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Abstra
t We give the de�nition of the Partition Algebra P

n

(Q). This is a new generalisation

of the Temperley-Lieb algebra for Q-state n-site Potts models, underpinning their transfer matrix

formulation on arbitrary transverse latti
es. In P

n

(Q) subalgebras appropriate for building the

transfer matri
es for all transverse latti
e shapes (e.g. 
ubi
) o

ur. For Q 2 CI the Partition

algebra manifests either a semi-simple generi
 stru
ture or is one of a dis
rete set of ex
eptional


ases. We determine the Q-generi
 and Q-independent stru
ture and representation theory. In

all 
ases (ex
ept Q = 0) simple modules are indexed by the integers j � n and by the partitions

� ` j. Physi
ally they may be asso
iated, at least for suÆ
iently small j, to 2j `spin' 
orrelation

fun
tions.

We exhibit a subalgebra isomorphi
 to the Brauer algebra.

1 Introdu
tion

In the ordinary transfer matrix approa
h to 
omputation in 
lassi
al statisti
al me
hani
s an

Eu
lidean spa
e is resolved into one `time' and (d�1) `spa
e' dire
tions (the Minkowskian labels are

purely a notational 
onvenien
e). The transfer matrix (TM) then des
ribes the states of a 
omplete

spa
e-like layer evolving through a single, or at least minimal, time step [1℄. For example, in one


ommon formulation the transfer matrix is a produ
t of two types of single intera
tion matri
es -

those in
orporating intera
tions whi
h o

ur within a single time layer, and those whi
h 
onne
t

two adja
ent time layers [2℄.

y

It is often possible to resolve the single intera
tion transfer matrix

into a s
alar fun
tion of the temperature parameter plus a 
onstant matrix [3℄. The algebra of

these matri
es is the TM algebra.

In two dimensions the TM layer for the planar square latti
e of width L sites may be thought

of as a 
hain of L sites (ea
h supporting the proje
tion of a time-like bond) and L � 1 spa
e-like

bonds. The transfer matrix algebra is generated by a 
orresponding 
hain of 2L � 1 matri
es.

A large 
lass of statisti
al me
hani
al models in
ulding Q-state Potts, 6-vertex, IRF models and

di
hromati
 polynomials is 
hara
terized by the fa
t that the intera
tion matri
es for these models

provide a representation of the Temperley-Lieb algebra T

2L

(Q) [4℄. In general, for n a natural

number, and Q a 
omplex number or indeterminate, T

n

(Q) is a unital (asso
iative) algebra over

CI with generators < 1; U

i

(i = 1; 2; ::; n� 1) > and relations:

U

2

i

=

p

Q U

i

(1)

�
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y

Then again in two dimensions the symmetry between the spa
e and time proje
tions fa
ilitates a more sym-

metri
al 
hoi
e [4℄ - sometimes 
alled left and right light 
one intera
tions.
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U

i

U

i�1

U

i

= U

i

(2)

[U

i

; U

j

℄ = 0 ji� jj 6= 1: (3)

In this notation the odd numbered indi
es 
orrespond to matri
es building timelike (also 
alled

longitudinal) bond Potts intera
tions, those even numbered give spa
elike (transverse) bonds. The

rough parity between the two types is a spe
ial feature of two dimensions, so it will be 
onvenient

to repla
e it in what follows with the equivalent but more versatile notation:

U

2i�1

= U

i:

i = 1; 2; ::; L

U

2i

= U

ii+1

i = 1; 2; ::; L� 1:

If we number the nodes of our transfer matrix 
hain from 1; 2; :::; L then we see that U

i:

is asso
iated

to the i

th

node and U

ii+1

to the bond between nodes i and i+ 1.

Consider now the 
omplete unoriented graph of n nodes, here 
alled n, and all those subgraphs

G � n obtained by removing bonds (edges) from the 
omplete graph.

De�nition 1 We de�ne T

G

(Q), the Full Temperley-Lieb algebra of the graph G [3℄, to be the

unital algebra over CI with generators

< 1; U

i:

(i = 1; 2; ::; n); U

ij

= U

ji

(edge (i; j) 2 G) >

and relations:

U

2

=

p

QU (4)

(any indi
es)

U

i:

U

ij

U

i:

= U

i:

(5)

U

ij

U

i:

U

ij

= U

ij

(6)

[U

i:

; U

j:

℄ = [U

ij

; U

kl

℄ = [U

i:

; U

kj

℄ = 0 i 6= k; j: (7)

For example, with G = A

n

, the n node 
hain graph, we re
over the original Temperley-Lieb algebra

T

2n

(Q).

It follows from the de�nition of the Potts model [2℄ and di
hromati
 polynomial [5℄ that the

relations of T

G

(Q) are an appropriate generalization (of the transfer matrix algebra relations for

the 
hain, T

A

n

(Q)) for building a transfer matrix layer of shape G [3℄ - that is, for overall latti
e

shape G� ZZ.

y

In other words, for those statisti
al me
hani
al models whi
h have a suitable generalization

onto a latti
e with spa
elike layer G, su
h as the Potts model (de�ned by Hamiltonian

H = �

X

(ij)2G�ZZ

Æ

�

i

�

j

(8)

y

This graph G 
orresponding to the shape of physi
al spa
e is not to be 
onfused with the 
on�guration spa
e

graphs of Pasquier and Saleur [6℄, whi
h work only for the two dimensional 
ase. For example, G a square latti
e

here produ
es a 
ubi
 latti
e statisti
al me
hani
al model.
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where � is essentially an inverse temperature variable) the TM algebra provides a representation

(abstra
tly, a quotient) of this algebra. The transfer matrix itself is a representation of the element

T (v) =

n

Y

i=1

�

v1 +

p

QU

i:

�

Y

(ij)2G

�

1 +

v

p

Q

U

ij

�

(9)

where v = exp(�)� 1. The Potts representation is given expli
itly in [3℄ By well known arguments

[1, 3, 7℄ the irredu
ible representations of T

G

(Q) whi
h 
ompose this representation are eÆ
ient

blo
ks to use in 
omputing the TM spe
trum. The irredu
ible stru
ture of T

G

(Q) is thus important

for extending 
omputation in statisti
al me
hani
s to three and higher dimensions.

On the other hand, whilst the G = A

n

algebra is �nite dimensional for �nite n, and typi-


ally faithfully represented by the �nite dimensional physi
al transfer matri
es, we will show that

for general G the Full algebra is usually in�nite dimensional (we will also examine the spe
ial


onditions under whi
h dim(T

G

) is �nite). Sin
e the physi
al transfer matri
es usually remain

�nite dimensional in higher dimensions (for �nite systems) one problem is to �nd expli
itly the

�nite dimensional quotients of the Full algebra appropriate for these physi
al systems. In two

dimensions the ex
eptional 
ases of Q, where the G = A

n

algebra is not faithfully represented in

physi
al transfer matri
es, 
onstitute perhaps the most interesting se
tor of all, 
orresponding to

models with unitary 
onformal �eld theory limits [8℄ (or, more simply, lots of extra symmetry in

the long distan
e properties). By establishing the physi
ally appropriate generi
 algebra in other

dimensions we develop a pro
edure for investigating the analogous situation there.

In this paper we �nd the quotient algebra for several models. We introdu
e the Diagram algebra

of G, D

G

(Q), whi
h is �nite dimensional for any �nite G. Ea
h TM algebra is either a quotient

or the whole of D

G

(Q). We examine the stru
ture and representation theory of this algebra from

the point of view of someone wanting to optimise 
omputation in statisti
al me
hani
s. This is

without regard to the possibility of a star-triangle like diagonalization manoeuvre (whi
h is in any


ase widely studied elsewhere [9℄, with great skill but somewhat limited su

ess).

We begin (in se
tion 2) by introdu
ing a 
losely related algebra, the Partition algebra P

n

(Q),

whi
h is not a quotient of T

G

(Q), but whi
h also has subalgebras indexed by a graph. This provides

a key organisational link between the physi
al and abstra
t algebras we have des
ribed. We will

indulge in a very 
areful abstra
t formulation, anti
ipating the need for a possible generalisation to

en
ompass `Full He
ke algebras'. In se
tion 3 we prove some te
hni
al results whi
h are 
entral to

the stru
ture analysis of P

n

(Q), and hen
e T

G

(Q). It will 
ome as no surprise to physi
ists to learn

that the G = n or `mean �eld limit' 
ase is one of the easiest to analyse for any of these algebras.

We deal with this in full detail (in se
tion 4), as it is a useful envelope guide for the more 
omplex

subalgebra stru
tures. These are addressed in [10℄. In se
tion 5 we generalise the 
onstru
tion from

the TM to the partition ve
tor formalism [3℄, in the pro
ess providing alternative (and hopefully

illuminating) versions of some earlier de�nitions. We 
on
lude with a dis
ussion, pointing out an

in
lusion of the Brauer algebra [11℄ and mentioning some outstanding problems.

2 Set theory preamble

The Partition algebra P

n

(Q) is a �nite dimensional algebra whi
h in
ludes a quotient of the Full

algebra, and whi
h will play the 
ru
ial role in our analysis. This algebra 
an be introdu
ed in

3



A

B

1 2 3 4 5

'

&

$

%

'

&

$

%

t t t t t

t t t t t

t t t t t

t t t t t

� �

#

t t t t t

t t t t t

'

&

$

%

AB Q�

Figure 1: Pi
torial realisations of parts in a partition of f1; 2; 3; 4; 5; 1

0

; 2

0

; 3

0

; 4

0

; 5

0

g as 
lusters (A

and B); and 
omposition of partitions (AB) by juxtaposing 
lusters (
.f. page 868 of [11℄).

a number of di�erent ways, depending on the level of generality required (latti
es 
an be `grown'

in more exoti
 ways than simple TM layering, and there exists a general algebrai
 framework to

re
e
t this). Here we will sti
k to the ordinary TM formalism. In se
tion 7 we will give a more

general version.

The following ideas arose in 
onsidering the di
hromati
 polynomial formulation of the Potts

model - see [2, 3, 5℄ and referen
es therein. The formalism we use is abstra
ted far from this

physi
al pi
ture. It has the merit, however, of versatility, and of making proofs simple. Those

wishing extra intuitive support might study the above referen
es.

In short the Partition algebra is summarized by the example in �gure 1. We now elaborate on

this summary and introdu
e notation.

2.1 On Partitions of a set M

Re
all

De�nition 2 For a set M the power set t

M

is the set of all subsets of M .

so the order of the set j t

M

j = 2

jM j

[12℄. Let us introdu
e

De�nition 3 For k a natural number t

k

M

= t

t

k�1

M

where t

0

M

=M .
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De�nition 4 Let t

M

be the subset of t

2

M

su
h that A 2 t

M

implies

[

A

i

2A

A

i

=M;

i.e. every element of M is an element of at least one element of A.

De�nition 5 De�ne the set S

M

of equivalen
e relations on, or partitions of, a set M of m dis-

tinguished obje
ts

S

M

= f((M

1

)(M

2

)::::(M

i

):::) :

M

i

�M s:t: M

i

6= ;; [

i

M

i

=M; M

j

\M

k

= ; (j 6= k)g:

(10)

For example, if M is the set of the �rst m natural numbers

S

f1;2g

= f((12)); ((1)(2))g

S

f1;2;3;4g

= f((1234)); ((1)(2)(3)(4)); ((123)(4)); ((124)(3));

((134)(2); ((234)(1)); ((12)(34)); ((13)(24)); ((14)(23));

((12)(3)(4)); ((13)(2)(4)); ((14)(2)(3)); ((23)(1)(4)); ((24)(1)(3)); ((34)(1)(2))g:

Note that (up to redundant pun
tuation) S

M

is a subset of t

M

. In dis
ussing general properties

of S

M

depending only on the order jM j = m we may write S

m

for S

M

.

In an element of S

M

we 
all the individual equivalen
ed subsets of the set of obje
ts `parts'.

Thus (M

1

) = (123) is a part of the partition ((123)(4)), and so on. Clearly the various partitions

have `shapes' like the m box Young diagrams, with the obje
ts inserted into the shapes in all pos-

sible ways - ignoring order within a row, so the number of partitions of shape � = (�

p

1

1

; �

p

2

2

; �

p

3

3

; :::)

(with �

i

> �

i+1

;

P

i

p

i

�

i

= m) is

D

�

=

m!

Q

i

(((�

i

)!)

p

i

(p

i

)!)

:

The set S

M

is �nite for �nite m. Its order is the sum of Stirling numbers of the se
ond kind at

level m (see, for example, [13℄ and referen
es therein). It is 
omputed in a more general 
ontext -

whi
h will be useful later on - in [3, 14℄ (also see se
tion 6.2.2). The �rst few values are:

m 1 2 3 4 5 6 7 8 9 10 11 12 13

jS

M

j 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437

We write i �

A

j in 
ase obje
ts i; j are in the same partition in A 2 S

M

, so the relation �

A

is

transitive, re
exive and symmetri
.
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We will be mainly interested in the 
ase m = 2n. We will then write our 2n obje
ts simply as

M = f1; 2; 3; :::; n; 1

0

; 2

0

; 3

0

; :::; n

0

g: (11)

Before we pro
eed it will be useful to have a little more te
hni
al hardware. For M a set as

in list 11 it will be 
onvenient to write M

0

for the set obtained by priming all the elements of M

(e.g. f1; 1

0

g

0

= f1

0

; 1

00

g). If A is a partition of M we then write A

0

for the 
orresponding partition

of M

0

.

De�nition 6 (Transitive 
ompletion of A 2 t

M

) Let

Q : t

M

! S

M

be de�ned by i �

Q(A)

j if there exists A

k

2 A su
h that i; j 2 A

k

.

y

For example Q(ff1; 2gf2; 4gf3gf4; 5gg) = ((1245)(3)).

2.2 The Partition algebra P

n

(Q)

For M as in equation 11

De�nition 7 Let

f : S

M

� S

M

! ZZ

be su
h that f((A;B)) is the number of parts of Q(A [ B

0

) 2 S

M[M

0

(note that jM [M

0

j = 3m)


ontaining ex
lusively elements with a single prime.

For example Q(((12)(1

0

)(2

0

)) [ ((11

0

)(2)(2

0

))

0

) = ((12)(1

0

1

00

)(2

0

)(2

00

)) so f((A;B)) = 1.

De�nition 8 Let

C : S

M

� S

M

! S

M

be su
h that AB = C((A;B)) is obtained by deleting all single primed elements of Q(A [ B

0

)

(dis
arding the f((A;B)) empty bra
kets so produ
ed), and repla
ing all double primed elements

with single primed ones.

y

Transitivity of � means that Q is su
h that for A = (A

1

; A

2

; :::; A

j

; :::) 2 t

M

then Q(A) = ((M

1

); (M

2

); :::), say

(
.f. equation 10), is su
h that A

j

T

A

k

6= ; implies that there exists M

i

� A

j

S

A

k

; and for ea
h M

i

there exists

a list K = fk

1

; k

2

; :::g su
h that M

i

=

S

j2K

A

j

and there is no partition of K into 2 non-empty parts K

1

;K

2

su
h

that

 

[

j2K

1

A

j

!

\

 

[

l2K

2

A

l

!

= ;:

It is apposite to give a `
olouring' interpretation of Q: Suppose we have any `
olouring' of M

g : M !M

su
h that for ea
h i all the elements of A

i

have the same 
olour, i.e. g(A

i

) has a single element. Then sin
e

a; b 2 A

i

now means a; b 
oloured the same, ne
essarily g(M

j

) has a single element for M

j

any part of Q(A). Now

suppose we 
hoose g so that g(M) has the maximum number of di�erent 
olours 
onsistent with the 
onstraint.

Then g(M

i

) = g(M

j

) implies i = j.
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De�nition 9 For Q an indeterminate and K the �eld of rational fun
tions of Q we de�ne a

produ
t [3, 14℄

P : S

M

� S

M

! KS

M

(12)

P : (A;B) 7! AB = Q

f((A;B))

C((A;B)):

An alternative form of this de�nition is given in a more general setting in se
tion 7.

For example,

((1234)(1

0

3

0

)(2

0

)(4

0

)(5)(5

0

)) ((11

0

2

0

)(233

0

)(44

0

)(5)(5

0

))

E

1

�!

((1234)(1

0

3

0

)(2

0

)(4

0

)(5)(5

0

) (1

0

1

00

2

00

)(2

0

3

0

3

00

)(4

0

4

00

)(5

0

)(5

00

))

Q

�! ((1234)(1

0

3

0

1

00

2

00

3

00

2

0

)(4

0

4

00

)(5)(5

0

)(5

00

))

! ((1234)(1

00

2

00

3

00

)(4

00

)(5)()(5

00

))! Q : ((1234)(1

0

2

0

3

0

)(4

0

)(5)(5

0

)):

The qui
kest way to see this is with the pi
ture - �gure 1. There are some other pi
torial

examples in se
tion 5.1.

Note that C = C((A;B)) is su
h that

i �

C

j

0

iff 9 sequen
e k

1

; k

2

; :::; k

2l+1

2M s:t:

i �

A

k

0

1

and

k

2p�1

�

B

k

2p

k

0

2p

�

A

k

0

2p+1

for p = 1; 2; :::; l , and

k

2l+1

�

B

j

0

(a sequen
e of length 1, i.e. l = 0, is allowed); and

i �

C

j iff i �

A

j or 9 sequen
e k

1

; k

2

; :::; k

2l+1

2M s:t:

i �

A

k

0

1

and

k

2p�1

�

B

k

2p

k

0

2p

�

A

k

0

2p+1

for p = 1; 2; :::; l , and k

0

2l

�

A

j

and similarly

i

0

�

C

j

0

on inter
hanging A;B and primed and unprimed in the above `
onne
ted path'.

Proposition 1 The produ
t P is asso
iative.

Proof: Let us drop, for the moment, the expli
it distin
tion between primed and unprimed elements

of M , but rather say that if an element a appears in both A and B in a produ
t AB then it is to

be understood primed in A. Then a �

A(BC)

b implies that there exists a sequen
e

i

1

; i

2

; :::; i

k

su
h that

a �

A

i

1

i

1

�

B

i

2

i

2i

�

A or C

i

2i+1

i

2i+1

�

B

i

2i+2

i

2k+2

�

C

b

whi
h in turn implies a �

(AB)C

b, and vi
e versa. QED.

De�nition 10 (Partition algebra) Considering the ve
tor spa
e over K spanned by S

2n

, the

linear extension of the produ
t P gives us a �nite dimensional algebra over K whi
h we 
all the

partition algebra P

n

(Q).
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3 Relationship of P

n

(Q) to Full Temperley-Lieb Algebra

There are several realisations of the in
lusion

P

n�1

(Q) � P

n

(Q):

De�nition 11 The natural in
lusion S is de�ned by

0! P

n�1

S

! P

n

S : ((:::):::(::)) 7! ((:::):::(::)(nn

0

)): (13)

It is 
onvenient to introdu
e the following spe
ial elements of the partition algebra:

1 = ((11

0

)(22

0

):::(nn

0

)) (14)

1

ij

= ((11

0

)(22

0

)::(ij

0

)::(ji

0

)::(nn

0

)) i; j = 1; 2; ::; n (15)

A

i:

=

1

p

Q

((11

0

)(22

0

):::(i)(i

0

):::(nn

0

)) (16)

A

ij

=

p

Q ((11

0

)(22

0

):::(iji

0

j

0

):::(nn

0

)): (17)

Proposition 2 These elements generate P

n

(Q).

Proof: (by indu
tion on n) The proposition is true in 
ase n = 1. Let us assume true for n = k�1,

then show that all possible extensions of the partitions of 1; 2; :::; k � 1; 1

0

; 2

0

; :::(k � 1)

0

to in
lude

k; k

0


an be built using these spe
ial elements. Note that the set of spe
ial elements for P

k�1

are

(formally) a subset of those for P

k

. For ea
h A 2 P

k�1

we then have S(A) 2 P

k

with the same

expression as a word in the spe
ial elements, but given in full by ((:::):::(::)(kk

0

)) (
.f. equation 13).

We will show that this subset of P

k


an be extended to the whole set by using the extra spe
ial

elements.

There are various 
ases to 
onsider for the parts 
ontaining k; k

0

. In what follows we omit 
ases

obviously 
onsequent on symmetry grounds:


ase 1: parts of the form

(:::(::akk

0

)) = A

ak

(:::(::a)(kk

0

))


ase 2:

(:::(::ak)(::b

0

k

0

)) = A

ak

A

k:

(:::(::a)(::b

0

)(kk

0

))A

bk


ase 3:

(:::(::a

0

k)(::b

0

k

0

)) = (:::(::a

0

)(::b

0

)(kk

0

))A

ak

A

k:

A

bk


ase 4:

(:::(a

0

1

a

0

2

:::a

0

i

k)(b

1

b

2

:::b

j

k

0

)) = A

b

1

b

2

1

bk

(:::(a

0

2

a

0

3

:::a

0

i

)(b

2

b

3

:::b

j

)(a

0

1

b

1

)(kk

0

))A

a

1

a

2

:

QED.

It follows that 1; 1

ii+1

(i = 1; 2; :::; n� 1); A

1:

; A

12

generate P

n

(Q).

8



De�nition 12 For A 2 P

n

let [A℄ denote the maximum number of distin
t parts 
ontaining both

primed and unprimed elements, over the S

m

basis elements with a non-zero 
oeÆ
ient in A.

For example [1℄ = n, [A

i:

℄ = n� 1. Then

Corollary 2.1 For A;B 2 P

n

[AB℄ � min([A℄; [B℄):

Proof: It is suÆ
ient to 
he
k for the 
ases where B is one of the spe
ial elements.

Proposition 3 There is a homomorphism from the Full Temperley-Lieb algebra to the partition

algebra given by

H : T

n

(Q)! P

n

(Q)

H : 1 7! 1

H : U

i:

7! A

i:

H : U

ij

7! A

ij

:

Proof: Without loss of generality we may 
onsider for example,

((11

0

)(22

0

)::(i)(i

0

)::(nn

0

)) ((11

0

)(22

0

)::(i)(i

0

)::(nn

0

)) =

((11

0

)(22

0

)::(i)()(i

0

)::(nn

0

)) = Q ((11

0

)(22

0

)::(i)(i

0

)::(nn

0

))

and

( ((11

0

)(22

0

)::(i)(i

0

)::(nn

0

)) ((11

0

)(22

0

)::(ii

0

jj

0

)::(nn

0

)) ) ((11

0

)(22

0

)::(i)(i

0

)::(nn

0

))

= ((11

0

)(22

0

)::(i)(i

0

jj

0

)::(nn

0

)) ((11

0

)(22

0

)::(i)(i

0

)::(nn

0

))

= ((11

0

)(22

0

)::(i)(i

0

)::(nn

0

)):

We leave it as an exer
ise to 
he
k other relations (4) and (6).

Proposition 4 (see [3℄) The subalgebra of P

n

(Q) generated by

< 1; A

i:

(i = 1; 2; ::; n); A

ii+1

(i = 1; 2; ::; n� 1) >

is isomorphi
 to T

A

n

(Q).

De�nition 13 For given n we de�ne �

n

as the subalgebra of P

n

(Q) generated by

< 1; 1

ij

(i; j = 1; 2; :::; n) >

or, where appropriate, as the 
orresponding symmetri
 group.

9



4 General results for P

n

(Q)

4.1 Full embedding of P

n�1

in P

n

It is a useful feature of these algebras that we 
an largely determine the representation theory of

P

n

(Q) in terms of P

n�1

(Q) and the symmetri
 group (and hen
e indu
tively from the trivial 
ase

P

0

(Q) = CI). We will need the following simple but surprisingly powerful theorem:

Theorem 1 For ea
h n, Q 6= 0 and idempotent e = e

n

= A

n:

=

p

Q there is an isomorphism of

algebras

e

n

P

n

e

n

�

=

P

n�1

:

Proof:

Note that partitions in e

n

P

n

e

n

(ignoring fa
tors of

p

Q for the moment) 
an be thought of as

partitions of P

n�1

extended by the presen
e of (n)(n

0

) as isolated parts. The map I from left to

right is to simply ignore these parts

I : ((:::):::(::)(n)(n

0

)) 7! ((:::):::(::)): (18)

This is manifestly an inje
tion. That it is a surje
tion 
omes from 
onsidering the image of

e

n

P

n�1

e

n

, noting that e

n

and P

n�1


ommute. It also follows from this that the multipli
ation is

preserved.

Corollary 1.1 The 
ategory of left P

n�1

modules is fully embedded in the 
ategory of left P

n

modules. That is, there exist fun
tors

(P

n�1

�mod)

G

�! (P

n

�mod)

F

�! (P

n�1

�mod)

su
h that FG is the identity map on (P

n�1

�mod).

Proof:

This is a standard result in 
ase theorem 1 holds [15, 16℄. There is then a standard fun
tor

F : (P

n

�mod)! (P

n�1

�mod) (19)

with obje
t map

F :M 7! e

n

M

and morphism map 
onstru
ted as follows. Suppose  is a morphism in (P

n

�mod):

 :M !  (M)

 : y 7!  (y);

then

F ( ) : e

n

y 7! e

n

 (y)

(the reader will readily 
on�rm that 
omposition of morphisms is preserved). Similarly we have

G : (P

n�1

�mod)! (P

n

�mod)

10



with set map

G : N 7! P

n

e

n




P

n�1

N

and morphism map

G(�) : xe

n


 z 7! xe

n


 �(z):

We leave it as an exer
ise to 
he
k that FG a
ts as the identity fun
tor on the appropriate 
ategory.

For example, understanding by I(e

n

xe

n

) its image under the isomorphism in the full embedding

theorem

F (G(�)) : (e

n

xe

n

)
 z 7! (e

n

xe

n

)
 �(z)

�

=

�(I(e

n

xe

n

)z)

(we have used that � is a morphism of left P

n�1

modules). QED.

Similarly

GF (M) = P

n

e

n

M

and

G(F ( )) : xe

n




P

n�1

e

n

y 7! xe

n


 e

n

 (y)

�

=

 (xe

n

y):

These give us the range of GF , whi
h will tell us (in Proposition 6) whi
h pie
es of information

about the regular representation we are missing from P

n

in G(P

n�1

). These 
an then be added by

expli
it 
omputation.

Some of the power of this result will be revealed when we apply it, in se
tion 6.2.2. It is also

useful in analysing the non-generi
 
ases, whi
h we will dis
uss elsewhere [10℄.

Let us denote by F

n

(M) = e

n

M the obje
t map from the isomorphism of 
ategories in the

above 
orollary at level n (equation 19).

Proposition 5 Let f

n

be the obje
t map of 
ategories de�ned by restri
tion of left P

n

modules to

left P

n�1

modules through the in
lusion S,

f

n

: (P

n

�mod)! (P

n�1

�mod)

f

n

:M 7!

P

n�1

#M:

Then the following diagram of obje
t maps of 
ategories 
ommutes:

(P

n

�mod)

F

n

�! (P

n�1

�mod)

f

n

# #

f

n�1

(P

n�1

�mod)

F

n�1

�! (P

n�2

�mod)

: (20)

Proof:

We must show that for ea
h left P

n

module M

P

n�2

#e

n

M

�

=

e

n�1

P

n�1

#M

that is

e

n

M

�

=

e

n�1

M

11



is an isomorphism of left P

n�2

modules. But this follows from the observation that the de�nitions

of P

n

and P

n�2

are both una�e
ted by the inter
hange of labels n and n� 1. QED.

The 
ommutative diagram 20 may be extended to a diagram of fun
tors.

Proposition 5 implies that, up to edge e�e
ts 
aused by the di�eren
e between P

n

and P

n

e

n

P

n

,

the Bratteli restri
tion diagram for the algebras P

n

(see se
tion 6.2.2 onwards) has the same

stru
ture on ea
h level n. But then

Proposition 6 The following is a short exa
t sequen
e of algebras

0! P

n

eP

n

! P

n

! �

n

! 0:

Proof:

Clearly we have an inje
tion P

n

=P

n

e

n

P

n

! �

n

, the group algebra of the symmetri
 group on

n obje
ts, sin
e in this quotient A

i:

= A

ij

= 0. That this is surje
tive follows from the 
orollary

to proposition 2 sin
e P

n

e

n

P

n

is spanned by

fA : A 2 S

2n

; [A℄ < ng

QED.

Thus, at least for P

n

semi-simple, a knowledge of the stru
ture of P

n�1

essentially determines

for us the stru
ture of P

n

.

Corollary 6.1 In 
ase P

n

(Q) semi-simple the distin
t equivalen
e 
lasses of irredu
ible represen-

tations may be indexed by the list of all standard partitions of every integer from 0 (understood to

have one standard partition) to n.

Proof: In this 
ase the exa
t sequen
e splits [12℄ and P

n

thus has Cardf� : � ` ngmore irredu
ibles

than P

n�1

.

We will in fa
t show later that P

n

(Q) is semi-simple for Q indeterminate and for all Q 2 CI

ex
ept for the roots of a �nite order polynomial in Q for any �nite n. We will also show that in

any 
ase the same 
lassi�
ation is appropriate for any spe
ialisation of Q 6= 0 (in
luding non-semi

simple 
ases).

We will apply these results repeatedly from se
tion 6.2.2 onwards.

5 Diagram algebra for a graph G

Let us return to proposition 4. More generally we have

De�nition 14 For graph G the Diagram algebra D

G

(Q) is de�ned as the subalgebra of the partition

algebra generated by

< 1; A

i:

(i = 1; 2; ::; n); A

ij

(i; j 2 G) > :

Note that D

n

(Q) � P

n

(Q), as 1

ij


annot be built with these generators. However, under 
ertain


onditions it 
an be substituted, for example,

1

23

A

1:

= A

1:

A

12

A

2:

A

23

A

3:

A

13

A

1:

: (21)
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In fa
t we are more interested here in D

n

(Q) than P

n

(Q) (
ompare proposition 3 with equation 9),

but P

n

(Q) provides a more versatile general setting. We will see shortly that it is straightforward

to move from one to the other.

The relationship between the algebra types T; P and D is summarized by saying that the

diagram

0

#

T

H

1

�! D �! 0

H

& #

H

2

P

is 
ommutative and exa
t at D.

Proposition 7 The subalgebra D

n

(Q) � P

n

(Q) is invariant under 
onjugation by elements of the

group �

n

, i.e.

b

�1

D

n

(Q)b = D

n

(Q) 8b 2 �

n

:

Proof: W.l.o.g. 
onsider b

�1

Ab with A a word in D

n

(Q) and insert 1 = b

�1

b between ea
h letter

of A. This just takes ea
h letter to another letter. Spe
i�
ally, if b is given as a permutation

b : f1; 2; :::; ng ! f1; 2; :::; ng

b : a 7! b(a)

then

b

�1

A

i:

b = A

b(i):

b

�1

A

ij

b = A

b(i)b(j)

(
onsider equations 16 and 17).QED.

Corollary 7.1 Every word in P

n

(Q) 
an be written in the form AB where A 2 �

n

and B 2 D

n

(Q).

Clearly we have an in
lusion stru
ture

G � G

0

) D

G

(Q) � D

G

0

(Q)

as for the Full algebras.

It also follows that D

G

(Q), and indeed P

n

(Q), obeys a number of quotient relations in addition

to the Temperley-Lieb relations. For example, with W 2 D

G

(Q) there exists X(W ) a 
ertain

(known) s
alar fun
tion of Q (see [3℄) su
h that

 

Y

i

A

i:

!

W

 

Y

i

A

i:

!

= X(W )

 

Y

i

A

i:

!

:

Spe
i�
ally, if W 2 S

m

with b

W

parts

X(W ) = Q

b

W

:

This relation is suitable for at least part of the set appropriate for physi
al systems, as it 
orresponds

to the existen
e of disorder at very high temperatures (there is also a dual 
orresponding to order

at low temperatures). At the level of the di
hromati
 polynomial it 
orresponds to isolating b

W


lusters (
.f. [2℄, for example). Several analogous relations have also been found [3℄.
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5.1 Graphi
al realisation of D

G

(Q): Conne
tivities

Here the order of a graph G, written jGj, is the number of nodes.

De�nition 15 For a graph G let B

G

be the set of all (not ne
essarily proper) subgraphs of G of

the same order.

For example, representing graphs by in
iden
e matri
es,

B

�

0 1

1 0

�

=

��

0 1

1 0

�

;

�

0 0

0 0

��

:

Note that elements of B

G

need not be 
onne
ted graphs [2℄.

De�nition 16 For T a natural number we write G�T for the graph G�A

T+1

, and write G�ZZ

for G� T in the limit of large T .

Consider the graph n� T (
.f. �gure 2). Expli
itly number the nodes of the lateral subgraph

n at `time' t = 0 (written (n; 0)) from 1; 2; :::; n and number the nodes of (n; T ) 
orrespondingly

from 1

0

; 2

0

; :::; n

0

. Then introdu
e the map

F

T

: B

n�T

! P

n

(Q)

F

T

: B

o

7! Q

b

B

where B 2 S

m

is su
h that i �

B

j i� i; j (primed, unprimed or mixed) are 
onne
ted by a path

of bonds present in the subgraph B

o

, and b is the number of isolated 
onne
ted 
omponents in B

o

not 
onne
ted to any point in either of the layers t = 0 or t = T . Note that the de�nition of F

T

does not depend on T ex
ept in the domain, so we 
an extend it to a map F on

S

T

B

n�T

. Then

we have a relation � on this new domain de�ned by (a; b) 2 � i� F(a) = F(b). For �nite n there

exists some �nite T beyond whi
h (rangeF

T

)\S

m

does not in
rease.

The range of F

T

does not in
lude the whole of S

m

however large we make T (see the remark

after de�nition 1). We 
an extend to the whole of S

m

by, for example, building our `
onne
tivities'

on n+ 1� ZZ (but only labelling the `�rst' n nodes, see �gure 3).

This 
ompli
ation is 
onne
ted to the nature of the latti
e and the TM formalism, it will be

dis
ussed further in [10℄. In general, di�erent 
hoi
es of G in B

G�ZZ

� B

n�ZZ

, realise di�erent sets

of 
one
tivities, i.e. di�erent ranges for the restri
ted map F(B

G�ZZ

). This is, in fa
t, the essen
e

of the physi
ally important problem of �nding irredu
ible representations of D

G

(Q) (see later, and

[10℄).

We may extend

S

T

B

n+1�T

=� or

S

T

B

n�T

=� to an algebra (over rational fun
tions in Q). We

de�ne a produ
t B

o

: C

o

= (BC)

o

by joining B

o

and C

o

, identifying the layer t = T in B

o

with

t = 0 in C

o

. It is a simple exer
ise to 
he
k that the produ
t is also well de�ned in the quotient �,

whereupon the map F be
omes an algebra homomorphism.

The expli
it pi
torial realization is parti
ularly neat (but suÆ
iently general for illustration) if

we distribute the nodes of n linearly, as in A

n

. Then for example with n = 12 the � 
lass of A

ii+1

has a simple representative with T = 0:
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t

�

��

�
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�

��

�

t t
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�
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t

�
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�

Figure 2: Part of the graph

^

A

3

� ZZ = 3� ZZ.

t t

t

�

��

�

t t

t

�

��

�

t t

t

�

��

�

t t

t

�

��

�

�

�

�

�

2

3

1

2

0

3

0

1

0

Figure 3: Diagram for the 
onne
tivity 1

12

U

3:

= ((12

0

)(21

0

)(3)(3

0

)) whi
h restri
ts to 1

12

for n = 2.
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A

i i+1

=

p

Q  s s s s s s s s s s s s

i

The � 
lass of A

i:

has T = 1 representative

p

Q A

i:

 s s s s s s s s s s s s

s s s s s s s s s s s s

i

The 
omposition rule is to identify the top row of dots in the se
ond diagram with the bottom

row in the �rst. Clusters then isolated from both top and bottom rows of the new diagram so

formed may be removed, 
ontributing a fa
tor Q.

Finally, then, for example, the TL relation 5

A

i i+1

A

i:

A

i i+1

= A

i i+1

amounts to the statement that the subgraph

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

i

has the same list of 
onne
tions within and between the top and bottom layers as the � represen-

tative of A

i i+1

above.

Note that no 
omposition of diagrams in
reases the number of distin
t 
onne
ted 
lusters


onne
ting between the top and bottom layers (
.f. 
orollary 2.1). This means that the subset of

� 
osets with no 
onne
tions top to bottom form a basis for a P

n

(Q) bimodule. Furthermore, the

subset with � p distin
t 
onne
tions top to bottom also form a basis for a P

n

(Q) bimodule (for

p < n).

6 Stru
ture and Representation Theory of P

n

(Q)

6.1 Filtration by ideals

The above pi
ture is parti
ularly useful for envisaging and 
onstru
ting representations. The

number of distin
t 
onne
tions running from t = 0 to t = T is evidently non-in
reasing in any


omposition (it is a measure of the number of distin
t bits of information whi
h 
an be simultane-

ously propagated through the bond 
overing, whi
h 
annot ex
eed the number propagated a
ross

any �xed time sli
e). So for example, writing simply P

n

for P

n

(Q), and de�ning idempotents

I

k

=

Y

i>k

A

i:

p

Q

(Q 6= 0) then I

0

allows no 
onne
tions from t = 0 to t = T , so P

n

I

0

P

n

is the invariant subspa
e of

P

n

where

6 9 A; i; j s:t: i �

A

j

0

:

We thus have
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Proposition 8 For Q 6= 0 the element I

0

is a primitive idempotent.

Re
all that sin
e A� B a proper de
omposition of P

n

I

0

implies I

0

A = I

0

B = 0 (a 
ontradi
tion)

then

Corollary 8.1 The left ideal P

n

I

0

is inde
omposable (and generi
ally simple).

Note that dim(P

n

I

0

) = jS

n

j. Similarly

Proposition 9 The element I

1

is primitive in the quotient algebra P

n

=P

n

I

0

P

n

.

so again P

n

I

1

is inde
omposable in this quotient.

Now I

2

is not primitive in P

n

=P

n

I

1

P

n

sin
e, for example

I

2

1

12

I

2

� 1

12

I

2

6/ I

2

:

On the other hand

(1+1

12

)

2

I

2

and

(1�1

12

)

2

I

2

are primitive idempotents.

Similarly I

3

is not primitive in P

n

=P

n

I

2

P

n

, but, for example

�

�

I

3

=

(1� 1

12

� 1

23

� 1

13

+ 1

12

1

23

+ 1

13

1

23

)

3!

I

3

and two further 
ombinations (with � = (2; 1) symmetries) are.

From the de�nition of I

i

we have P

n

I

i�1

P

n

� P

n

I

i

P

n

and a nest of short exa
t sequen
es of

ideals, i = 1; 2; :::; n

0! P

n

I

i�1

P

n

! P

n

I

i

P

n

! P

n

I

i

P

n

=P

n

I

i�1

P

n

! 0

where �nally I

n

= 1.

De�nition 17 Let us de�ne the algebra P

n

[i℄ = P

n

I

i

P

n

=P

n

I

i�1

P

n

.

This is the algebra of elements with not more than i distin
t 
onne
tions running, as it were, from

t = 0 to t = T , quotiented by the invariant subspa
e of all elements with stri
tly less than i distin
t


onne
tions from 0 to T .

Proposition 10 In the quotient P

n

[i℄

I

i

�

n

I

i

= �

i

I

i

(we take �

0

= �

1

= 1).

Proof: Any element of �

n

not in the subgroup is killed by the quotient.

Re
all that the CI stru
ture of the permutation group is known [21℄. In parti
ular there are

standard 
onstru
tions for primitive idempotents for ea
h � ` i. Then

Corollary 10.1 For � ` i and �

�

an appropriate primitive idempotent of �

i

, then I

i

�

�

is a

primitive idempotent (mod P

n

I

i�1

P

n

).
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Corollary 10.2 The 
lassi�
ation s
heme in 
orollary 6.1 extends to in
lude all non-semi simple

P

n

(Q) ex
ept P

n

(0).

Proof: By 
orollary (10.1) I

i

�

�

indu
es an inde
omposable proje
tive module with a simple in-

variant subspa
e distin
t (be
ause of the P

n

[i℄ quotient) for ea
h �. QED.

Remark: The 
ase P

n

(0) is degenerate rather than ex
eptional in this respe
t, and 
an easily

be dealt with.

Proposition 11 Let � be any left �

i

module. Then we 
an write the left P

n

[i℄ module

P

n

(Q) (I

i

�) = D

n

(Q) (I

i

�)

Proof: By proposition 7

P

n

I

r

� = �

n

D

n

I

r

�:

For ea
h word BA(I

r

�) on the right there are three 
ases to 
onsider for ea
h letter in B, moving

from right to left. Firstly, the letter permutes nodes isolated (in the 
onne
tivity sense) from � by

the word AI

r

: In this 
ase its e�e
t 
an be ignored, e.g.

1

12

A

1:

A

2:

= A

1:

A

2:

:

Se
ondly, the letter permutes nodes neither of whi
h is isolated by AI

r

: Again the e�e
t 
an be

ignored, as

1

12

I

r

� = I

r

1

12

� = I

r

�:

Thirdly, the letter permutes an isolated and a non-isolated node. In this 
ase there exists an

alternative formulation of the word where that letter is repla
ed by letters not in �

n

, for example

1

12

A

2:

A

3:

= A

1:

A

12

A

2:

A

3:

;

1

13

A

2:

A

3:

= A

2:

A

23

A

1:

A

12

A

2:

A

3:

(note that the alternative formulation is not usually unique). More generally, suppose that the

letter is 1

ij

with i isolated and j not, then as i is isolated we 
an always arrange it so that 1

ij

appears here in the 
ombination 1

ij

A

i:

. But

1

ij

A

i:

= A

j:

A

ij

A

i:

:

QED.

6.2 Expli
it 
onstru
tion of irredu
ible representations:

Our pro
edure is to dise
t the regular representation of P

n

(Q) provided by S

m

, using I

i

�

�

from


orollary 10.1. That is, we form bases from S

m

I

i

�

�

. There are three stages:

1. The presen
e of I

i

says: dis
ard all but partitions of the form (::::((i+1)

0

)((i+2)

0

):::(n

0

):::);

2. The quotient says: dis
ard all but partitions in whi
h the remaining primed elements

(1

0

; 2

0

; :::; i

0

) ea
h appear in a distin
t part, and together with at least one unprimed element;
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3. The �

�

says: form ea
h basis state from a 
ertain linear 
ombination of elements of the

subset of the remaining partitions whi
h are related by simple permutation of the primed elements.

Ea
h su
h subset 
ontains i! elements (all possible arrangements of the primed elements). In ea
h

su
h subset, on
e we 
hoose an arrangement to 
all the identity permutation, then we have a basis

for the regular representation of �

i

. The a
tion of �

�

is to proje
t from this onto a basis for

the � irredu
ible representation (i.e. altogether dim(�

i

�

�

) linear 
ombinations will survive - an

invariant subspa
e of �

i

- from ea
h subset).

Let us �rst 
onsider the fully symmetrized 
ase for the left �

i

module in proposition 11, 
all it

�

s

, in ea
h se
tor i (i.e. �

s

= �

�

for � = (i) ` i so P�

s

= �

s

for all P 2 �

i

). Then we get a basis

for the left P

n

[i℄ module P

n

I

i

�

s

from a generalisation of the set S

m

as follows. List the elements

as partitions of 1; 2; :::; n, ignoring 1

0

; 2

0

; :::; n

0

ex
ept in so far as to note whi
h parts originally


ontained primed elements (we may mark them with a prime outside the bra
ket - (M

i

)

0

). Now

dis
ard dupli
ate 
opies of partitions not distinguished by this property, and partitions in whi
h

other than i parts originally 
ontained primed elements. We 
all the resultant set S

n

(i) (see also

se
tion 7.1). For example,

S

2

(1) = f((12)

0

); ((1)

0

(2)); ((1)(2)

0

)g:

We do not need to keep tra
k of exa
tly whi
h unprimed nodes were 
onne
ted to whi
h primed

nodes here, sin
e the symmetriser makes all these permutations equivalent. In other words the set

S

n

(i) is the set of all possible ways of arranging the elements of S

n

(
.f. S

m

= S

2n

) so that i parts

are distinguished from the rest. An element of S

n

with p � i parts produ
es p!=((p� i)!i!) elements

of the basis S

n

(i) (and produ
es none if p < i). Note that

n

X

i=0

jS

n

(i)j = 2

n

jS

n

j: (22)

The a
tion of the generators on su
h a basis is just the usual produ
t from equation 12 pulled

through from the regular representation (remembering the P

n

[i℄ quotient, and that primed parts

beget primed parts [3℄ e.g.

p

QA

1:

((12)

0

) = ((1)(2)

0

)). We will prove irredu
ibility of these repre-

sentations in se
tion 6.2.2.

Moving to the 
ase where we take some other left �

i

module in proposition 11, then our S

n

(i)

basis must simply be (semi) dire
t produ
ted with a basis for this new module (rule 3). Some

permuting a
tions will a
t on the primes and hen
e on the �

i

module rather than, or as well

as, the partitions. There is usually an ambiguity in the 
hoi
e of an identity permutation here,


orresponding to a basis 
hange in the eventual representation. We will resolve it, for the sake

of de�niteness, by labelling primes in a standard order (details of a standard order are given in

se
tion 7.1). If an a
tion 
hanges the order then this permutation a
ts on �. For example, for the

i = 2 antisymmetriser �

�

= �

(1

2

)

7! 1� �

12

(the permutation a
tion of �

12

is on the primes with

respe
t to the standard order, not on the elements of M) and S

2

(2) we have (single element) basis

S

2

(2)�

(1

2

)

= f(((11

0

)(22

0

))� ((12

0

)(21

0

)))g

so

1

12

(((11

0

)(22

0

)) � ((12

0

)(21

0

))) = �(((11

0

)(22

0

)) � ((12

0

)(21

0

)))

gives the representation R

(1

2

)

(1

12

) = �1.
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6.2.1 The 
ase n = 3

We 
an well illustrate all of the above points with an extended example. Let us 
onsider n = 3.

The available partition shapes � in S

6

are:

(6); (5; 1); (4; 2); (3

2

); (4; 1

2

); (3; 2; 1); (2

3

); (3; 1

3

); (2

2

; 1

2

); (2; 1

4

); (1

6

)

with 
orresponding multipli
ities D

�

:

1; 6; 15; 10; 15; 60; 15; 20; 45; 15; 1

giving total dimension jS

6

j = 203.

On the other hand the dimensions of the bases des
ribed above are

5; 10; 6 dim(�

2

); 1 dim(�

3

)

i.e., expli
itly, the bases are

f((123) : ;); ((12)(3) : ;); ((13)(2) : ;); ((23)(1) : ;); ((1)(2)(3) : ;)g;

f(; : (123)); ((12) : (3)); ((3) : (12)); ((13) : (2)); ((2) : (13));

((23) : (1)); ((1) : (23)); ((1)(2) : (3)); ((1)(3) : (2)); ((2)(3) : (1))g;

f(; : (12)(3)); (; : (23)(1)); (; : (2)(13)); ((1) : (2)(3)); ((2) : (1)(3)); ((3) : (1)(2))g � �

�

f(; : (1)(2)(3))g � �

3

where all parts to the right of the 
olon are to be understood primed (
.f. [3℄).

In full the S

3

(2)�

�

basis may be written

f(((121

0

)(32

0

))� ((122

0

)(31

0

))); (((232

0

)(11

0

))� ((231

0

)(12

0

)));

(((22

0

)(131

0

))� ((21

0

)(132

0

))); (((1)(21

0

)(32

0

))� ((1)(22

0

)(31

0

)));

(((2)(11

0

)(32

0

))� ((2)(12

0

)(31

0

))); (((3)(11

0

)(22

0

))� ((3)(12

0

)(21

0

))) g

so for example the representation of 1

12

is

R

(1

3

)

(1

12

) =

0

B

B

B

B

B

B

�

1 0 0 0 0 0

0 0 �1 0 0 0

0 �1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 �1

1

C

C

C

C

C

C

A

:

Finally, then, noting the multipli
ities of inequivalent generi
ally irredu
ible representations at

level i we have

5

2

+ 10

2

+ 6

2

:(1 + 1) + 1

2

:(1 + 2

2

+ 1) = 203 (23)

whi
h 
oin
ides with the total dimesion, so we have, for example, the 
omplete set of inequivalent

irredu
ible representations for the semi-simple 
ases. Note that all the i = 3 representations

redu
e to (dire
t sums of) the same representation in D

n

(Q), be
ause none of the permutations


an a
tually be realized in this subalgebra.
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6.2.2 The `algebra' P

�

n

(Q)

Sin
e we know the stru
ture of the symmetri
 group (algebra) �

i

(see, for example, [20, 21℄) it

behoves us to divide up our analysis by �rst 
onsidering the `
ompletely �-symmetrised algebra',

P

�

n

(Q), whi
h we de�ne below (and in whi
h the symmetri
 group e�e
t is quotiented out). The

rest will then follow from 
hanging the left �

i

module in propostion 11.

De�nition 18 We de�ne an equivalen
e relation � on S

m

by A � B i� they are the same up to

a permutation of the 
onne
tions made by the 
onne
tivities from t = 0 (unprimed elements) to

t = T (primed).

That is to say, if A � B then the 
onne
tions amongst unprimed nodes are the same, the 
onne
-

tions amongst primed nodes are the same, the number of instan
es of primed and unprimed nodes

in the same part are the same, and the subset of nodes in su
h mixed parts is the same. So in 
ase

of two parts in a partition having both primed and unprimed nodes, the primed nodes in one 
an

be swapped for the primed nodes in the other without 
hanging the � equivalen
e 
lass. We will

give an alternative de�nition later.

We write P

�

n

= P

n

(Q)= � for the `quotient' obtained by the linear extension to P

n

(Q).

In this 
ase there is a Dira
 bra-ket notation for �-
osets of S

m

. Every 
oset may be written

uniquely in the form ja >< bj where a; b 2 S

n

(i) for some i (
onversely every su
h pair de�nes a

unique 
oset). There is then an inner produ
t < bj
 > in ea
h P

n

[i℄= �, obtained from

ja >< bjj
 >< dj =< bj
 > ja >< dj: (24)

Note that the inner produ
t is symmetri
. In the sense of equation 24 the set S

n

(i) forms a basis

for a representation of P

n

[i℄= �, and hen
e of P

n

(Q)= � and of P

n

(Q).

Proposition 12 The n + 1 representations of P

n

(Q)= � with bases S

n

(i) (i = 0; 1; 2; ::; n) and


anoni
al a
tion (up to the P

n

I

i�1

P

n

quotient) are ea
h irredu
ible, ex
ept at the roots of a �nite

order polynomial in Q.

Outline proof: For all b 2 S

n

(i) the power of Q given by < bjb > is not ex
eeded by any < bj
 >;

and there exists at least one b su
h that < bjb > is the unique maximum power of Q for any < bj
 >

(spe
i�
ally any b of exa
tly n parts, for whi
h < bjb >= Q

n�i

). It follows that the determinant of

the Gram matrix [17, 18℄ is polynomial in Q with 
oeÆ
ient of the leading power unity. Therefore

the inner produ
t is non-degenerate and the Gram matrix is simple in 
ase Q is an indeterminate.

Taken with the outer produ
t also impli
it in equation 24 this ensures that the representation

with basis fja >: a 2 S

n

(i)g is surje
tive, sin
e there exists another basis fj� >g (say) for whi
h

< �j� >= Æ

��

so that fj� >< �j : �; � 2 S

n

(i)g is a 
omplete set of elementary matri
es. QED.

Corollary 12.1 These representations are inequivalent.

We will abuse the symbol for the set S

n

(i) to denote also the left P

n

(Q) module it spans.

Corollary 12.2 Any representation of P

n

(Q) built from proposition 11 with � an irredu
ible �

i

module is irredu
ible for Q indeterminate.
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Corollary 12.3 P

n

(Q) is semi-simple for Q indeterminate and for all Q 2 CI ex
ept for the roots

of a �nite order polynomial in Q for any �nite n.

Proof: We have at least two proofs! Firstly, by noting that ea
h of a 
omplete set of inde
omposable

proje
tive modules is in fa
t simple (the above proposition taken with 
orollary 1.1). Se
ondly, by


ounting and 
ombinatori
s: the irredu
ible representations a

ount for the full dimension of the

algebra. We will show this expli
itly in the next se
tion. Thirdly, by another 
ounting argument -

see se
tion 5.

The Bratelli diagram for the restri
tion 
orresponding to P

�

n

(Q) � P

�

n�1

(Q) on these irredu
ible

representations is as follows, with top line n = 0, and leftmost 
olumn i = 0 (i.e. generated by

I

0

for ea
h n). We write only the dimension for ea
h module, thus starting with P

0

= CI , then

P

1

= CI 1�CI U

1:

, we have

1

" -

1 1

" -% "" -

2 3 1

" -% "" -%% """ -

5 10 6 1

" -% "" -%% """ -%%% """" -

15 37 31 10 1

" -% "" -%% """ -%%% """" -%%%% """"" -

52 151 160 75 15 1

" -% "" -%% """ -%%% """" -%%%% """"" -%%%%% """""" -

203 674 856 520 155 21 1

(25)

and so on. These restri
tions are for
ed by proposition 5 - 
.f. [3℄. To see this note that the

morphism of 
ategories in the 
orollary to theorem 1 takes a layer of the above diagram to the

layer below it (ea
h node is mapped verti
ally down, sin
e the idempotent e

n


uts at most one


onne
tion, e.g. e

2

P

2

e

1

e

2

! P

1

e

1

and P

2

e

2


 P

1

e

1

! P

2

e

1

e

2

). The 1 at the right hand side

of the lower layer is missing in this map, of 
ourse, as this is the trivial representation of �

n

.

Consequently (i.e. as a kno
k on e�e
t from the previous layer) the restri
tion information for

the next two modules to the left - S

n

(n � 2) and S

n

(n � 1) - is in
omplete. However, the only

possibility is for the restri
tions to in
lude some 
opies of the trivial representation, and these may

be �lled in by dimension 
ounting (we know the dimensions of all S

n

(i), as we will see shortly) or

by noting that, with Id

k

the k � k identity matrix denoting multipli
ity k,

n�1

# S

n

(n� 1) = Id

n




trivial representation

z }| {

S

n�1

(n� 1) �S

n�1

(n� 2)
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(the multipli
ity n o

urs sin
e there are n�1 ways in whi
h the n

th

node 
an be in a primed part

in S

n

(n� 1), and one way in whi
h it 
an be in an unprimed part on its own) and

n�1

# S

n

(n� 2) =

(Id

n�1


 S

n�1

(n� 1))� (Id

n�1


 S

n�1

(n� 2))� S

n�1

(n� 3): (26)

For example, omitting node 3 in S

3

(2) we get

f((1)

0

(23)

0

); ((12)

0

(3)

0

); ((13)

0

(2)

0

); ((1)

0

(2)

0

(3)); ((1)

0

(2)(3)

0

); ((1)(2)

0

(3)

0

)g

! f((1)

0

(2)

0

); ((12)

0

); ((1)

0

(2)

0

); ((1)

0

(2)

0

); ((1)

0

(2)); ((1)(2)

0

)g = S

2

(1) + 3:S

2

(2):

Note again that in omitting the last node (n) in this mnemoni
 if we have a part of the form

(ij:::mn) (i.e. unprimed) then this maps to (ij:::m)

0

, sin
e the a
tion of generators here is as if the

part is 
onne
ted to something!

We may generate bases for the representations in a row of equation 25 from those in the pre
eed-

ing row in su
h a way that the intertwiner between representations 
orresponding to equation 26 is

lower unitriangular (
.f. [18, 19℄). The rules for using basis states from S

n�1

(i) to 
onstru
t basis

states at level n are:

1.(down left, i.e. to i � 1) take a primed bra
ket, put in element n and remove the prime

(generates i new states from ea
h state);

2.(down, i.e. to i) add (n) or insert n into any primed bra
ket (i + 1 new states from ea
h

state);

3.(down right, i.e. to i+ 1) add (n)

0

.

It follows from our restri
tion rules that this 
onstru
tion preserves the restri
tion subblo
ks in

the order of equation (26), but with some additional entries below the blo
k diagonal. The �rst

few bases are then as below (we have indented 
olumns to indi
ate the separation into restri
tion

subblo
ks):

(;)

((1)) ((1)

0

)

((1)(2)) ((1)(2)

0

) ((1)

0

(2)

0

)

((12)) ((1)

0

(2))

((12)

0

)

((1)(2)(3)) ((1)(2)(3)

0

) ((1)(2)

0

(3)

0

) ((1)

0

(2)

0

(3)

0

)

((12)(3)) ((12)(3)

0

) ((1)

0

(2)(3)

0

)

((1)(23)) ((1)(2)

0

(3)) ((12)

0

(3)

0

)

((13)(3)) ((1)

0

(2)(3)) ((1)

0

(2)

0

(3))

((123)) ((12)

0

(3)) ((1)

0

(23)

0

)

((1)(23)

0

) ((13)

0

(2)

0

)

((13)

0

(2)

0

)

((123)

0

)

((1)

0

(23))

((13)(2)

0

)

:
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The usefulness of this 
onstru
tion lies in 
omputing determinants of Gram matri
es (and hen
e

ultimately the ex
eptional stru
ture of P

n

(Q)). For example the representation

2

# S

3

(2) is given

by

U

1:

=

0

B

B

B

B

B

B

�

p

Q

0 0

1

p

Q

0 0

0 0 0 0

1

p

Q

0 0 0 0

0 0 0 0 0 0

1

C

C

C

C

C

C

A

;U

12

=

0

B

B

B

B

B

�

0 0

p

Q

0 0

p

Q

0 0

p

Q

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

1

C

C

C

C

C

A

;U

2:

=

0

B

B

B

B

B

B

�

0

0

p

Q

0

1

p

Q

0

0 0 0 0

0 0 0 0 0

0

1

p

Q

0 0 0 0

1

C

C

C

C

C

C

A

(all omitted entries zero) so the intertwiner takes the form

W =

0

B

B

B

B

B

B

�

1

0 1

0 0 1

0 0 0 1

X Y Z � 1

Y X Z � 
 1

1

C

C

C

C

C

C

A

where X =

Q�1

Q(Q�2)

, Y =

1

Q(Q�2)

, X + Y + Z = 0 and the other 
onstants will be determined

shortly. The Gram matrix � for the inner produ
t at n = 3, and the 
omposite matrix �

0

at n = 2

are

� =

0

B

B

B

B

B

B

�

Q 0 1 0 1 0

0 Q 1 0 0 1

1 1 1 0 0 0

0 0 0 Q 1 1

1 0 0 1 1 0

0 1 0 1 0 1

1

C

C

C

C

C

C

A

; �

0

=

0

B

B

B

B

B

B

�

Q 0 1 0 0 0

0 Q 1 0 0 0

1 1 1 0 0 0

0 0 0 A 0 0

0 0 0 0 B 0

0 0 0 0 0 C

1

C

C

C

C

C

C

A

:

The 
onstants A;B;C will be determined, they arise be
ause the irredu
ible inner produ
ts 
on-

tained here (on the diagonal) are only unique up to a s
alar fa
tor (a basis 
hange in general).

Now putting � = W�

0

W

T

we obtain � = � = 1=Q, 
 =

�1

Q�3

and A = Q, B =

(Q�1)(Q�3)

Q(Q�2)

,

C =

(Q�1)(Q�4)

Q(Q�3)

. Altogether det(�) =det(�

0

) = Q(Q � 2)ABC = (Q � 1)

2

(Q � 4). This deter-

minant tells us how the irredu
ible representation 
ollapses at spe
ial values of Q (
.f. [10, 18℄).

Even in this example it is notable that all polynomials fa
torize over the integers.

6.3 General n (general symmetry)

For � ` i let us allow �

�

now to symbolize the whole simple �

i

module asso
iated to the partition

� (
.f. [18, 21, 22, 23℄, say). Then for P

n

(Q) the generi
 simple modules may be realised as

S

n

(i)


i

�

�

where the produ
t is as dis
ussed in se
tions 6.2 and 6.2.1.

The restri
tion rule here is given by
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Proposition 13 For . meaning "one box added to" ([21℄) the restri
tion from P

n

to P

n�1

is

n�1

# (S

n

(i)
 �

�

) =

 

M

�

0

.�

(S

n�1

(i+ 1)
 �

�

0

)

!

�

 

M

�

0

/.�

(S

n�1

(i)
 �

�

0

)

!

�

M

�

0

/�

(S

n�1

(i� 1)
 �

�

0

) : (27)

For example, abbreviating modules on the right to their partitions and denoting multipli
ity 3 by

3:()

#

�

S

n

(3)
 �

(2;1)

�

�

=

(2; 1

2

)� (2

2

)� (3; 1)

M

(1

3

)� 3:(2; 1)� (3)

M

(1

2

)� (2):

Proof: The middle term in equation (27) is present be
ause there are i ways of having node n in a

primed part (so we 
an ignore it ex
ept in as mu
h as it makes that part distinguishable) and one

way of having it in a part on its own - altogether equivalent to indu
tion followed by restri
tion

on the �

�

fa
tor.

The �rst sum is present be
ause if n is in an unprimed part then in the restri
tion this part

behaves as a new primed part. This is be
ause the part is still 
onne
ted to n, so isolating it (from

n) would 
hange the state, as it would if it were a primed part. The symmetri
 group fa
tor thus

moves to �

i+1

, and the � module here is indu
ed from �
2 in the usual way [21℄.

Finally, the last term 
omes from elements in whi
h n is in a primed part alone. Then dis
arding

it a�e
ts the � module just like ordinary one box restri
tion. QED.

Note that this is 
onsistent with the symmetrised quotient 
ase - asso
iated to ea
h of the

entries in 
olumn i of the Bratelli diagram drawn there we have here a representation for ea
h

partition � of i, of dimension jS

n

(i)j:j�

�

j.

As noted in 
orollary 12.3, it follows from theorem 1 that fS

n

(i)


i

�

�

: i = 0; 1; :::; n;� ` ig

is a 
omplete list of generi
 irredu
ibles. We 
an 
he
k this another way - sin
e it is not obvious

that the dimension 
ounting generalising equation 23 works here, but it does! Let us write d

n

(i)

for the dimension of the i

th

representation in row n (the i

th


olumn, 
ounting the left hand 
olumn

as 
olumn 0). Then the total dimension of P

n

(Q) is bounded below by

n

X

i=0

(i)!(d

n

(i))

2

= jS

m

(0)j

( m = 2n). The identity is readily proved - the number of ways of moving along arrows from S

2n

(0)

to S

n

(i) in the Bratelli diagram above is exa
tly i! times the number of ways of moving from position

S

n

(i) to S

0

(0), and the latter number is jS

n

(i)j = d

n

(i). On the other hand jS

m

j = jS

m

(0)j so the

bound is saturated. We thus have the 
omplete stru
ture for all semi-simple 
ases.

Let us go into this in a little more detail. De�ne operators m

d

; h; h

y

on CI

1

by their a
tions on

the standard ordered basis fjii : i = 1; 2; 3; :::g

m

d

jii = ijii
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hjii = ji+ 1i

h

y

jii = ji� 1i (h

y

j1i = 0)

and de�ne M = m

d

+ h and M

0

= m

d

+ h +m

d

h

y

. For example, as an in�nite matrix we have

(with omitted entries zero)

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

1

1 2

1 3

1 4

1 5

1 6

1 7

::: :::

:::

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Then with the usual hij = jii

y

(so hijji = Æ

ij

) we readily see that if

De�nition 19 S

m

[i℄ is the subset of S

m

of elements with i parts

(not the same as S

m

(i), whi
h is not a subset) then

jS

m

[i℄j = hijM

m�1

j1i

(Stirling numbers of the se
ond kind) so that altogether

jS

m

j =

X

i

hijM

m�1

j1i

(these work for any m, not just 2n). Note that as m grows

jS

m+1

j

jS

m

j

is bounded by the largest

eigenvalue of m

d

(i.e. it is unbounded!). Furthermore

d

m

(j) = jS

m

(j)j =

X

i

(i)!

(i� j)!j!

hijM

m�1

j1i

= hj + 1j(M

0

)

m�1

j1i (28)

(this last identity is not so obvious!). In any 
ase, puting j = 0 we get jS

m

j = jS

m

(0)j.

Note that for �xed j the ratio

d

m

(j)

d

m�1

(j)

is unbounded at large m (
.f. the Potts model represen-

tation).

6.4 The stru
ture of D

n

(Q)

In P

n

(Q) the i

th

entry in ea
h row of the Bratelli diagram 25 
orresponds to many representations

(one for ea
h partition of i), The only di�eren
e for D

n

(Q) is that the rightmost (n

th

) entry


orresponds not to one representation for ea
h � ` i, but to a single one dimensional representation.

This arises from the impossibility of any transverse movement of n distin
t 
onne
ted lines on a

graph with only n nodes in ea
h lateral subgraph. All the permutation representations 
ollapse to

dire
t sums of a trivial representation of the identity.
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7 On generalisations of P

n

(Q)

We des
ribe here some of the basi
 building blo
ks of a 
ategori
al version of P

n

(Q). This gen-

eralises the TM formalism to the general `surgery' of partition ve
tors [3℄ on latti
ised manifolds,

whi
h will be developed further elsewhere. It is also useful here for a di�erent perspe
tive on

several earlier de�nitions.

De�nition 20 (`Internalisation') For N �M and K the �eld of rational fun
tions in Q de�ne

In

N

: S

M

! KS

N

(N �M)

by

In

N

: A 7! Q

f(A)

A

0

where A

0

is obtained by deleting all elements of M not in N from A, and f(A) is the number of

empty bra
kets this formally leaves (empty bra
kets are in pra
ti
e omitted from A

0

).

For example, with M = f1; 2g; N = f1g

((1)(2))! ((1)())! Q((1)):

Then with N � M [ P and Ag(A;B) = Q(A [ B) we have a 
omposition P

N

de�ned by


ommutativity of the following diagram:

S

M

� S

P

P

N

�! KS

N

Ag

& S

M[P

In

%

: (29)

The produ
t P of se
tion 2 is the spe
ial 
ase jM j = 2n, jP j = 2n, jM \ P j = n, N =

M [ P �M \ P (jN j = 2n).

In general terms the physi
al interpretation of this 
omposition is as follows. The sets S

M

and

S

P

represent the boundary 
on�guration spa
e bases for two disjoint (Q-state Potts model-like)

statisiti
al me
hani
al systems with spins on their boundaries labelled by the obje
ts of M and P

respe
tively. Aggregation identi�es part of one boundary (possibly empty, in general) with part

of the other, thus 
ombining the two systems. Internalisation then removes this part from the

boundary to the interior (in 
ase N =M \ P ) or, more generally, removes some other part to the

interior. This is the TM 
omposition generalised to the partition ve
tor [3℄ formalism.

The above 
onstru
tion is for the 
ase in whi
h ea
h boundary subgraph of the statisti
al

me
hani
al latti
e is the 
omplete graph for the boundary nodes. The main physi
al interest


omes in restri
ting this, and also the interior of the latti
e, to sparser (e.g. hyper
ubi
al) graphs

- 
.f. [10℄.

7.1 Outer and Inner produ
ts on S

m

(i) and S

m

Re
all that S

m

(i) is the set of possible ways of atta
hing a distinguishing mark to ea
h of any i of

the parts of ea
h element of S

m

. For example

S

3

(2) = f((12)

0

(3)

0

); ((13)

0

(2)

0

); ((1)

0

(23)

0

); ((1)

0

(2)

0

(3)); ((1)

0

(2)(3)

0

); ((1)(2)

0

(3)

0

)g:
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De�nition 21 For N �M de�ne a variation on internalisation

In

0

N

: S

M

!

[

i

S

n

(i)

where In

0

N

(A) is obtained by �rst (as a formal intermediate step) repla
ing every element in A

not in N by a dot, then dis
arding every part 
onsisting purely of dots, then priming ea
h part


ontaining at least one dot.

For example, with M = f1; 2; 3; 4g; N = f1; 2g

((13)(2)(4))! ((1:)(2)(:))! ((1)

0

(2)):

Let us de�ne a standard form for writing out a partition in S

m

or S

m

(i), i.e. a standard order

for the obje
ts in a part and the parts in a partition. The �rst will be the usual natural order of

the natural numbers, the se
ond will be the order obtained by writing out the part 
ontaining 1

�rst, then the part 
ontaining the lowest number not 
ontained in the �rst part, and so on (e.g.

((123)(49)(578)(6))

is in standard form).

Let us de�ne a series of maps. Firstly

De�nition 22 (`Expansion') For P a permutation of f1; 2; :::; ig de�ne

Ex

P

: S

m

(i)! S

m+i

(30)

by

Ex

P

: a 7! A

where A is the partition obtained from a by inserting element m + P (k) into the k

th

primed part

(when written in the standard form).

For example, for the trivial permutation P = 1 we have

Ex

1

((123)

0

(4)(56)

0

)) = ((1237)(4)(568)):

Note that

In

0

M

(Ex

P

(a)) = a:

Now 
onsider S

I\J

where I \ J = ;, then ea
h A 2 S

I\J

indu
es a relation R(A) � I � J via

(a; b) 2 R(A) i� a �

A

b.

De�nition 23 (`Proje
tion') De�ne

Pr : S

I[J

! K�

i

by

A 7! Pr(A)

where Pr(A) = R(A) if R(A) is an isomorphism and Pr(A) = 0 otherwise.
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Note that in order to have a 
on
rete realisation of R(A) 2 �

i

we need to adopt an isomorphism

to a
t as identity. In pra
ti
e there is usually a natural 
hoi
e (see later).

For example if I = f1; 2g; J = f1

0

; 2

0

g then the identity isomorphism might as well take i 7! i

0

so

Pr(((12

0

)(21

0

))) = (12); P r(((1)(1

0

)(22

0

))) = 0

where (12) means the permutation in 
y
le notation (not an element of S

m

!).

We then de�ne an inner produ
t on S

m

(i)

S

m

(i)� S

m

(i)! K

(a; b) 7! hajbi (31)

by the 
omposite map

S

m

(i)� S

m

(i)

Ex

1

�Ex

1

�! S

M[I

� S

M[J

Ag

! S

M[I[J

In

! KS

I[J

1�Pr

�! K�

i

! K

where in the se
ond 
artesian produ
t we want to distinguish the sets I and J , both ne
essarily

of order i, su
h that I \ J = ;, but not distinguish the �rst and se
ond o

uren
e of the set M .

It is notationally 
onvenient to take J = I

0

(i.e. i

0

2 J i� i 2 I). The Pr map is present to take

a

ount of the irredu
ible representation �ltration quotient (see later).

For example

((12)(3)

0

)� ((1)

0

(23)) 7! ((12)(34))� ((14

0

)(23)) 7! ((12344

0

)) 7! ((44

0

)) 7! 1:1

(in the se
ond expression we have distinguished I and J by a prime on elements of J , as suggested

above) and

((1)(2)(3)

0

)� ((1)

0

(2)(3)) 7! ((1)(2)(34))� ((14

0

)(2)(3))

7! ((14

0

)(2)(34)) 7! ((4

0

)()(4)) = Q ((4

0

)(4)) 7! Q:0 = 0:

We de�ne an Outer produ
t for ea
h P 2 �

i

Out

P

: S

m

(i)� S

m

(i)! S

M[M

0

(a; b) 7! jai

P

hbj (32)

where M and M

0

are disjoint of order m, by the 
omposite map

S

m

(i)� S

m

(i)

Ex

1

�Ex

P

�! S

M[I

� S

M

0

[I

Ag

! S

M[M

0

[I

In

! S

M[M

0

:

Note that Out

P

is inje
tive. The ranges of Out

P

for ea
h P and i are manifestly disjoint. The

union over all these disjoint ranges is S

2m

. This is proved by the same 
ounting argument as for

the irredu
ible representations.
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There is a generalisation of the outer produ
t to S

m

(i)�S

n

(i) with m 6= n. This is more easily


onstru
ted in reverse, so....

Conversely, for any partition of set M into two disjoint subsets N;R (not ne
essarily of the

same order) there is a map from

S

M

!

[

i

[

P2�

i

S

n

(i)� S

r

(i)� P

given by

A 7! (In

0

N

(A); In

0

R

(A); P )

where P is the isomorphism from primed parts of In

0

N

(A) to primed parts of In

0

R

(A) realised by

A.

This is the inverse of the outer produ
t.

We note the 
apa
ity for a diadi
 form for the produ
t P

N

de�ned in the previous subse
tion

(but with a �ltration quotient in operation)

jai

P

hbj:j
i

P

0

hdj = hbj
i jai

PR(A)P

0

hdj

where R(A) is as in the de�nition of the inner produ
t.

Here are a 
ouple of all singing all dan
ing examples:

A = ((12)(31

0

2

0

5

0

)(44

0

)(566

0

)(3

0

)) 7! j((12)(3)

0

(4)

0

(56)

0

)i

1

h((125)

0

(3)(4)

0

(6)

0

)j

B = ((1)(2)(341

0

)(54

0

6

0

)(62

0

3

0

5

0

)) 7! j((1)(2)(34)

0

(5)

0

(6)

0

)i

(23)

h((1)

0

(235)

0

(46)

0

)j

but

h((125)

0

(3)(4)

0

(6)

0

)jj((1)(2)(34)

0

(5)

0

(6)

0

)i 7! 1:(12)

so altogether we have (with permutation 1:(12):(23) = (132))

j((12)(3)

0

(4)

0

(56)

0

)i

(132)

h((1)

0

(235)

0

(46)

0

)j 7! ((12)(34

0

6

0

)(41

0

)(562

0

3

0

5

0

)) = AB

as required.

Finally let us give an alternative de�nition of the equivalen
e � on S

2m

. We have that A � B

i� there exist permutations P;Q and elements a; b 2 S

m

(i) for some i, su
h that

B = Out

P

((a; b)) = jai

P

hbj A = Out

Q

((a; b)) = jai

Q

hbj:

For example

((1233

0

)(41

0

2

0

)(4

0

)) � ((1231

0

2

0

)(43

0

)(4

0

))

sin
e the former is Out

P

((((123)

0

(4)

0

); ((12)

0

(3)

0

(4)))) with P = (12) while the latter is

Out

1

((((123)

0

(4)

0

); ((12)

0

(3)

0

(4)))):
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8 Dis
ussion

We have 
ompletely determined the generi
 stru
ture of the algebra whi
h 
ontains the Potts

model and di
hromati
 polynomial representations of the Temperley-Lieb algebra for statisti
al

me
hani
s in arbitrary dimensions. These results govern the subalgebras appropriate for models in

�xed dimensions. In subsequent work with H. Saleur [10℄ we examine these subalgebras in detail,

using the �ltering system established here.

We will determine the generi
 irredu
ible 
ontent of the Potts model representations. In par-

ti
ular, we will show that sin
e the irredu
ible representations 
onstru
ted here grow with n faster

than Q

n

for any Q (
.f. equation (28)) then the existen
e of the Potts representations ensure that

at least some of the positive integer Q algebras are ex
eptional in any dimension. This means

that extra symmetry turns up to simplify the spe
trum (i.e. the long distan
e properties) of these

models, as it does in two dimensions. In two dimensions this e�e
t is 
losely related to a `rational'


onformal symmetry of the 
riti
al �eld theory limit [8℄. In other dimensions it requires further

investigation.

We will examine the non-generi
 representation theory of the partition algebra.

We will also use the s
heme developed here as the basis for an analysis of the in�nite Full

Temperley-Lieb algebras, and to �nd out whi
h of the in�nity of irredu
ible representations are

relevant for physi
s, and why.

Note that the subset of S

M


ontaining partitions with only even numbers of elements in ea
h

part generates a subalgebra of P

n

(Q). The subset 
ontaining partitions with exa
tly two elements

in ea
h part generates the Brauer algebra (
ompare �gure 1 with [11℄).
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