
Chapter 2

Basic definitions, notations and

examples

2.1 Preliminaries

2.1.1 Definition summary

There follows a list of definitions in the form
Algebraic system A = (A a set, n−ary operations), axioms.
(The selection of a special element u ∈ A, say, counts as a 0-ary operation.)
Extended examples are postponed to the relevant sections.

Semigroup S = (S,2), 2 a closed associative binary operation on S.
Monoid M = (M,2, u), (M,2) a semigroup, u ∈ M a unit element (i.e.

au = a = ua ∀a ∈M).
Example: (N0,+, 0).

Group G = (G, ., u), G a monoid, ∀a ∈ G∃a′ such that aa′ = u = a′a.
Abelian group G = (G,+, 0), G a group, a+ b = b+ a.
Ring R = (R,+, ., 1, 0), (R,+, 0) an abelian group, (R, ., 1) a monoid,

a(b + c) = ab+ ac, (a+ b)c = ac+ bc.
Division ring D, D a ring, every non–zero element has a multiplicative inverse.
Local ring A, A a ring, sum of two nonunits is a nonunit (a a nonunit means

there does not exist b such that ab = ba = 1). 1

Domain K, K a ring, 0 6= 1, mn = 0 implies either m = 0 or n = 0.
Integral

domain
K, K a ring, . commutative, 0 6= 1, mn = 0 implies either m = 0 or
n = 0. (I.e. an integral domain is a commutative domain.)

Principal
ideal domain

K, K an integral domain, every ideal J ⊆ K is principal (i.e. ∃
a ∈ K such that J = aK).

Field F , F an integral domain, every a 6= 0 has a multiplicative inverse.

Our other core definitions are, for S a semigroup, R a ring as above:

19
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S–Ideal J : J ⊂ S and rj, jr ∈ J for all r ∈ S, j ∈ J .
R–Ideal J : J ⊂ R and rj, jr ∈ J for all r ∈ R, j ∈ J .

(Left) R–Module M : M an abelian group with map R×M →M such that r(x+ y) = rx+ ry,
(r + s)x = rx + sx, (rs)x = r(sx), 1x = x (r ∈ R, x, y ∈M).
Right modules defined similarly.

(Left) R–Module Homomorphism : Ψ from left R-module M to N is a map Ψ : M → N such
that Ψ(x+ y) = Ψ(x) + Ψ(y), Ψ(rx) = rΨ(x) for x, y ∈M and r ∈ R.

(2.1.1) Exercise. Z is a ring. Form examples of as many of the other structures as possible from
this one. (And some non-examples.)

In the following table k is a field and H is the ring of real quaternions (see §2.3.2).

DivR LR ID PID
Z × × √ √

Z[x] × × √ ×
k[x] × × √ √

k[x, y] × × √ ×
H

√ √ × ×

(2.1.2) For more on semigroups see for example Howie [?].

2.1.2 Glossary

GL(N) general linear group on CN

Λ set of integer partitions
Λn set of integer partitions of n
O(N) orthogonal group on CN

PS partitions of a set S
JS pair partitions of a set S
P (S) power set (lattice) of a set S

2.2 Elementary set theory notations and constructions

As in Green [22], let
n := {1, 2, .., n}

Similarly here n′ := {1′, 2′, .., n′} (and so on).

(2.2.1) For S a set, let P (S) be the lattice of subsets of S. For S, T sets, let US,T be the set of
relations on S to T . That is,

US,T = P (S × T ).

Set US = US,S, and
T S := hom(S, T ) ⊂ US,T
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For example

22 = {{(1, 1), (2, 1)}, {(1, 1), (2, 2)}, {(1, 2), (2, 1)}, {(1, 2), (2, 2)}}

(2.2.2) It will be useful to have in mind the mapping diagram realisation of such functions. For
example

f = {(1, 1), (2, 1), (3, 2)} ∈ 23

is
f

1• // •1
2•

55
j

j
j

j
j

j
j •2

3•
55

j
j

j
j

j
j

j

�� ��

�� ��

�� ��

�� ��

(2.2.3) If T, S finite it will be clear that any total order on each of T and S puts T S in bijection

with |T ||S|
. We may represent the elements of T S as S-ordered lists of elements from T . Thus

22 = {11, 12, 21, 22}, 23 = {111, 112, 121, 122, 211, 212, 221, 222}
(for example 22(1) = 2, since the first entry in 22 is the image of 1).

(2.2.4) A composition of n is a finite sequence λ in N0 that sums to n. We write λ � n.
We define the shape of an element f of mn as the composition of n given by

λ(f)i = |f−1(i)|
Example: for 111432525 ∈ 69 we have λ(111432525) = (3, 2, 1, 1, 2, 0).

If λ � n we write |λ| = n.

(2.2.5) Of course, composition of functions defines a map

hom(S, T ) × hom(R,S) → hom(R, T ) (2.1)

(f, g) 7→ f ◦ g (2.2)

where as usual (f ◦ g)(x) = f(g(x)). For example 11 ◦ 22 = 11 (since 11(22(1)) = 11(2) = 1; and
so on).

The mapping diagram realisation of composition is to first juxtapose the two functions so that
the two instances of the set S coincide, then define a direct path from R to T for each path of
length 2 so formed:
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◦7→ f ◦ g
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(2.2.6) If the image f(S) of a map f : S → T is of finite order we shall say that f has order |f(S)|
(otherwise it has infinite order). We have the bottleneck principle

|(f ◦ g)(R)| ≤ min(|f(S)|, |g(R)|)

(2.2.7) Proposition. (i) For S a set, SS = hom(S, S) is a monoid under composition of functions.
(ii) For each d ∈ N then set {f ∈ SS | |f(S)| < d} is an ideal (hence a sub-semigroup) of SS.

Proof. (i) Hint: (f ◦ (g ◦ h))(x) = f(g(h(x))) = ((f ◦ g) ◦ h)(x)
Exercise: explain this argument in terms of mapping diagrams.

2.2.1 Set partitions

(2.2.8) Let ES be the set of equivalence relations on set S, and let PS be the set of partitions of
S. Note the natural bijection

ES ↔ PS .

We have ES ⊂ US . For ρ ∈ US let ρ̄ ∈ US be the smallest transitive relation containing ρ — this
is called the transitive closure of ρ.

(2.2.9) For a, b equivalence relations on any two finite sets let ab be the transitive closure of a ∪ b
(an equivalence relation on the union of the two finite sets).

(2.2.10) Let JS ⊂ PS be the set of pair-partitions of S. Let Pn,m = Pn∪m′ and

Jn,m = Jn∪m′ ⊂ Pn,m

(2.2.11) For a ∈ Pn,m let a′ be the partition of n′ ∪m′′ obtained by adding a prime to each object
in every part. We may define a map

◦ : Pl,m × Pm,n → Pl,n

as follows. For a ∈ Pl,m, b ∈ Pm,n partitions (and hence equivalence relations) note that ab′ is an
equivalence relation on l∪m′∪n′′. Restricting to l∪n′′ this equivalence relation is again a partition,
call it r(ab′) (indeed if a, b are pair-partitions then so is r(ab′)). For x ∈ l ∪ n′′ let u(x) ∈ l ∪ n′ be
the image under the action of replacing double primes with single. Let a ◦ b = u(r(ab′)) ∈ Pl,n be
the image under the obvious application of this map.

Set Pn = Pn,n and Jn = Jn,n.

(2.2.12) Proposition. For each n ∈ N the map ◦ : (a, b) 7→ u(r(ab′)) defines an associative unital
product on Pn, making it a monoid. The construction also restricts to make Jn a monoid.

Proof. Exercise.
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2.2.2 Exercises

(2.2.13) A closed binary operation on a (finite) set S (of degree n) may be given by a multiplication

table — an element of SS×S. There are |SS×S| = n(n2) of these. Note that an ordering of S induces
an ordering on the set of closed binary operations (read order the entries in the multiplication table
and dictionary order the ordered lists).

Define a natural notion of isomorphism of closed binary operations on S, and determine the
number of isomorphism classes for n = 2. Is commutativity a class property? If so, how many of
these classes are commutative?

Which of the following are semigroups/ monoids / groups?:

a b
a aa ab
b ba bb

:
a b

a a a
b a a

a b
a a a
b a b

a b
a a a
b b a

a b
a a a
b b b

a b
a a b
b b a

a b
a b a
b a a

(Hint: S,M,X (b(ab) = b),S,G,X ((aa)b = a).)

Explain the following statement: “For n = 3, most binary operations are not associative.”
(Hint: 113 are associative.)

2.3 Initial examples in representation theory

2.3.1 The monoid hom(2, 2)

Two matrices A,B are conformable to a product AB if (i) the number of rows of A equals the
number of columns of B; (ii) they have entries in the same ring R. By convention, if R is a
K-algebra, then a matrix over K is considered a matrix over R by the homomorphism ψ (see
(1.1.11)), taking elements of K to scalar multiples of 1R.

(2.3.1) Consider the monoid M = 22, and the free Z-module ZM with basis M . This is a Z-algebra
(by virtue of the monoid multiplication). Totally ordering this (or any other) basis we may encode
x ∈ ZM by

x =
(

x11 x12 x21 x22

)









11
12
21
22









(here we have used the shorthand for monoid elements give in (2.2.3)). This organisational scheme
yields a generalisation of the regular representation construction mentioned in the Introduction.
Indeed there is both a left and a right regular construction. We shall consider both.

(2.3.2) Firstly consider the encoding of multiplication by









11
12
21
22









∗ (11, 12, 21, 22) =









11 ◦ 11 11 ◦ 12 11 ◦ 21 11 ◦ 22
12 ◦ 11 12 ◦ 12 12 ◦ 21 12 ◦ 22
21 ◦ 11 21 ◦ 12 21 ◦ 21 21 ◦ 22
22 ◦ 11 22 ◦ 12 22 ◦ 21 22 ◦ 22








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(we put the ∗ in on the left, to emphasise that this is matrix multiplication over a non-commutative
ring) and hence









11
12
21
22









∗m =









11 ◦m
12 ◦m
21 ◦m
22 ◦m









m ∈ 22

That is








11
12
21
22









∗ 11 =









11 ◦ 11
12 ◦ 11
21 ◦ 11
22 ◦ 11









=









11
11
22
22









=









1 0 0 0
1 0 0 0
0 0 0 1
0 0 0 1

















11
12
21
22

















11
12
21
22









∗ 12 =









11 ◦ 12
12 ◦ 12
21 ◦ 12
22 ◦ 12









=









11
12
21
22









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















11
12
21
22









and so on. By this (general) construction we have a map Rr : M →M4(Z)

Rr(11)=

0

B

@

1 0 0 0
1 0 0 0
0 0 0 1
0 0 0 1

1

C

A
, Rr(12)=

0

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

A
, Rr(21)=

0

B

@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1

C

A
, Rr(22)=

0

B

@

1 0 0 0
0 0 0 1
1 0 0 0
0 0 0 1

1

C

A

These matrices give a representation.

(2.3.3) We do not yet have the tools for a systematic analysis of representations of a monoid, but
a couple of observations are in order. This representation is, up to a reordering of the basis, in the
form of (1.10):

Rr′(11)=









0 0 0 1
0 0 1 0
0 0 1 0
0 0 0 1









, Rr′(21)=









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1









This corresponds to the fact that the free Z-submodule of ZM with basis {11, 22} is also invariant
under this action of M from the right.

This representation does not have a manifest direct sum decomposition, but we can ask if such
a decomposition can be manifested by basis change. However the possibilities for basis change
beyond reordering depend on the choice of ring.

(2.3.4) Provided we pass to a ring in which 2 is invertible, another basis is {−11 + 12 + 21 −
22, 11, 11 − 22, 12 − 21}. (Questions: Where did this come from?! How did the restriction arise?)
Using this basis we get another representation:

R
′

r
(11)=

0

B

@

0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

1

C

A
, R

′

r
(12)=

0

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

A
, R

′

r
(21)=

0

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

1

C

A
, R

′

r
(22)=

0

B

@

0 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 0

1

C

A

In other words there is a direct sum decomposition:

R′ = R1 ⊕R1′ ⊕R2
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Note that R2 is not irreducible, but it is not amenable to a direct sum decomposition in any
basis over any ring. It is, however, of the form in Equation (1.10). In this sense it ‘contains’ two
one-dimensional (hence irreducible) representations:

R2 = R1′+R1′′

(2.3.5) Alternatively, we may encode multiplication by

m ∗









11
12
21
22









=









m ◦ 11
m ◦ 12
m ◦ 21
m ◦ 22









m ∈ 22

That is

11 ∗









11
12
21
22









=









11 ∗ 11
11 ∗ 12
11 ∗ 21
11 ∗ 22









=









11
11
11
11









=









1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

















11
12
21
22









12 ∗









11
12
21
22









=









12 ∗ 11
12 ∗ 12
12 ∗ 21
12 ∗ 22









=









11
12
21
22









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















11
12
21
22









and so on. By this construction we have another map Rr : M → M4(Z)

R
r(11)=

0

B

@

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

1

C

A
, R

r(12)=

0

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

A
, R

r(21)=

0

B

@

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1

C

A
, R

r(22)=

0

B

@

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

1

C

A

These matrices give an antirepresentation. That is

Rr(a)Rr(b) = Rr(ba)

This becomes a representation once we compose with the matrix transpose map. Note however
that there is no similarity transformation between Rr and (Rr)t (the map from the algebra to
the ring defined for each representation by matrix trace is not changed by similarity, and differs
between the two), so they are not equivalent representations.

Quite generally, if a representation can be expressed in the form of Equation (1.10):

ρ12(g) =

(

ρ1(g) V (g)
0 ρ2(g)

)

(2.4)

then

Tr(ρ12(g)) = Tr(ρ1(g)) + Tr(ρ2(g)) (any g)

If we assume that (Rr)t is a (not necessarily direct) sum of the irreducible representations we
have already seen, then we can deduce immediately that this sum contains two copies of R1′′ ,
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since Tr(R1′′(21)) = −1 and Tr(R1(21)) = Tr(R1′(21)) = 1, and so this is the only way to get
Tr(Rr(21)) = 0. Considering Tr(Rr(11)) = 1 we then see that

(Rr)t = R1 +R1′ +R1′′ +R1′′

(under the stated assumption). In other words (Rr)t does not even have quite the same irreducible
summands as Rr — at least the multiplicities are different.

That was Too much linear algebra! How can we be more slick? We shall shortly begin to
address this question.

(2.3.6) For K a given commutative ring, and M a left K-module write End(M) for the set of
linear transformations of M . For any subset S ∈ End(M) we define EndS(M) as the subset of
linear transformations that commute with every element of S.

(2.3.7) Exercise. Consider R′
r as a subset of End(Z22). What is EndR′(Z22)?

2.3.2 quaternions

Set

i =









0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0









, j =









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0









We define H as the subring of M4(R) generated as an R-algebra by these matrices (as an R-vector
space it is spanned by {i, j, ii, ij}). This is a noncommutative division ring.

2.4 Basic tools: topology

(2.4.1) A sigma-algebra over a set S is a subset Σ of the power set P (S) which includes S and ∅
and is closed under countable unions, and complementation in S.

Any subset S′ of P (S) defines a sigma-algebra — the smallest sigma-algebra generated by S′.
For example {{1}} ⊂ P ({1, 2, 3}) generates Σ = {∅, {1}, {2, 3}, {1, 2, 3}}.
(2.4.2) A topological space is a set S together with a subset T of the power set P (S) which includes
S and ∅ and is closed under unions and finite intersections.

The set T is called a topology on S. The elements of T are called the open sets of this topology.
A set is closed if it is the complement in S of an open set. A function between topological spaces
is continuous if the inverse image of every open set is open. Two spaces are homeomorphic if there
is a bijection between them, continuous in both directions.

The restriction of T to S′ ⊂ S is a topology on S′, called the subspace topology.
A subset S′ of a topological space (S, T ) is irreducible if S′ = S1 ∪S2 with S1 closed implies S2

not closed.

(2.4.3) Let k be a field. A polynomial p ∈ k[x1, ..., xr] determines a map from kr to k by evaluation.
For P = {pi}i ⊂ k[x1, ..., xr ] define

Z({pi}i) = {x ∈ kr : pi(x) = 0 ∀ i}
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An affine algebraic set is any such set, in case k algebraically closed. An affine variety is any such
set, that cannot be written as the union of two proper such subsets. (See for example, Hartshorne
[23, I.1].)

The set of affine varieties in kr satisfy the axioms for closed sets in a topology. This is called the
Zariski topology. The Zariski topology on an affine variety is simply the corresponding subspace
topology.

The set I(P ) ∈ k[x1, ..., xr] of all functions vanishing on Z(P ) is the ideal in k[x1, ..., xr]
generated by P . We call

kP = k[x1, ..., xr ]/I(P )

the coordinate ring of Z(P ).

(2.4.4) Let Z be an affine variety in kr and f : Z → k. We say f is regular at z ∈ Z if there is an
open set containing z, and p1, p2 ∈ k[x1, ..., xr], such that f agrees with p1/p2 on this set.

(2.4.5) A morphism of varieties is a Zariski continuous map f : Z → Z ′ such that if V is open in
Z ′ and g : V → k is regular then g ◦ f : f−1(V ) → k is regular.

(2.4.6) Given affine varieties X,Y then X × Y may be made in to an algebraic variety in the
obvious way.

(2.4.7) An algebraic group G is a group that is an affine variety such that inversion is a morphism
of algebraic varieties; and multiplication is a morphism of algebraic varieties from G×G to G.


