is a non-split short exact sequence of bimodules, with

Rnχ⊗ χRn/ks
′
n
∼= RnχRn

We see immediately from (10) that k{s̄n} is a 1-dimensional simple Rn-module.
It will be evident that this lies in (and indeed is) the head of ∆(∅), so we call it
L(∅). The multiplicity of L(∅) in the regular module is dim(∆(∅)), and hence this
is the only ∆-module containing L(∅) as a composition factor (and the composition
multiplicity is 1).

Consider the composite functor GχFχ = (Rnχ⊗χRn ⊗R0
n
−). For δ 6= 1 we have

GχFχ = (Rnχ⊗χRn⊗R0
n
−) ∼= (R0

n⊗R0
n
−) which is an isomorphism functor, so that

Gχ, Fχ are Morita equivalences. For δ = 1 as we have just seen Rnχ⊗ χRn and R0
n

are not isomorphic as bimodules. However they are ‘close’, in the following sense.
The difference is that R0

n has L(∅) in the head (restricting to the left regular module
it is the head of indecomposable projective P (∅)), while Rnχ⊗χRn has L(∅) in the
socle instead, i.e. it is otherwise the same, and has the same composition factors.
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We have FχL(∅) ∼= χks̄n
∼= 0 and, as before, Fχ∆(λ) ∼= ∆B(λ) (any λ).

WHAT’S THIS?:
For λ 6= ∅ (and n 6= 2) we have Gχ∆B(λ) ∼= ∆(λ). Finally Gχ∆B(∅) 6∼= ∆(∅),

however Gχ∆B(∅) and ∆(∅) have the same composition factors.
Thus (for δ − 1 = γ = 0) the rows of the decomposition matrix not involving ∅

are the same between D and DR (see e.g. [8, §6.6]). The difference is that DR has
a row labelled by ∅. However, as already noted, this row is (1, 0, 0, 0, ...). We have
thus shown that for any n

DR = Dformal

(as defined in (4.4)).

4.1 Examples: δ = 1

(4.3) With γ = 0 we get o0(∅) = ∅ and o0((1
2)) = {1, 2}, so hypercube h0((1

2)) con-
tains only (12) and ∅. Formally this implies a ∆B-module homomorphism ∆B

2 ((2)) →
∆B

2 (∅), but in case n = 2 both modules are rank-1, and so the implied ∆B-module
homomorphism is actually an isomorphism, as noted above.

(4.4) Note that (hγ(λ) : µ) makes sense for any λ, µ ∈ Λ. We thus have a formal
‘decomposition matrix’ for γ = 0 in case n = 2 given by

Dformal =







∅ (2) (12)
∅ 1

(2) 1 1
(12) 1







However since there is no separate simple B2(0)-module associated to λ = ∅ here
the corresponding row is certainly spurious, and indeed the decomposition matrix
Theorem tells us that we have B2(0)-decomposition matrix

Dn=2 =





∅ (2) (12)
(2) 1 1
(12) 1





(which coincides with the matrix obtained by deleting that row). This gives

C =

(
1 1

1

)




1
1

1



 =

(
2

1

)
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Note that the corresponding λ = ∅ column of Dn=2 is not spurious in this Brauer
modular treatment. The module ∆B((2)) is not isomorphic to ∆B(∅) over C[γ] or
C(γ) and both are needed as elements of the complete set of simples over C(γ). The
γ = 0 projective P(2), which looks like a self-extension here, lifts to a combination of
non-isomorphic integral modules. Indeed the primitive idempotent decomposition
of 1 in case γ = 0 is 1 = (1 + (12))/2 + (1 − (12))/2, which lifts trivially to C[γ];
but the idempotent (1+ (12))/2 does not pass to a primitive idempotent over C(γ),
instead passing to a combination of two inequivalent idempotents.

—
GO THROUGH BENSON 1.9.6 in THIS CASE!!!
—
In contrast there is a simple R2(0)-module associated to λ = ∅, and in fact

DR = Dformal, as noted in §4.
For one final example, consider the block of ∅ in case n = 4. For B4(0) we have

Dformal|∅ =







∅ (2) (31)
∅ 1

(2) 1 1
(31) 1 1







We have dim(∆B(∅)) = 3; dim(∆B((2))) = 6; dim(∆B((31))) = 3. We deduce that
dim(LB((2))) = 6− 3 = 3, and since this is a composition factor of ∆B(∅)) they are
isomorphic. Thus

Dn=4|∅ =





∅ (2) (31)
(2) 1 1
(31) 1 1





and

C|∅ =

(
1 1

1 1

)




1
1 1

1



 =

(
2 1
1 2

)

On the other hand for R4(1), we have dim(∆(∅)) = 10; dim(∆((2))) = 12;
dim(∆((31))) = 3. We deduce that dim(L((2))) = 12−3 = 9, and hence dim(L(∅)) =
10 − 9 = 1. Again we confirm that DR = Dformal.

5 The case δ′ = 0 and δ generic

(5.1) Define R
+
n,m ⊂ Rn,m as the subset of partial partitions with at least one single-

ton.
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(5.2) Lemma. Let k be any commutative ring. Then

RnR
+
n,nRn = kR+

n,n ∪ δ′Rn

Proof. Any product involving a diagram with a singleton either produces a diagram
with a singleton, or else an open string. This is elementary — see (1). 2

(5.3) In the δ′ = 0 case one sees from (1) that the diagrams with one or more
singleton generate a nilpotent ideal. In determining the simple modules of Rn one
can quotient by this ideal. The quotient can be identified with the Brauer sub-
algebra, whose generic representation theory has been studied in [4]; and general
representation theory over C in [5, 14].

(5.4) In §3.4 we give a construction for Specht modules for each partial Brauer
algebra. By this we mean modules for the algebra over Z[δ, δ′] that can be made
well-defined over a PID either by fixing δ′ = 1 or by fixing δ to a suitable value; such
that, over a suitable extension to a field in either case, the set of modules passes to a
complete set of simple modules in a semisimple algebra. This means that we can use
the tools of Brauer’s modular representation theory (here to study non-semisimple
specialisations of the parameters, rather than fields of finite characteristic).

If we consider δ′ = 0 and δ generic, so that the Brauer algebra is semisimple,
then we can describe the simple content of Specht modules (and hence the Cartan
decomposition matrix). We do this in §??.

5.1 Representation theory in case δ′ = 0

The following proposition on the structure of Specht modules completely determines
the Cartan decomposition matrix in case δ′ = 0 in all cases in which the Brauer
subalgebra is semisimple (e.g. for δ >> n).
(Other cases over C are also determined in principle, but one must combine with
the appropriate Brauer algebra representation theory. This is known, but we do not
give an explicit description here.)

(5.5) Recall from (5.3) that the Specht modules of the Brauer algebra are the gener-
ically simple modules of Rn(δ, 0). That is to say, they lift to Rn(δ, 0)-modules with
this property.

We assume the reader is familiar with these modules.
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(5.6) Proposition. Let λ ⊢ l ≤ n and let B∆
n (λ) be the basis for the Specht module

∆n(λ) of Rn(δ, 0) (any δ) of form R||(n, l)× b(λ), associated to some definite choice
of b(λ). We may decompose

B∆
n (λ) =

⊔

k

B∆
n (λ, k)

where B∆
n (λ, k) is the subset with k singletons (k ≡ n− l mod.2).

Then
⊔i

k=0B
∆
n (λ, k) is a basis for a submodule for each i ∈ {n − l, n − l −

2, ..., 0/1}. Further, over field K = C the section with basis KB∆
n (λ, k) is a sum

of Brauer Specht modules with labels determined by the Sn-simple module content of
Ind(λ ⊗ (k)); that is, labels obtained from λ by adding k boxes in all possible ways
such that none of the new boxes are in the same column.

Proof. The basis decomposition is trivial. The submodule structure follows from
noting that non-vanishing actions on B∆

n (λ, k) require l + k propagating lines, else
an open line is created in composition, giving δ′ = 0; and that if there is such a
non-vanishing action at least k of the propagating lines will result in singletons after
composition.
(An indicative example is given by the following figures. First a basis element, drawn
to accept an action of algebra diagrams from above:

λ

— this is for n = 10 with k = 3 and l = 3. Then:

(i) λ

A
B

(ii) λ

shows the action of two algebra elements from above. In (i) the number of singletons
in the outcome is the same as for the original basis element. In (ii) the number of
singletons is nominally reduced, but at cost an open string, giving a factor δ′ = 0.)

For the final part note that singletons are acted on as if they are propagating lines,
except that they are symmetrised (they are indistinguishable under interchange).
The result then follows from classical Sn representation theory. 2
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6 Branching rules for Specht modules

Here M+ is the incidence matrix of the directed Young graph (this has vertex set
Λ; and edge µ ⊳ λ if the Young diagrams differ by a single box).

(6.1) Theorem. The map from Rn to Rn+1 given by d 7→ d ⊗ 1 is an algebra
injection. The restriction rule for Rn+1 ∆-modules to Rn is given by the short exact
sequence

0 → ∆n(λ) ⊕Bλ → resn∆n+1(λ) → Cλ → 0

(here and throughout we take ∆n(µ) = 0 if |µ| > n), where

Bλ = ⊕′
µ⊳λ∆n(µ); Cλ = ⊕′

µ⊲λ∆n(µ)

(⊕′ denotes a direct sum if k = C, but a not necessarily direct sum for fields of finite
characteristic). That is

resn∆n+1(λ) =



∆n(λ)
︸ ︷︷ ︸

A

⊕ (⊕′
µ⊳λ∆n(µ))

︸ ︷︷ ︸

B



 + (⊕′
µ⊲λ∆n(µ))

Proof. We assume familiarity with induction and restriction rules for the symmetric
group [10]. Consider a basis as in Prop.3.9. Separate the basis into three subsets:
(1) elements in which the last vertex is a singleton;
(2) elements in which the last vertex starts a propagating line;
(3) elements in which the last vertex ends an arc from some other vertex.

Now consider the action of Rn. Clearly (1) is a basis for A. Meanwhile (2) is a

basis for the inflation R
l−1/
n,l−1resl−1∆λ, which gives B. Finally, modulo A and B, (3)

is a basis for the inflation R
l+1/
n,l+1indl+1∆λ.

For example the basis for ∆4((2)) is given in fig.3. Here the six leftmost
diagrams are in (2); the remaining diagrams in the top row are in (3); and the rest
are in (1).

The action of the included Rn on an element of (3) is illustrated by the following
diagram (NB. this is not a ψ-diagram):

+

=

+
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+ + + + + +

+ + + + + +

Figure 3: Basis for ∆4((2)).

(note that the right-hand side lies in (1) and so vanishes in the quotient C). 2

In particular
dim ∆n(λ) = ((M∗ + 1)n)∅,λ (11)

where M∗ = M+ + Mt
+.

7 Schur–Weyl duality

Recall that an index set for simple modules of O(V ) arising in arbitrary tensor
products of V and C (the trivial module) is the set of integer partitions (or Young
diagrams). In particular V = R� and C = R∅. If V = CN then this index set can
be restricted to the set Λ(N) of integer partitions λ such that λ′1 + λ′2 ≤ N (see for
example [7, Th.10.2.5]). The product is given by

V ⊗ Rλ = (⊕′
µ⊳λRµ) ⊕ (⊕′

µ⊲λRµ) (12)

where the sums are restricted to allowed partitions. Meanwhile obviously

C ⊗ Rλ = Rλ

Let FN be the truncated Fock space CΛ(N). Then each O(N)-module M gen-

erated as above corresponds to an element v(M) of N
Λ(N)
0 in CΛ(N). For example

v(V ) = e� = (0, 1, 0, 0, ...).
Let MN ∈ End(CΛ(N)) denote the matrix such that

v(V ⊗M) = MNv(M)

24



Note that this matrix is well-defined and directly determined by (12). Then of course

v((V ⊕ C) ⊗M) = (MN + 1)v(M)

Also

(7.1) Theorem. The vector (MN + 1)n gives the list of dimensions of simple mod-
ules of the commutant EndO(N)((V ⊕ C)n).

(7.2) Theorem. For N >> n we have Rn(N) ∼= EndO(N)((V ⊕ C)n).

Proof. cf. (11), Theorem 7.1. 2

(7.3) The action of Rn on (V ⊕ C)n is.... WHAT?
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