
Chapter 4

Categories

4.1 Categories I
ss:cati

(4.1.1) A Category is a triple

A = (ObA, homA(−,−), ◦)

(one sometimes writes simply A for ObA and A(−,−) for homA(−,−)) where
(i) ObA is a collection of ‘objects’; 1,2

(ii) for each ordered pair (M,N) of objects A(M,N) is a set of ‘morphisms’;
(iii) ◦ is an associative composition

A(M,N) ×A(L,M) → A(L,N)

such that for each object M there is an identity 1M ∈ A(M,M).

(4.1.2) Remark. It is not uncommon to find a variant of (iii) used instead:

A(N,M) ×A(M,L) → A(N,L)

This is ultimately just a matter of organisation (we have reversed the order of writing of all the
pairs). The first formulation is natural in some settings (examples coming up), and the second
formulation in others.

(4.1.3) Examples: Let Set be the collection of all sets, and for M,N ∈ Set let Set(M,N) be theSet
set of maps from M to N . The usual composition of maps is associative and has identities, so this
is a category.

Let Ab be the collection of all abelian groups and Ab(M,N) the set of group homomorphismsAb
from M to N . This is a category.

Grp is the obvious extension of Ab to arbitrary groups.

1(the possible failure of this collection to be a set will not concern us here [8])
2The notation Ob A is used, for example, in [26]; the notation homA(−,−) is used, for example, in [26] and in

[31].

37
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Let A be a category. Consider a triple A′ consisting of any subclass of ObA; and a subset of
A(M,N) for each pair M,N in the subclass, such that 1M ∈ A′(M,M), and the composition from
A closes on these subsets; and the composition from A. This is a category — a subcategory of A.
A subcategory is full if every A′(M,N) = A(M,N).

Let Setf be the full subcategory of Set consisting of finite sets.
For R a ring let MatR be the category of R-valued matrices. That is ObMatR = N, and

homMatR
(m,n) is the set of m× n matrices, and composition is matrix multiplication. [1]

For R a ring R-mod is the category of left R-modules and their homomorphisms.

monoid (4.1.4) Proposition. Let A be a category and N an object in A. Then the full subcategory of A
induced on the single object N consists essentially in the set A(N,N) with its unital associative
composition, and hence is a monoid.

Conversely any monoid is a category on (essentially) any single object.

(4.1.5) Example. The monoid Set(2, 2) = 22 is the one studied in Section 2.3.1.

(4.1.6) Given a category A there is a Dual category (or opposite category) Ao which has the
same objects, and Ao(M,N) = A(N,M), and composition is reversed.

Note that a category and its dual can be very different. For example, Set(S, ∅) is empty unless
S = ∅, while Set(∅, S) = Set◦(S, ∅) contains precisely one element for each S (the appropriate
empty relation).

(4.1.7) Remarks: In a given category we may write

M
θ // N

for θ ∈ A(M,N). Thus a (small) category is a directed graph with some extra data. To say that
a triangle of such homs/arrows
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commutes is to say that the long arrow (in the obvious sense) is the composite of the shorter ones.
Then associativity says that commutativity of any three of the triangles here:
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implies commutativity of the fourth.

(4.1.8) A morphism f ∈ A(M,N) is an Isomorphism if there exists g ∈ A(N,M) such that
gf = 1M and fg = 1N .

Example: The isomorphisms in homSet(n, n) form a submonoid which is a subgroup — the sym-
metric group Sn.
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(4.1.9) Given a set {Ci}i∈I of categories, the triple ×iCi consisting of object class ×iObCi,pa:prod catde:prdcat
I-tuples of morphisms, and the corresponding pointwise composition, is a category.

brauer mon1exe:Br (4.1.10) Exercise. Show that

Br = (N,Br(−,−), ◦)

where Br(m,n) = Jm,n (from (2.2.10)), is a category.

4.1.1 Functors

(4.1.11) Concrete Category. If there is a map und : A → Set from the object collection
of category A to Set, such that A(M,N) ⊆ Set(und(M), und(N)) for each M,N ∈ A, with
1M = 1und(M), and composition is the usual composition of maps, then A is a concrete category.

Examples: Ab, Grp are a concrete categories for which ‘und’ is simply inclusion. Br is not a
concrete category by inclusion (indeed its objects are not sets).

(4.1.12) For A,B categories, a (covariant) Functor F : A → B is a map on objects together
with a map on morphisms which preserves composition and identities.

A Contravariant functor from A to B is a functor from Ao to B (examples later).

Examples: As noted, Grp is concrete. Thus there is an ‘und’ functor U : Grp → Set. Indeed forpa:func

each n ∈ N there is a ’pointwise’ functor Dn : Grp → Set given by

Dn(A
f
→ B) = An

fn

→ Bn

(4.1.13) More examples: (The following simple examples will come up again later, when we developp:morexf
the notions of natural transformation and of adjoint pairs of functors.) Let S be a set. Then there
is a functor FS : Set → Set given by FS(T ) = T × S and

FS(T
f
→ T ′)(t, s) = (f(t), s)

And a functor FS : Set → Set given by FS(T ) = hom(S, T ) and FS(f) : g 7→ f ◦ g.

exe:preadj (4.1.14) Exercise. Since FS(T ) = hom(S, T ) is a set as well as a hom set, we may consider the
hom set hom(U,FST ) = hom(U, hom(S, T )) in Set. Let U ′, T ′ be two further sets. A pair of maps
u′ : U ′ → U and t : T → T ′ define a map from hom(U,FST ) to hom(U ′, FST ′) by

g 7→ (u, FSt)(g) = (FSt) ◦ g ◦ u′

(note the direction of the map u′!).
Show that this gives rise to a functor

hom(−, FS−) : Seto × Set → Set

(cf. (4.1.9)), and construct an analogous functor

hom(FS−,−) : Seto × Set → Set
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(Remark: Functors from products are sometimes called bifunctors.)
Answer to last part: the map from hom(FSU, T ) to hom(FSU

′, T ′) is given by f 7→ (FSu
′, t)(f) =

t ◦ f ◦ FSu′.

(4.1.15) A forgetful functor is a functor to a category whose objects have some structure (binary
operation; inverses; etc) from a category whose objects have this and additional structure. The
functor simply forgets the additional structure.

Our ‘und’ functors are examples of forgetful functors. Another example would be the functor
from Fld (the category of fields) to the category of integral domains and injective ring maps (call
it C), inside the category Rng of rings.
(The restriction to injective maps is just because every field homomorphism is injective.)

4.1.2 Natural transformations

(4.1.16) Let A,B be categories, and T, S be functors from A to B. A ‘natural transformation’de:natt
a : T → S is a family a = (aM )M∈A of B–morphisms

aM : TM → SM

such that for each f ∈ A(M,N) we have SfaM = aNTf .
Example: The functors from A to B are the objects of a category BA with morphisms the (set

of!) natural transformations.

(4.1.17) As we have noted, a group is an example of an algebraic system — one with a binary
operation. That is, for each group, group multiplication is a function

κG : G×G→ G

The collection of all group multiplications κ = (κG) is thus a candidate to be a natural transfor-
mation κ from D2 to U (the functors Grp → Set defined in (4.1.12)):

G×G

f2

��

κG

// G

f

��
G′ ×G′

κG′

// G′

and the commutativity condition SfaM = aNTf is UfκG(a, b) = κG′(D2f)(a, b) which is simply

f(ab) = f(a)f(b)

That is, group multiplication (collectively) is a natural transformation.
Other operations in categories of algebraic systems are viewable as natural transformations simi-
larly.

exa:natiso (4.1.18) Example. Recall the functors FS , FS from (4.1.13), and hom(−, FS−), hom(FS−,−)
from (4.1.14). Let x ∈ hom(FSV, U). For each such we can define an element ψx ∈ hom(V, FSU) =
hom(V, hom(S,U)) by (ψx)(v)(s) = x((v, s)) ∈ U . On the other hand, for y ∈ hom(V, FSU) we
define ψ′y ∈ hom(FSV, U) = hom(V × S,U) by (ψ′y)(v, s) = (y(v))(s).
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Comparing with (4.1.14) one finds that ψ and ψ′ are natural transformations between the
functors hom(−, FS−), hom(FS−,−) : Seto × Set → Set. For example, for each object (V, U) in
Seto × Set we have ψU,V such that the diagram

hom(FSV, U)
ψU,V

//

��

hom(V, FSU)

��
hom(FSV

′, U ′)
ψU′,V ′

// hom(V ′, FSU ′)

commutes for vertical maps built from any (f, g) = (V ′ f
→ V, U

g
→ U ′) ∈ homSeto×Set((V, U), (V ′, U ′))).

To see this note that going to the right first we have

((hom(−, FS−)(f, g))ψU,V )(V × S
x

−→ U) = (hom(−, FS−)(f, g))(V
ψx
−→ hom(S,U))

= (V ′ f
−→ V

ψx
−→ hom(S,U)

FSg
−→ hom(S,U ′))

so this way round the image of x is a map in which v′ ∈ V ′ is taken to a map which takes s in S
to g(x(f(v′), s)). The other way round

(ψU ′,V ′(hom(FS−,−)(f, g)))(V × S
x

−→ U) = (ψU ′,V ′)((V ′ × S
f⊗1
−→ V × S

x
−→ U

g
−→ U ′)

which eventually gives the same thing.

4.2 R-linear and ab-categories
ss:ab

(4.2.1) Let R be a commutative ring. An R-linear category is a category in which each hom set is
an R-module, and the composition map is bilinear.

A basis for an R-linear category C is a subset homo
C of homC such that

homo
C(m,n) = homo

C ∩homC(m,n)

is a basis for homC(m,n).
Any category C extends R-linearly to an R-linear category RC.

(4.2.2) If C is an R-linear category then each homC(m,m) is an R-algebra.

(4.2.3) Remark. A good working aim for this course is to compute the dimensions of the irre-
ducible modules for the C-algebras contained in CBr (as defined in Exercise (4.1.10)).

(4.2.4) A category C is called an ab-category if there is a + operation on each homC(A,B) making
it an abelian group; and morphism composition distributes over +:

f(g + h) = fg + fh and (g + h)f = gf + hf

(4.2.5) Example: We can define a + for any homAb(A,B) pointwise:exa:abadd

(g + h)(a) = g(a) + h(a)
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(this defines an element of homSet(A,B), but (g + h)(a+ b) = g(a+ b) + h(a+ b) = g(a) + g(b) +
h(a) + h(b) = (g + h)(a) + (g + h)(b), so (g + h) ∈ homAb(A,B) as required).
Thus Ab is an ab-category.

(4.2.6) A functor F : A→ B between ab-categories is additive if for f, g ∈ homA(X,Y ):de:additive

F (f + g) = F (f) + F (g)

(4.2.7) If there is an object 0 in a category C such that | homC(0, A)| = | homC(A, 0)| = 1 for all
A then 0 is called a zero object.

(4.2.8) Consider L,M,N objects in an ab-category C. If there are morphisms a : L → N ,
a′ : N → L, b : M → N , b′ : N →M such that a′a = 1L, b′b = 1M and

aa′ + bb′ = 1N

then we write N ∼= L⊕M .
If there is an object N ∼= L⊕M for any two objects L,M we say C has direct sums.

(4.2.9) An additive category is an ab-category with direct sums and zero object.pa:ac

Example: Ab with the trivial group as zero object.

4.2.1 Abelian categories

See for example Freyd’s 1964 book [21]. Abelian categories can be regarded as abstractions of the
class of module categories, and so are useful in representation theory.

(4.2.10) An additive category A is an abelian category if
(I) every f ∈ homA(M,N) has a kernel and a cokernel.
(II) every monomorphism is a kernel; every epimorphism is a cokernel.

4.3 Categories II
ss:catii

(4.3.1) A functor F : A→ B is:
full (respectively faithful) if all hom set maps

F : homA(S, T ) → homB(FS, FT )

are surjective (respectively injective);
isomorphism dense if for every object T in B there is an object S in A such that F (S) is isomorphic
to T .

(4.3.2) A skeleton for a category is a full isomorphism dense subcategory in which no two objects
are isomorphic.
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(4.3.3) Example. The assembly of sets in Setf into cardinality classes induces a corresponding
set of isomorphisms between hom sets

fS : S
∼
→ S′ (4.1) 1

f : hom(S, T ) → hom(S′, T ′) (4.2)

g 7→ fT ◦ g ◦ f−1
S (4.3)

Associate a representative element of each class to each cardinality. We may then construct a
category CN whose objects are the set N of finite cardinalities, and with homCN

(m,n) = hom(m,n).
The functor

F : CN → Setf

which takes object n to object n and identifies the corresponding hom sets is isomorphism dense and
full. This CN is thus a subcategory of Setf , from which the rest of Setf can easily be constructed.
We have:

(4.3.4) Proposition. This CN is a skeleton for Setf .

(4.3.5) Note that the set of isomorphisms in an end set form a group. The set of isomorphisms in
hom(n, n) form the symmetric group Sn.

(4.3.6) A congruence relation I on a category C is an equivalence relation on each hom set such
that f ′ ∈ [f ]I and g′ ∈ [g]I implies f ′g′ ∈ [fg]I (compositions of morphisms).
The quotient category C/I has the same object class as C but homC/I(F,G) = homC(F,G)/I,
with the obvious composition well-defined by congruence.

4.3.1 Adjunctions

(4.3.7) An adjunction between categories A,B is a pair of functors F : A → B and G : B → Ade:adjunction1
such that for all objects (U, V ) in A×B there is a bijection

ψU,V : homA(GV,U) → homB(V, FU)

such that

ψ : homA(G−,−) → homB(−, F−)

is a natural isomorphism of bifunctors.
That is, we have

homA(GV,U)
ψU,V

//

��

homB(V, FU)

��
homA(GV ′, U ′)

ψU′,V ′

// homB(V ′, FU ′)

commutative for each f ∈ homAo×B(V, U) (and hence each pair of vertical maps, cf. (4.1.16)).

(4.3.8) Example. Recall the functors FS , F
S from (4.1.13). Let x ∈ hom(FSV, U). For each such

we can define an element ψx ∈ hom(V, FSU) = hom(V, hom(S,U)) by (ψx)(v)(s) = x((v, s)) ∈ U .



44 CHAPTER 4. CATEGORIES

On the other hand, for y ∈ hom(V, FSU) we define ψ′y ∈ hom(FSV, U) = hom(V × S,U) by
(ψ′y)(v, s) = (y(v))(s).

Comparing with (4.1.14) one checks that ψ and ψ′ are natural transformations (the diagram
above commutes for vertical maps built from homSeto×Set(V, U)) and hence isomorphisms. Thus
(FS , F

S) is an adjunction.

(4.3.9) The left adjoint to a forgetful functor is usually something interesting!

4.4 Categories III

4.4.1 Tensor/monoidal categories
ss:tc1

See Section 9.4. See also Joyal–Street [?], Kassel [30], Reshetikhin–Turaev [37].
Let A be a category and A×A the product category as in (4.1.9). Whenever we have a functor

F : A× A→ A we have in particular an association of an object F (m,n) to each pair of objects.
If this binary operation is associative and unital (so that an object set becomes a monoid) then
(A,F ) is a strict tensor category. If the binary operation is associative and unital up to (certain
suitable) natural isomorphisms

aLMN : F (F (L,M), N) → F (L,F (M,N))

lM : F (1,M) →M

rM : F (M, 1) → M

(see later for axioms) then (A,F ) = (A,F, 1, a, l, r) is a tensor category.
Suppose there are additional natural isomorphisms

gLM : F (L,M) → F (M,L)

Then we can reorder and move brackets in any expression of form F (M1, F (F (M2, F (M3,M4)),M5))
by applying suitable aLMN and gLMs. Suppose we associate such a manipulation to an element
of the braid group by associating each gMiMj

to a braiding in that position. If the manipulation
morphism depends only on the associated braiding, then the tensor category A together with (the
collection) g is a braided tensor category.

A natural example is the category of modules of a finite group algebra, where F (M,N) = M⊗N .
(Indeed later we will write F (M,N) as M ⊗N quite generally.)


