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Abstract We prove that an N -state vertex model representation of the An
Hecke algebra quotient NHn(q) is faithful for all q. We use the result to examine
the indecomposable content of these representations, and hence the structure of the
centraliser algebra, which is generically a quotient of Uqsl(N), at q a root of unity. We
achieve a complete analysis in the case N = 2, finding a number of Morita self-dual
algebraic structures.

1 Introduction

It is well known, and a straightforward combinatorial proof exists, that a given
quotient of the An type Hecke algebra over the complex numbers Hn(q) (called
NHn(q) - see section 2) and an appropriate quotient of the so called quantum group
Uqsl(N) (Jimbo 1985, Drinfeld 1986) are in Schur-Weyl duality on ⊗n+1CIN if q is
not a root of unity. We will briefly review these results shortly. For an introductory
review see, for example, Martin (1991).

The simple proof does not work for the physically crucial (and mathematically
most interesting) case of q a root of unity, even though the actions of both alge-
bras remain well defined (care must be taken with the definition of Uqsl(N) - see
appendix A). The key issue in this case is the faithfulness of the representation of
NHn(q). It is important to know if this result holds in order to compare our partial
knowledge of the structures of the two algebras (see e.g. Dipper and James 1989,
Lusztig 1989). Our main result in this paper (section 3) is that it does!

In order to illustrate the importance of this result explicitly we then consider
some aspects of the mechanism of its application (section 4). In the process we find
that, in all the cases we can check, i.e. all of N = 2, the 2 algebras remain Schur-
Weyl dual for all q, and furthermore are Morita equivalent (for a general reference
on Morita equivalence try Pierce 1982). This is a trivial result for all N for generic
q, but is very strong, if true, in general.
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The faithfulness result, and the techniques involved in its proof, are also crucial
for the computation of the spectrum of quantum spin chains at q a root of unity,
and in providing the means to analyse Hn(q) through other sequences of quotients
besides NHn(q), as we will see in a subsequent paper (Martin and Rittenberg 1991).

Let Ao be an associative algebra over the complex numbers and M a finite
dimensional left Ao-module. Then B = EndAo(M) is the centraliser algebra of Ao

on M (that is, the algebra of endomorphisms of M which commute with the action
of Ao), and A = EndB(M) and B are said to be in Schur-Weyl duality on M . That
is

B = EndEndB(M)(M).

In this case A and B are sometimes called a dual pair (see e.g. Zelevinskii 1987) or
a Howe pair on M .

Let K be the smallest double sided ideal of Ao such that M is a faithful Ao/K

module (i.e. K = annAM). Then A ⊃ Ao/K, and in general we have a composite
morphism

Ao → Ao/K → A

For example, if Ao/K gives all upper triangular matrices on M then B is just scalars
and A is all matrices on M .

We say that Ao itself has a Schur-Weyl dual on M if and only if

Ao/K = A.

A sufficient, but not necessary, condition for this is that Ao/K is semi-simple (this
happens in our case when q is not a root of unity). We will discuss necessary
conditions in section 4.

If Ao = Hn(q) and M is the usual N -state vertex model representation (see
section 2), then B is generically a certain (n-dependent) quotient of Uqsl(N) (sec-
tion 4.2), called Un

q sl(N), and Ao/K = A = NHn(q). The representation M of
NHn(q) is block diagonal for all q, with the blocks being q-permutation modules
in the sense of a q deformation of the symmetric group permutation modules (see
section 4). This means that the indecomposable content of these modules is known
generically, and in particular that some of them are themselves faithful representa-
tions of the algebra (see Robinson 1962 for example). It is the multiplicities and
morphisms of the indecomposables which tell us the structure of the centraliser al-
gebra in general, so these are crucial results. We can construct a counterexample
(see section 4) showing that the faithfulness of generic blocks is not necessarily pre-
served in the case q a root of unity! The faithfulness of the whole representation is
thus by no means a trivial result, giving an important clue to its indecomposable
and irreducible content (which will be discussed, and in some cases determined,
using this property).
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In the next section we define NHn(q) and the action of Hn(q) on M = ⊗n+1CIN .
We then establish our main result - that this gives a faithful representation of the
algebra NHn(q). In the following section we illustrate the use of these results with
some applications. We determine the structure of the Uqsl(2) quotient from that
of 2Hn(q), and note in particular a Morita equivalence. In appendix A we define
(from Jimbo 1985, Drinfeld 1986, Lusztig 1989) the appropriate action of Uqsl(N)
on ⊗n+1CIN , and note commutativity with the representation of NHn(q). Finally
appendix B contains a technical remark.

2 Hecke algebra

The main result of this section is a theorem given on page 8.
Following existing notation (for a recent introductory review and full references

see, for example, Martin 1991 -hereafter called I, or Westbury 1990) we have:

Definition 1 (Hecke algebra) For n a positive integer, q ∈ CI − {0} and√
Q = q + q−1

Hn(q), or simply Hn, is the unital associative algebra over CI defined by generators
{Ui : i = 1, 2, .., n} and relations

UiUi =
√

QUi (1)

UiUi±1Ui − Ui = Ui±1UiUi±1 − Ui±1 (2)

UiUi+j = Ui+jUi (j 6= 1) (3)

Note that there is a natural inclusion of Hn−1(q) as a subalgebra in Hn(q).

Proposition 1 There is an isomorphism of left Hn−1 modules

Hn
∼= Hn−1 ⊕

n⊕
m=1

Hn−1

(
m∏

i=1

Un+1−i

)
.

Proof: By induction: The proposition holds at level n = 1. Now suppose the
proposition is true at level n, then trivially there is a natural mapping

Hn → Hn−1 ⊕Hn−1UnHn−1

(remark: this is an isomorphism of Hn−1 bimodules) so, using this and the defining
relations,

HnUn+1HnUn+1Hn → HnUn+1(Hn−1+Hn−1UnHn−1)Un+1Hn
∼= HnUn+1Hn⊕Hn.
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Now obviously

Hn+1
∼= Hn + HnUn+1Hn + HnUn+1HnUn+1Hn + ....

so in fact
Hn+1

∼= Hn ⊕HnUn+1Hn.

This may now be combined with the proposition at level n to give the inductive
step to level n + 1.

Corollary 1.1 The proposition also holds with Ui replaced by U ′
i = α + βUi, for

any complex number α and non-zero complex number β.

Proof: as above.
In particular we define alternative generators

gi = 1− qUi.

We also obtain a well known result:

Corollary 1.2 The dimension of Hn(q) is (n + 1)!, and if {bi : i = 1, 2, .., n!} is
a basis for Hn−1 then

{bi, biU
′
n, biU

′
nU ′

n−1, .., biU
′
nU ′

n−1..U
′
1 : i = 1, 2, .., n!}

is a basis for Hn.

Definition 2 Let Bn(U ′) be the basis of words in {U ′
i} obtained by iterating this

process from B0(U ′) = {1}.

Remark 1 The words in Bn(U ′) cannot be written as shorter words in {U ′
i} by

applying the defining relations.

Outline proof: Suppose true for n − 1. The only relation which can shorten every
word in the output is the first, but each new word has at most one factor of Un,
and at least one factor of Ui between each factor of Ui−1 by construction.

Corollary 1.3 Words in Bn(U ′) of length l or less span all such words in {U ′
i}.

For many purposes we break the analysis of Hn(q) down through a sequence of
quotients NHn(q). To define these we need first to define some special elements of
Hn(q) (which will generate the kernels of the these quotients).

We can summarize our procedure (given in the next section) as the q-analogue of
the following observations on the familiar q = 1, i.e. symmetric group, case. There
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we have two obvious central idempotents in the group algebra of SN , the Young
symmetriser and antisymmetriser:

EN+2 =
1

N !

∑
w∈SN

w ; FN+2 =
1

N !

∑
w∈SN

(−1)l(w) w

corresponding to the trivial and sign (alternating) representations respectively.
Quotienting a symmetric group algebra by FN+2 excludes irreducible representa-
tions corresponding to Young diagrams with more than N rows.

For q generic our quotient will have the equivalent effect. Up to normalisation
(which we will discuss shortly) the q-analogues of EN+2, FN+2 in our definition of
the Hecke algebra become

EN+2 ∝
∑

w∈BN (g)

(q2)−l(w) w ; FN+2 ∝
∑

w∈BN (g)

(−1)l(w) w.

Readers familiar with the formulation used, for example, by Dipper and James will
note a difference, which comes from rescaling gi, and a redefinition of q. We will
now introduce and use two alternative constructions.

2.1 Special elements of Hn(q)

This subsection is taken from Martin and Westbury (1991) and references therein.
We first reintroduce the central idempotents starting from scratch.

Definition 3 (Idempotents) For each m = 1, 2, 3, .., n + 2 define an idempotent
Em ∈ Hn(q) by

E1 = E2 = 1

and then
Em ∈ Hm−2(q) ⊂ Hn(q)

and
EmEm = Em

and for i = 1, 2, ..,m− 2
EmUi = UiEm = 0.

There can be at most one such element, since if Em, E′
m ∈ Hm−2(q) both have the

above properties then EmE′
m = Em = E′

m.
Let us consider the existence of such an element. We need

Definition 4 For each positive integer n define kn, a function of Q, by k1 = 0 and

kn+1 = 1/(
√

Q− kn).
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Definition 5 For s an integer and q given

[s] =
qs − q−s

q − q−1

and for N a positive integer

[N ]! =
N∏

s=1

[s].

For example, with
√

Q = q + q−1 as before:

[0] = 0

[1] = 1

[2] =
√

Q

[3] = Q− 1

and

kn =
[n− 1]

[n]

from definition 4.

Definition 6 Define I[m− 2] ∈ Hm−2(q) by I[0] = 1 and

I[m− 2] = I[m− 3](1− km−1Um−2)I[m− 3]

The existence of I[m−2] for a given value of q is guaranteed unless some kn required
in its construction has a pole at that point.

Proposition 2 (see I) If I[m− 2] exists then

Em = I[m− 2]

Under the automorphism D : Hn(q)→ Hn(q) defined by

Ui 7→
√

Q− Ui

we have another idempotent
D(Em) = Fm.

For X ∈ Hn(q) we define X(t) ∈ Hn+t(q) by the translation

U
(t)
i = Ui+t.
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Definition 7 For n ≥ b ≥ a > 0 and c = 3− a + b define Fab ∈ Hn(q) by

Fab = F (a−1)
c .

Consequently, if a ≤ i ≤ b then

Ui Fab = Fab Ui =
√

Q Fab. (4)

For example,

F11 =
U1√
Q

F12 =
U1U2U1 − U1√

Q(Q− 1)
.

With c = 3− a + b again, we similarly define

Eab = E(a−1)
c

so that
Ui Eab = Eab Ui = 0

if a ≤ i ≤ b. For example E1 −1 = 1.
Note that, as with Eij , Fij may not be well defined for all Q (consider our

examples). However, note the following

Definition 8 For n a positive integer and Y1 = 1

Yn+1 = −[n− 1] Yn + Yn

(
n∑

m=1

[m− 2] (UnUn−1...Um)

)
.

The element Yn+1 ∈ Hn is clearly finite for all Q, with the coefficient of the longest
word (c.f. proposition 1) equal to one. It is established in Martin and Westbury
(1991) that

Yn = [n]! Fn+1. (5)

2.2 The quotient algebras NHn(q)

We define a sequence of quotient algebras of Hn(q) as follows. The quotient NHn(q),
or simply NHn, is obtained by imposing the quotient relations

YN+1 = 0.

For example, with Q 6= 0 then 1Hn(q) can be obtained by putting F11 = U1/
√

Q = 0,
whilst with Q = 0 the quotient relation is

√
Q F11 = U1 = 0 (the first expression

is, of course, purely formal at Q = 0). Note that the case N = 2 corresponds
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to the Temperley-Lieb algebra. As we have already indicated, the case NHn(1)
is the quotient of the group algebra of the symmetric group on n + 1 objects to
exclude irreducible representations with Young diagrams of more than N rows (c.f.
Robinson 1962).

Proposition 3 For q a nonzero complex number the dimension of NHn(q) equals
the dimension of NHn(1).

We prove this proposition in the course of proving our main theorem.

2.3 Representations

Let VN = {1, 2, .., N} be shorthand for the standard ordered basis for CIN , and IN

be the N ×N identity matrix, and M the N2×N2 matrix with action on V 2
N given

by
M (a, b) = 0 if a = b (6)

and otherwise, with p = sign(b− a),

M (a, b) = qp (a, b) + (b, a). (7)

Then for N < n and V the space spanned by V n+1
N we can check by direct

computation that there is a representation RN : Hn(q) 7→ EndCI(V ) given by

RN (Ui) = IN ⊗ IN ⊗ ...⊗M ⊗ ...⊗ IN

where M appears in the ith position in the product. It may be useful to note that
this action of Hn(q) on V is not the same as those used by Jimbo, Lusztig and
others, being essentially the twist of Jimbo’s action by the automorphism D.

Note that the objects RP,M (Ui), with P + M = N , defined by replacing equa-
tion 6 by

M (a, b) = q + q−1(a, b) if a = b > P (8)

if a = b > P (so RN,0 = RN ), provide a host of useful representations, which are
studied in Martin and Rittenberg 1991.

Theorem 1 (Main theorem) RNHn(q) is a faithful representation of NHn(q)
for all q.

3 Proof of the Theorem

3.1 Part 1: RN a representation

We need to show that RN (FN+2) = 0 when q is an indeterminate (this is suffi-
cient, since RN (kFN+2) = kRN (FN+2) and k = [N + 1]! is well defined in any
specialisation). We proceed by induction.
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The result is true for N = 1 by equation 6. If true for N = m then for a ∈ V n+1
m+1

Rm+1(Fm+3) a = Rm+1(Fm+3Fm+2) a = Rm+1(Fm+3)Rm+1(Fm+2) a (9)

can only possibly be non-vanishing if a1a2...am+1 are distinct (and a2a3...am+2

distinct, by symmetry), so a1 = am+2. We then have

Rm+1(Fm+3) a = Rm+1(Fm+3U1/
√

Q) a

which, using equation 7 becomes

Rm+1(Fm+3)
(

q√
Q

a + a2a1a3a4...am+1a1...

)
.

Since the second through (m + 2)th components of the latter vector are no longer
distinct it is killed by the Fm+3 (= Fm+3F

(1)
m+2 as above) leaving

Rm+1(Fm+3) a = Rm+1(Fm+3)
q√
Q

a = 0.

Q.E.D.

3.2 Part 2: RN faithful

We construct a basis for NHn(q) and prove explicitly that every element is linearly
independent in RN . The idea is to use the very limited off-diagonal action of the
generators in RN in constructing a partially ordered set of words which have non-
zero matrix elements further and further (in a certain sense) from the diagonal.

We will need some properties of RN (FN+1). Note from equations 6 and 7 that
each Ui mixes between basis vectors in V with a fixed number of 1’s, 2’s, ..., N ’s
appearing as its components. Consequently the representation RN is block diagonal
up to permutations of the basis, and equivalence classes of the direct summand rep-
resentations may be associated with a subset of the partitions (see e.g. Macdonald
1979, James and Kerber 1981) of n + 1.

Definition 9 Define the set DN
n , of partitions of n + 1 into at most N parts, as

N -tuples of non-negative integers

α = (α1, α2, .., αN )

with the properties
α1 ≥ α2 ≥ ... ≥ αN

and ∑
i

αi = n + 1.
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We will denote by α′ the complement of a partition α.
Define a total order on DN

n by α > β if there exists integer j such that

αi = βi

for N ≥ i > j, and
αj − βj < 0.

This is the L′n order defined in Macdonald 1979. For example, the N -tuple

νN = (1, 1, 1, .., 1)

is the least element and (N, 0, 0, .., 0) the greatest in this order in the set of all
partitions of N , DN

N−1.
We will regard DM

n ⊂ DN
n for M < N by extending the M -tuples to N -tuples

by adding zeros on the right.
For given n and N , and α ∈ DN

n , we define Rα
N , or simply Rα, as the repre-

sentation on subspace with basis vectors containing α1 1’s, α2 2’s, and so on. For
example, R

(1,1,1)
3 has basis {123, 213, 132, 312, 231, 321}.

Proposition 4 The matrix elements of RνN

N (YN ) = RνN

N ([N ]!FN+1) are all integer
powers of q (and hence non-zero).

Proof:
It follows from the defining relations 1- 3 and corollary 1.2 that RνN

N is the
regular representation of HN−1(q) (see I for details). The relations

Ui [N ]!FN+1 = [N ]!FN+1 Ui =
√

Q [N ]!FN+1

then imply
rank(RνN

N ([N ]!FN+1)) = 1

(consider the action of [N ]!FN+1 on each element of the algebra). The matrix
RνN

N ([N ]!FN+1) is also symmetric by construction, so there exists some row vector
h such that

RνN

N (kFN+1) = hth.

The relations above then further imply that in this representation

Ui ht =
√

Q ht.

Now Ui mixes basis vectors in pairs so this may be broken up into sub-equations of
the form (

q 1
1 q−1

)(
si

sj

)
=
√

Q

(
si

sj

)
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which implies
si = qsj .

Using all the Ui’s all the components of the vector are connected in this way. Finally,
from definition 8 note that [N ]!FN+1 6= 0. This completes the proof of proposition 4.

To review, we have seen that with pij ⊂ V n+1
N the subset of basis vectors

{p ∈ V n+1
N : pi, pi+1, .., pj distinct elements of VN}, and introducing bra and ket

notation to make row vectors easier to spot, then

RN (kFij)|a〉 = 0 if a ∈ V n+1
N − pij (10)

so RN is a representation of NHn, and from proposition 4 that

RN ([j − i + 2]!Fij)|p〉 =
∑

r∈pij

qf(p,r) |r〉 if p ∈ pij (11)

where f is a finite integer. We do not need to know this integer for our purposes,
it is given in appendix B.

In what follows we will use the notion of standard tableau (see e.g. James and
Kerber 1981). These are the insertions of numbers 1, 2, .., n + 1 into the Young
diagrams of partitions of n + 1 such that each row and column has the natural
order.

Definition 10 For α a partition define D(α) as the set of standard tableau of shape
α.

Definition 11 Define a function

F : D(α)→ V n+1
N

by setting (F{a})i equal to the number of the row in which the number i appears in
the standard tableau {a}.

Note that F is not surjective unless n = 0 and N = 1, but is injective. The range
is the set of ‘lattice permutations’ of length n + 1 in the alphabet {1, 2, .., N}. We
will make frequent use of this (reverse) Yamanouchi notation for standard tableaux
(c.f. Chen 1989, for example). We write {a} for a standard tableau, and simply a

for its Yamanouchi word (and |a〉 for the corresponding ket of V n+1
N ). For example,

{a} = {e(1,1,1)}, the unique (13) standard tableau, gives F{a} = a = 123.
If i is in a row above i + 1 in {a} then we say F{a} = a has a maximum at i.
If {s} is a standard tableau with i in a lower row than i + 1, and the tableau

obtained by interchanging i, i+1 in {s} is standard, then this tableau may be called
{si}.
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Definition 12 Define a partial order ≤ on standard tableau {s} in D(α) by

{s} ≤ {t}

if and only if {t} can be obtained from {s} by a sequence of moves of the form

{s} → ...→ {v} → {vi} → ...→ {t}.

The lowest sequence in the partial order in D(α), call it {eα}, is the unique
standard tableau with unit increases down the columns.

The poset is a lattice.
We also use another partial order. Let a sequence of moves from s to t in

Definition 12 be recorded by t = si1i2..im , i.e.

s→ si1 → si1i2 → ...→ t = si1i2..im ,

then:

Definition 13 Define a partial order (D(α),�) by {s} � {t} iff for some list
i1i2..im such that t = ei1i2..im

α there exists a sublist of i1i2..im, say ij1ij2 ..ijk
(k ≤

m), with j1 < j2 < .. < jk and such that s = e
ij1 ij2 ..ijk
α .

This is similar to the Bruhat order on elements of the symmetric group.

Proposition 5 If {s} � {t} and {si}, {ti} are well defined, then {si} � {ti}.

Proof: With {t}, {s} defined as above then {ti}, {si} well defined implies their lists
may be written i1i2..imi and ij1ij2 ..ijk

i respectively. QED.
Note that {s} ≤ {t} implies {s} � {t}.

Definition 14 Define extended partial orders ≤ and � on all standard tableau of
n + 1 boxes by the total order on partitions if the shapes are different, and by
definitions 12 and 13 respectively otherwise.

Definition 15 Define PN (n) as the disjoint union of sets D(α) × D(α) over all
values of α ∈ DN

n .

Definition 16 Define partial orders (PN (n),≥) and (PN (n),�) by

(a, b) ≥ (c, d)

iff a ≥ c and b ≥ d, and by a corresponding extension of �, respectively.

Note that the former is a lattice.
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3.2.1 A basis for NHn(q)

Let us adopt the convention that Fij may be regarded as a word in the generators
of Hn(q), and that for W a word in Hn(q) then WT is obtained by writing the
generators in reverse order (note that Fij = FT

ij ). We need the following definitions:
For each partition α of k + 1 let us define elements (eα, eα) ∈ Hk(q) iteratively

as follows. Firstly take (e(1), e(1)) = 1 and suppose (eα− , eα−) defined for all α−
partitions of k or less. For each α a partition of k + 1 there is some α− a partition
of l < k + 1 obtained from α by removing the first column of partition shape α.
This column has length m = k + 1− l (note that m ≥ (α−)′1, the length of the first
column in α−). Then

(eα, eα) = Ym

(
(eα− , eα−)(m)

)
(recall that X(m) denotes the translation of X by Ui 7→ Ui+m).

Note that if α has only one part,

(eα ◦ eα) = 1.

Note also that
Ui(eα ◦ eα) =

√
Q(eα ◦ eα)

if i is above i + 1 in the standard tableau {eα}. For example,

(e(5,3,1) ◦ e(5,3,1)) = Q
√

Q(Q− 1) F12 F44 F66

= (U1U2U1 − U1) U4 U6 .

Note that (eα ◦ eα) = 0 in NHn(q) if α has more than N rows.

Definition 17 If ({s}, {t}) is in PN (n), the set of pairs of standard tableau of the
same shape and at most N rows, then (s ◦ t) is a word in the generators of Hn(q)
(counting Fij as a word) obtained iteratively from (eα ◦ eα) as follows:

(si ◦ t) = (1− qUi) (s ◦ t) (12)

and
(t ◦ s) = (s ◦ t)T . (13)

If (t ◦ s) is obtained from (eα ◦ eα) in this way we call (eα ◦ eα) the root of (t ◦ s).
For example, (e(2,1) ◦ e(2,1)) = U1 is the root of (U1)(1− qU2).

The path taken to construct a word here is not unique in general. To check that
the construction is independent of the path taken let us assume it is so for all pairs
below some pair P (it is trivially true for the lowest pair, since there is only one
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path), and suppose without loss of generality that we have two distinct paths to P

from below, giving at the last step two nominally distinct words, W1gm and W2gl.
Consider, case 1, that gm and gl commute (take l > m + 1, say). We need only

consider the right hand side of the pair P , and the changes in the (m,m + 1) and
(l, l+1) positions, so we might as well take them (12)(34) (in Yamanouchi notation).
Then in W1 they are (21)(34) and in W2 they are (12)(43) with all other positions
the same as in P . By our assumption there then exist W3,W4 such that W3gl = W1

and W4gm = W2, so W3,W4 both have (21)(43), and are equal. Altogether we have
two constructions, W3gmgl and W3glgm which are equal by commutation.

Now consider, case 2, that gm and gl do not commute (take l = m + 1, say).
Then the relevant part of P is in the (m,m + 1) and (m + 1,m + 2) positions,
say (123). In W1 we have (213) and in W2 we have (132), with other positions
the same. By assumption there exist W3,W4 such that W3gmgm+1 = W1 and
W4gm+1gm = W2, and W3,W4 both have (321). Altogether we have W3gmgm+1gm

and W3gm+1gmgm+1, which are equal by the defining relations.

Proposition 6 (see I) The set of elements in definition 17 spans NHn(q).

The definition corresponding to definition 17 in I is not unique in general. It becomes
unique on choosing a unique path of construction for each element. In fact it is
proved in I that these elements form a basis, but we will of necessity prove linear
independence in what follows, so it is sufficient to note that this set has order
dim(NHn(1)). Since we show linear independence for each N then in particular
the large N limit (i.e. N ≥ n + 1) shows that overall we have (n + 1)! linearly
independent elements and hence a basis for Hn(q) (by corollary 1.2). But within
this full basis (n + 1)!− dim(NHn(1)) linearly independent elements are manifestly
taken to zero under the YN+1 = 0 quotient (by definition 17, and specifically the
definition of (eα ◦ eα)). Overall then

dim(HnYN+1Hn) ≥ (n + 1)!− dim(NHn(1)).

Meanwhile dim(NHn(1)) = order(NP (n)) elements will be shown linearly indepen-
dent in NHn(q) so that dim(NHn(q)) ≥ dim(NHn(1)). Clearly the bounds are
saturated. This also proves proposition 3.

3.3 Proof of faithfulness (conclusion)

For given N and n, the set of elements in NHn(q) from definition 17 will be called
S. With w, v ∈ V n+1

N and X ∈ NHn(q) we write Xwv = 〈w|X|v〉 for the w, v matrix
element of RN (X). For example, if w = v = 11111 and W ∈ S then Wwv = 0
unless W = 1.
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Note that
〈w|1|v〉 = δwv.

Then
Ui|v〉 = 0 if vi = vi+1 (14)

and with vi = v except for
vi

i = vi+1

and
vi

i+1 = vi

we have
Ui|v〉 = q±1|v〉+ |vi〉 if vi

<
> vi+1. (15)

Definition 18 Let (w, v) ∈ V × V , then define a set

J(w,v) = {W ∈ S : Wwv 6= 0}.

Here are some illustrative examples of the above ideas:
Example 1. n = 1
Here H1(q) is spanned by {1, U1} and in Yamanouchi notation

(11 ◦ 11) = 1

(12 ◦ 12) = U1

J(11,11) = {1}

J(12,12) = {1, U1}

(note that (11, 11) > (12, 12)).
Example 2. n = 2
Here H2(q) is in fact spanned by {1, g2U1g2, U1g2, g2U1, U1, F12} and in decreas-

ing order down the page we have pairs

(111, 111)

(112, 112)

(121, 112) (112, 121)

(121, 121)

(123, 123)
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and, for example,
J(111,111) = {1}

J(112,112) = {1, g2U1g2}

J(121,112) = {g2U1g2, U1g2}

and so on.

Proposition 7 For any partition α ∈ DN
n let Eα = (eα ◦ eα). Then:

Eα ∈ J(eα,eα).

Proof:
Up to constants Eα is of the form

Eα =
∏

Fij

and
eα = 123...α′1123...α′2123...α′3.....

Making repeated application of proposition 4 (as in equation 11) we see that 〈eα|Eα|eα〉
is a finite power of q.

Proposition 8 Let u ∈ F (D(α)− {{eα}}), then

RN (Eα)|u〉 = 0.

Proof:
Here RN (Eα)|u〉 6= 0 implies u1u2...uα′1

distinct, and so on, by equation 10. But
u ∈ F (D(α)) implies u1 = 1 and that no number can appear as a component of u

until every lower positive integer has appeared at least once more often. The only
possibility for u ∈ F (D(α)) is u = eα.

More generally we have:

Proposition 9 For pairs (a, b), (w, v) ∈ PN (n) if

〈w|(a ◦ b)|v〉 6= 0

then (a, b) � (w, v).

Proposition 10 For (a, b) ∈ PN (n)

〈a|(a ◦ b)|b〉 6= 0.
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These last two propositions imply the theorem. To see this, suppose RN (S) is
not linearly independent. Then there exists

RN (X) =
∑

Wi∈S

αiRN (Wi) = 0

with some αi non-vanishing. Consider in particular a maximal pair (w, v) in the
partial order (PN (n),�) such that αj 6= 0 for Wj = (w ◦ v). Then

〈w|X|v〉 prop.9
=

∑
(a,b)�(w,v)

α(a,b)〈w|(a ◦ b)|v〉 maximality
= αj〈w|Wj |v〉 = 0,

so
αj = 0

by proposition 10, giving a contradiction. Therefore RN (S) is linearly independent.
Proof of proposition 9:
There are two cases to consider. Either (w, v) and (a, b) have the same root (i.e.

tableau shape), or they do not.
In the latter case we need only consider (a, b) ≺ (w, v). The proposition follows

from the observation that kFij is zero on any basis vector in which the ith to jth

entries are not all distinct. This means that from their definitions the roots of all
elements (a ◦ b) are already zero on the whole Rshape(v) subspace of V n+1

N (i.e. that
containing the basis state given by the Yamanouchi word v). To see this explicitly
first note that each root Eα takes the form

Eα =
m∏

i=1

Fai ai+1−2

where a1 = 1 and
ai+1 − ai > aj+1 − aj ⇒ i < j.

The first Fij in the product tells us that for Eα|v〉 6= 0 the components of v

va1va1+1...va2−1

must be distinct (i.e. v is associated to the partition of n+1 whose Young diagram
has as its left hand edge a column of boxes of length at least a2− 1 ). Without loss
of generality we can make these components of v

1 2 ... a2 − 1.

The next Fij in Eα tells us that

va2va2+1...va3−1
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are distinct. It follows that the partition associated to a v satisfying Eα|v〉 6= 0 will
be the greatest possible one in the total order if in fact

{va2 , va2+1, ..., va3−2} ⊂ {1 2 ... a2 − 1}

(i.e. v has partition with second column at least this length). Iterating we obtain
the desired result. In fact we obtain the stronger result that Rλ(Eα) 6= 0 only if
(λ, α) appears in the natural (partial) order of partitions (c.f. Dipper and James
1989).

In the former case we want to prove that (a ◦ b)wv = 0 for all (a, b) 6� (w, v)
(but with the same root, i.e. the same tableau shape, α, say). We can work by
an induction on the poset (D(α)×D(α),�). Consider a pair of standard tableaux
(c, d), and assume that the proposition is true for all pairs (a, b) ≺ (c, d) with all
(w, v) (it is true for (a, b) = (eα, eα), i.e. (a ◦ b) = Eα, the root of any (w ◦ v), by
proposition 8). Without loss of generality we may assume that this includes a case
(a, b) = (f, h) such that (f, hi) = (c, d) for some i. We want to establish now that
(c◦d) ∈ J(w,v) implies (c, d) � (w, v) for all (w, v), i.e. (c◦d)wv = 0 if (c, d) 6� (w, v),
so it is sufficient to consider those pairs (w, v) 6� (c, d) . Now (w, v) � (f, h) and
(f, h) < (c, d) implies (w, v) � (c, d), so by counterpositivity we have (w, v) 6� (f, h)
and hence

〈w|(f ◦ h)|v〉 = 0

by assumption. We want to compute

〈w|(c ◦ d)|v〉 = 〈w|(f ◦ hi)|v〉 = 〈w|(f ◦ h)gi|v〉.

This vanishes by equation 10 and the assumption unless v has a maximum or min-
imum at i. In the latter cases it takes the form

〈w|(f ◦ h)gi|v〉 = (1− q.q±1)〈w|(f ◦ h)|v〉 − q〈w|(f ◦ h)|v′〉 = −q〈w|(f ◦ h)|v′〉

where |v′〉 is |v〉 with 2 components interchanged. If it was a minimum then (w, v′) =
(w, vi) and since (w, v) 6� (f, h) then (w, vi) 6� (f, h), and the proposition is true
by assumption. If it was a maximum then (w, (v′)i) = (w, v) so (f, hi) 6� (w, (v′)i)
which implies (f, h) 6� (w, v′) (by the counterpositive argument to proposition 5)
and again the proposition is true by assumption.

This completes the proof of proposition 9.

Proof of proposition 10:
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We proceed by induction using the (D(α) × D(α),≥) sublattice. Let Eα =
(eα◦eα) be the root of some (a◦b) and assume the proposition is true for all (a′, b′) <

(a, b) (it is true for the universal lower bound (a′ ◦ b′) = Eα by proposition 7). By
symmetry, there is no loss of generality in assuming the proposition true for (c, d)
such that (c, d) < (a, b) and (c, di) = (a, b) for some i. Then noting that c = a here
we have the inductive assumption

〈a|(a ◦ d)|d〉 6= 0.

Noting that (a, b) = (a, di) (so (a ◦ b) = (a ◦ d)gi) implies |b〉 has a maximum at i

we have, from equations 14 and 15,

(a ◦ b)|b〉 = (a ◦ d) ((1− q2) |b〉 − q|d〉)

so that

(a ◦ b)ab = 〈a|(a ◦ b)|b〉 = (1− q2)〈a|(a ◦ d)|b〉 − q〈a|(a ◦ d)|d〉.

The first term on the right vanishes by proposition 9, so we have

〈a|(a ◦ b)|b〉 = −q〈a|(a ◦ d)|d〉 6= 0

by assumption.
This completes the proof of proposition 10 and the main theorem.

4 Applications

To review: with Ao = Hn(q), M = V the Ao-module defined above, B = EndAo(M),
and A = EndB(M), we have established that Ao/K = NHn(q) so NHn(q) ⊂ A for
all q. The next question is ... Are there any other matrices which commute with B

in End(M)? Clearly not for q indeterminate. We will see shortly that, at least for
N = 2 there are not for any q. We do this by computing B from NHnM , and thence
A. The final question is ... Is B given by Un

q sl(N), i.e. by the quotient of Uqsl(N)
faithfully represented on M? The structure of Un

q sl(N) is known (see Lusztig 1989
and appendix A), so this will be answered in the process of answering the previous
question.

Some Algebra
The abstract algebraic problems associated with centralisers of non-semisimple

algebras are interesting in their own right. We do not wish to get bogged down
with what are, in the present context, technical details, so we will merely quote
the results applicable here and refer to a companion paper - Martin and McAnally
1991.
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Note that if Pi (resp. Qi) are indecomposable Ao (resp. B) modules and Ri

(resp. Si) simple Ao (resp. B) modules then

AoM =
⊕

i

miPi

(see e.g. Curtis and Reiner 1962) implies dim(Si) = mi.
Let J = rad(B) so B/J is the maximal semi-simple quotient (as an B module)

of B, and B/J ⊂ B as an algebra. In the case of B semi-simple (J = 0) then so is
Ao/K and M may be regarded as a B ⊗Ao/K module

M =
⊕

i

Si ⊗ Pi.

In our case each simple and projective module of the algebra B/J may be associated
to some simple B module Si, and

B/J⊗AoM =
⊕

i

Si ⊗ Pi,

where dim(Pi) is then the multiplicity of each simple module in B/JM (or BM , al-
though not in this case as a direct summand). Obviously if Ao/K = A = EndB(M)
there is a similar result with A and B interchanged.

These essentially combinatorial results provide the first stage in establishing the
structure of the centraliser from that of NHn

M . What remains is the effect of the
internal structure of the indecomposables on the quiver diagram - which can then
be computed up to Morita equivalence. We will give explicit examples shortly.

4.1 The case N = 2

Our main result is that NHnM is faithful. Since we know the structure of 2Hn (we
will review it now), the content of M in the case N = 2 can be deduced as follows:

Recall from I that each block (i.e. each connected piece of the quiver diagram)
in 2Hn takes the form either of a single simple module or, for some m, has Loewy
structure

s1

s2
⊕

 m⊕
i=2

si

si−1 si+1

si

⊕ sm+1

sm

sm+1

(16)

From the definition M is a direct sum of permutation modules (see I - taking the
large imaginary limit of x in the definition there, or Dipper and James 1986,1989),
and these may be written as a nested sequence of invariant subspaces M ⊃ M1 ⊃

M2... such that Mi/Mi+1 is a given Specht module (a module with structure
si

si+1

in the labelling convention above). A faithful representation which has this property



21

must contain at least one copy of each indecomposable projective except possibly
the leftmost one above (in order that the glue between copies of si be represented).
The faithfulness, the symmetric property of the generators in M , and the defining
relations, ensure that indecomposables must look the same (in Loewy decomposi-
tion) upside down, so no other glue can be omitted.

On the other hand a simple counting argument shows that sm+1 is also a direct
summand of M . This means that there are at least as many inequivalent indecom-
posables as simples in NHn

M .

The symmetry and Specht properties allow no other indecomposable configu-
rations. Let us be more explicit (thanks are due to the referee for suggesting the
following phrasing): From equation 16 indecomposable projectives except the left-
most one in a block are also injective modules. Thus we can extend morphisms
from Specht modules to projectives to morphisms from M to those projectives (see
e.g. Adamson p.83). If such a morphism is surjective it splits. If not then it leads
to the possibility that the Specht module is a direct summand, which contradicts
the symmetry property of M , except for the cases sm+1.

We see that M is ‘almost projective’, consisting of a direct sum of almost all

indecomposable projectives (only
s1

s2
type of multiplicity zero) plus copies of sm+1

type modules, which alone are not projective. Note that these could be quotiented
out without destroying the faithfulness property, so that M/L for some (known)
invariant subspace L is a faithful projective module.

These observations determine the NHn module content of M completely. We
are now in a position to read off the structure of the centraliser algebra.

4.2 Examples

The situation is best illustrated by some examples. We write q = eiπ/r. In fact the
situation differs in no qualitative way for different rational r values within N = 2,
so any one well illustrates the procedure. Here are the first few cases for N = 2,
r = 4:

The successive rows of the table below give the generic irreducible dimensions
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of 2Hn for n = 0, 1, 2, .., 8 respectively.

1
1 1

2 1
2 3 1

5 4 1
5 9 5 1

14 14 6 1
14 28 20 7 1

42 48 27 8 1

Next we give the (corresponding) dimensions for the various ‘permutation’ mod-
ules in the representation R2. The representations down the left hand spine of the
diagram occur only once (equal numbers of 1’s and 2’s in the basis vectors), all
the others twice in each R2 (so dim(R2) = 2n+1). Note that each representation
generically contains the corresponding irreducible in the table above plus a copy of
each irreducible to the right in that row (see e.g. Robinson 1962).

.
2 1

3 1
6 4 1

10 5 1
20 15 6 1

35 21 7 1
70 56 28 8 1

126 84 36 9 1

The following table gives the indecomposable content of each of the permuta-
tion modules above for r = 4, as forced by the symmetry, faithfulness and Specht
conditions. The organisational key to this diagram lies in associating the row of
entries at level n (from the top) with the various 2 row partitions λ of n+1 (λ1−λ2

increasing from left to right). Baring in mind the Specht module content of each
permutation module (one copy of the module with the same diagram, plus one copy
of each one to the right), the block structures of equation 16 may then be meshed
together on the table by noting (c.f. Dipper and James 1986 and references therein)
that blocks are characterised by the common r-cores (4-cores in this case) of their
diagrams.
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.

1 + 1′ 1′
2 + 1 1

2 +
1

2′
1

1
2′
1

1

4 +
1

4′
1

4 + 1 1

5
4
5

+
1

4′
1

5
4
5

+ 1 5 + 1 1

14 +
6
8
6

+ 1 14 + 6 + 1 6 + 1 1

20
8
20

+
6

8′ 1
6

+ 1
20
8
20

+
1
6
1

20 +
1
6
1

1
6
1

1

48 +
26

16 1
26

+ 8 + 1 48 + 8 +
1

26
1

8 +
1

26
1

8 + 1 1

Note that the n = 7 spine block is not faithful, and that quotienting by the
trivial representation in the larger algebra followed by a vertical move is identical
to the action of the standard Morita equivalence functor from 2Hn+2 → 2Hn (from
Martin and Westbury 1991).

Finally, in the following table we form the centraliser structure corresponding
to that in the diagram above (in the form (multiplicity).(dim. of indecomposable)).
The dimensions of simples come from the multiplicities of indecomposables in the
diagram above using the results quoted in the previous section (not forgetting that
each block has multiplicity 2 unless on the left hand spine), and so on. The struc-
tures of the indecomposables come from the observation that the quiver blocks of
NHn

M from above contain indecomposables with Loewy structure m⊕
i=2

si

si−1 si+1

si

 ⊕
sm+1

sm

sm+1

⊕ sm+1.

We thus read off the non-trivial morphisms between the indecomposables Pi ⊂
2Hn

M (which commute with the action of 2Hn and are in the radical of B) as
(ignoring multiplicities - see Martin and McAnally 1991)

P2

α2←
β2→

P3

α3←
β3→

...

αm←
βm→

Pm+1

αm+1←
βm+1→

sm+1

where

αiβi = γi+1 6= 0 i = 2, 3, ..,m

βiαi = γi 6= 0 i = 2, 3, ..,m + 1

and all other composite morphisms are zero. Altogether this glues the simples in B
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together as follows (with the multiplicities now forced)

.
1 3

2.2 1.4

2.1 2.3 1.
3
2
3

4.2 4.4 1.
2
4′

2

4.1 4.3 5.
3
2
3

1.
1
6
1

8.2 14.4 6.
2
4′

2
1.8

8.1 8.3 20.
3
2
3

6.
1
6
1

1.
6

1 3′

6

16.2 48.4 26.
2
4′

2
8.8 1.

4′

2 6
4′

Here again the block structures can be picked out conveniently by mapping diagrams
to their r-cores.

This is the structure of Uqsl(2) on M (c.f. Lusztig 1989 and appendix A). It is a
straightforward combinatorial exercise to check that the correspondence continues
for higher n. Note that the centraliser algebra Un

q sl(2) is Morita equivalent to the
original algebra 2Hn(q), so the centraliser of the centraliser is the original algebra
and the pair are in Schur-Weyl duality.
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Appendix A: Quantum sl(N)
Here we briefly review the properties of Uqsl(N) for comparison with the results

of section 4.

Definition 19 For N a positive integer and q an indeterminate define Uqsl(N) as a
unital associative bialgebra over CI[q±1] with generators 1, ei, fi, k

±1
i (i = 1, 2, .., N−
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1) in the following way: Firstly, there exists a left Uqsl(N) module with basis
{v1, v2, .., vN} and action of Uqsl(N) given by:

ei vj = δij−1vj−1

fi vj−1 = δij−1vj

kivj = (δijq + δij−1q
−1) vj .

All finite dimensional indecomposable representations appear as constituents of those
generated from this one by use of the coassociative comultiplication, which is given
by

m(ei) = ei ⊗ 1 + ki ⊗ ei

m(fi) = fi ⊗ k−1
i + 1⊗ fi

m(ki) = ki ⊗ ki.

Truncating this procedure at the nth comultiplication gives the quotient algebra
Un

q sl(N).
For example, for N = 2, the complete list of finite irreducible representations is

as follows. There is a one dimensional represenation e = f = 0, k = 1, and then one
of each dimension, p, called rp−1, with the action on a basis {v1, v2, .., vp} given by

(e) vi = [i− 1] vi−1

(f) vi = [p− i] vi+1

(k) vi = qp+1−2i vi.

Note that r1 is our defining representation. It follows that

r1 ⊗ rm = rm−1 ⊕ rm+1 (17)

and the content of the various comultiplications of r1 can be deduced from this.
The above definitions hold for q specialised to any non-zero complex number

other than a root of unity. There are some inequivalent choices available for the
definition of Uqsl(N) in the specialisation to q a root of unity. The one appro-
priate for its roll as a centraliser algebra (but which excludes the so called cyclic
representations, c.f. Date et al 1990) is the following.

Definition 20 For q = eiπ/r and r integer we define Uqsl(N) as before, except to
include additional generators

e
(r)
i = er

i /[r]!

and
f

(r)
i = fr

i /[r]!

where it is to be understood that r is taken to its specialisation after reducing the
ratio to its lowest form.
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Note that in the specialisation to r integer equation 17 does not generally hold.
However Uqsl(N) is in fact a Hopf algebra, which ensures that the product of any
module with a projective module is projective.

Proposition 11 In the specialisation to r integer the representations rp remain
well defined and indecomposable, but develop an irreducible invariant subspace with
basis

{vi+1 : i = 0, 1, 2, .., (p− 1)mod.r mod.r}

and irreducible quotient. For p + 1 = mr + k the quotient is isomorphic to the
invariant subspace for p + 1 = mr − k.

Proof: In this case it follows from the definition of rp and [s] that all actions are
zero except

e vi ∝ vi−1 (i 6= 1 mod.r)

f vi ∝ vi+1 (p− i 6= 0 mod.r)

e(r) vi+4 ∝ vi−1 (i = 1 mod.r)

f (r) vi ∝ vi+4 (p− i = 0 mod.r).

The representations are thus block upper triangular in two blocks when written
with the specified basis elements first. The irreducibility and indecomposability
properties follow from continuity with the generic case.

For example, with r = 4 we have the following table: The top line gives the
generic irreducible dimensions and below are the non-generic Loewy decompositions
into simple modules:

p + 1 : 1 2 3 4 5 6 7 8 9 ... mr mr + 1 mr + 2 ...

rp : 1 2 3 4 3 2 1 8 6 ... mr m(r − 1) m(r − 2) ...
2 4 6 3 m + 1 2(m + 1)

where the top representation is isomorphic to the first one of that dimension found
by moving to the left, and the invariant subspace is not isomorphic to any repre-
sentation to the left.

Note that rmr (m a natural number) remains irreducible in proposition 11, so
it will also be projective.

It is the representation on M = ⊗n+1CIN (obtained, up to isomorphism, by
repeating the comultiplication in definition 19 n times) which commutes with the
action of Hn(q). Strictly speaking the action of Hn(q) required is the isomorphic
action obtained from equation 7 by replacing 1→ −1 in the off-diagonal elements.
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This may be readily verified by direct computation. In particular note that the
additional generators in definition 20 must be included in the centraliser algebra B.

Appendix B: The vector h

Definition 21 For each non-negative integer m define an m + 1 component row
vector

hm = (qm, qm−1, ..., q0).

and then s ∈ CIN ! by
s = ⊗N−1

m=1hm.

Remark 2 There is an ordering of the νN basis such that RνN

N (YN ) = sts.

To see this introduce a basis B for the N ! dimensional space L = ⊗N
m=1CIm

(isomorphic to the νN subspace of V , which we will call V νN ) as follows:

B = {(a1a2...aN ) : aj ∈ {0, 1, 2, .., j − 1}}.

The isomorphism is given by
J : V νN → L

defined on the given bases by
J : α→ a

where
ai = No.(αj<i s.t. αj > αi).

Definition 22 Define a length function

l : B → Z

by
l(a) = N −

∑
i

ai.

We will also write l(α) for α ∈ V νN to mean l(J (α)).
Then for a ∈ B and i = 1, 2, .., N − 1 define matrices Mi ∈ EndCI(L) by

Mia = qa +

b︷ ︸︸ ︷
(a1a2...ai−1 ai+1 ai + 1...aN ) ((J−1a)i+1 > (J−1a)i).

Mib = q−1b +

a︷ ︸︸ ︷
(b1b2...bi−1 bi+1 − 1 bi...bN ) .
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It follows by direct computation that

RνN

N : HN−1(q)→ EndCI(L)

is given by
RνN

N (Ui) = Mi

and the remark follows from this.


