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�

Abstrat We give the de�nition of the Partition Algebra P

n

(Q). This is a new generalisation

of the Temperley-Lieb algebra for Q-state n-site Potts models, underpinning their transfer matrix

formulation on arbitrary transverse latties. In P

n

(Q) subalgebras appropriate for building the

transfer matries for all transverse lattie shapes (e.g. ubi) our. For Q 2 CI the Partition

algebra manifests either a semi-simple generi struture or is one of a disrete set of exeptional

ases. We determine the Q-generi and Q-independent struture and representation theory. In

all ases (exept Q = 0) simple modules are indexed by the integers j � n and by the partitions

� ` j. Physially they may be assoiated, at least for suÆiently small j, to 2j `spin' orrelation

funtions.

We exhibit a subalgebra isomorphi to the Brauer algebra.

1 Introdution

In the ordinary transfer matrix approah to omputation in lassial statistial mehanis an

Eulidean spae is resolved into one `time' and (d�1) `spae' diretions (the Minkowskian labels are

purely a notational onveniene). The transfer matrix (TM) then desribes the states of a omplete

spae-like layer evolving through a single, or at least minimal, time step [1℄. For example, in one

ommon formulation the transfer matrix is a produt of two types of single interation matries -

those inorporating interations whih our within a single time layer, and those whih onnet

two adjaent time layers [2℄.

y

It is often possible to resolve the single interation transfer matrix

into a salar funtion of the temperature parameter plus a onstant matrix [3℄. The algebra of

these matries is the TM algebra.

In two dimensions the TM layer for the planar square lattie of width L sites may be thought

of as a hain of L sites (eah supporting the projetion of a time-like bond) and L � 1 spae-like

bonds. The transfer matrix algebra is generated by a orresponding hain of 2L � 1 matries.

A large lass of statistial mehanial models inulding Q-state Potts, 6-vertex, IRF models and

dihromati polynomials is haraterized by the fat that the interation matries for these models

provide a representation of the Temperley-Lieb algebra T

2L

(Q) [4℄. In general, for n a natural

number, and Q a omplex number or indeterminate, T

n

(Q) is a unital (assoiative) algebra over

CI with generators < 1; U

i

(i = 1; 2; ::; n� 1) > and relations:

U

2

i

=

p

Q U

i

(1)

�
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y

Then again in two dimensions the symmetry between the spae and time projetions failitates a more sym-

metrial hoie [4℄ - sometimes alled left and right light one interations.
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U

i

U

i�1

U

i

= U

i

(2)

[U

i

; U

j

℄ = 0 ji� jj 6= 1: (3)

In this notation the odd numbered indies orrespond to matries building timelike (also alled

longitudinal) bond Potts interations, those even numbered give spaelike (transverse) bonds. The

rough parity between the two types is a speial feature of two dimensions, so it will be onvenient

to replae it in what follows with the equivalent but more versatile notation:

U

2i�1

= U

i:

i = 1; 2; ::; L

U

2i

= U

ii+1

i = 1; 2; ::; L� 1:

If we number the nodes of our transfer matrix hain from 1; 2; :::; L then we see that U

i:

is assoiated

to the i

th

node and U

ii+1

to the bond between nodes i and i+ 1.

Consider now the omplete unoriented graph of n nodes, here alled n, and all those subgraphs

G � n obtained by removing bonds (edges) from the omplete graph.

De�nition 1 We de�ne T

G

(Q), the Full Temperley-Lieb algebra of the graph G [3℄, to be the

unital algebra over CI with generators

< 1; U

i:

(i = 1; 2; ::; n); U

ij

= U

ji

(edge (i; j) 2 G) >

and relations:

U

2

=

p

QU (4)

(any indies)

U

i:

U

ij

U

i:

= U

i:

(5)

U

ij

U

i:

U

ij

= U

ij

(6)

[U

i:

; U

j:

℄ = [U

ij

; U

kl

℄ = [U

i:

; U

kj

℄ = 0 i 6= k; j: (7)

For example, with G = A

n

, the n node hain graph, we reover the original Temperley-Lieb algebra

T

2n

(Q).

It follows from the de�nition of the Potts model [2℄ and dihromati polynomial [5℄ that the

relations of T

G

(Q) are an appropriate generalization (of the transfer matrix algebra relations for

the hain, T

A

n

(Q)) for building a transfer matrix layer of shape G [3℄ - that is, for overall lattie

shape G� ZZ.

y

In other words, for those statistial mehanial models whih have a suitable generalization

onto a lattie with spaelike layer G, suh as the Potts model (de�ned by Hamiltonian

H = �

X

(ij)2G�ZZ

Æ

�

i

�

j

(8)

y

This graph G orresponding to the shape of physial spae is not to be onfused with the on�guration spae

graphs of Pasquier and Saleur [6℄, whih work only for the two dimensional ase. For example, G a square lattie

here produes a ubi lattie statistial mehanial model.
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where � is essentially an inverse temperature variable) the TM algebra provides a representation

(abstratly, a quotient) of this algebra. The transfer matrix itself is a representation of the element

T (v) =

n

Y

i=1

�

v1 +

p

QU

i:

�

Y

(ij)2G

�

1 +

v

p

Q

U

ij

�

(9)

where v = exp(�)� 1. The Potts representation is given expliitly in [3℄ By well known arguments

[1, 3, 7℄ the irreduible representations of T

G

(Q) whih ompose this representation are eÆient

bloks to use in omputing the TM spetrum. The irreduible struture of T

G

(Q) is thus important

for extending omputation in statistial mehanis to three and higher dimensions.

On the other hand, whilst the G = A

n

algebra is �nite dimensional for �nite n, and typi-

ally faithfully represented by the �nite dimensional physial transfer matries, we will show that

for general G the Full algebra is usually in�nite dimensional (we will also examine the speial

onditions under whih dim(T

G

) is �nite). Sine the physial transfer matries usually remain

�nite dimensional in higher dimensions (for �nite systems) one problem is to �nd expliitly the

�nite dimensional quotients of the Full algebra appropriate for these physial systems. In two

dimensions the exeptional ases of Q, where the G = A

n

algebra is not faithfully represented in

physial transfer matries, onstitute perhaps the most interesting setor of all, orresponding to

models with unitary onformal �eld theory limits [8℄ (or, more simply, lots of extra symmetry in

the long distane properties). By establishing the physially appropriate generi algebra in other

dimensions we develop a proedure for investigating the analogous situation there.

In this paper we �nd the quotient algebra for several models. We introdue the Diagram algebra

of G, D

G

(Q), whih is �nite dimensional for any �nite G. Eah TM algebra is either a quotient

or the whole of D

G

(Q). We examine the struture and representation theory of this algebra from

the point of view of someone wanting to optimise omputation in statistial mehanis. This is

without regard to the possibility of a star-triangle like diagonalization manoeuvre (whih is in any

ase widely studied elsewhere [9℄, with great skill but somewhat limited suess).

We begin (in setion 2) by introduing a losely related algebra, the Partition algebra P

n

(Q),

whih is not a quotient of T

G

(Q), but whih also has subalgebras indexed by a graph. This provides

a key organisational link between the physial and abstrat algebras we have desribed. We will

indulge in a very areful abstrat formulation, antiipating the need for a possible generalisation to

enompass `Full Heke algebras'. In setion 3 we prove some tehnial results whih are entral to

the struture analysis of P

n

(Q), and hene T

G

(Q). It will ome as no surprise to physiists to learn

that the G = n or `mean �eld limit' ase is one of the easiest to analyse for any of these algebras.

We deal with this in full detail (in setion 4), as it is a useful envelope guide for the more omplex

subalgebra strutures. These are addressed in [10℄. In setion 5 we generalise the onstrution from

the TM to the partition vetor formalism [3℄, in the proess providing alternative (and hopefully

illuminating) versions of some earlier de�nitions. We onlude with a disussion, pointing out an

inlusion of the Brauer algebra [11℄ and mentioning some outstanding problems.

2 Set theory preamble

The Partition algebra P

n

(Q) is a �nite dimensional algebra whih inludes a quotient of the Full

algebra, and whih will play the ruial role in our analysis. This algebra an be introdued in
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Figure 1: Pitorial realisations of parts in a partition of f1; 2; 3; 4; 5; 1

0

; 2

0

; 3

0

; 4

0

; 5

0

g as lusters (A

and B); and omposition of partitions (AB) by juxtaposing lusters (.f. page 868 of [11℄).

a number of di�erent ways, depending on the level of generality required (latties an be `grown'

in more exoti ways than simple TM layering, and there exists a general algebrai framework to

reet this). Here we will stik to the ordinary TM formalism. In setion 7 we will give a more

general version.

The following ideas arose in onsidering the dihromati polynomial formulation of the Potts

model - see [2, 3, 5℄ and referenes therein. The formalism we use is abstrated far from this

physial piture. It has the merit, however, of versatility, and of making proofs simple. Those

wishing extra intuitive support might study the above referenes.

In short the Partition algebra is summarized by the example in �gure 1. We now elaborate on

this summary and introdue notation.

2.1 On Partitions of a set M

Reall

De�nition 2 For a set M the power set t

M

is the set of all subsets of M .

so the order of the set j t

M

j = 2

jM j

[12℄. Let us introdue

De�nition 3 For k a natural number t

k

M

= t

t

k�1

M

where t

0

M

=M .

4



De�nition 4 Let t

M

be the subset of t

2

M

suh that A 2 t

M

implies

[

A

i

2A

A

i

=M;

i.e. every element of M is an element of at least one element of A.

De�nition 5 De�ne the set S

M

of equivalene relations on, or partitions of, a set M of m dis-

tinguished objets

S

M

= f((M

1

)(M

2

)::::(M

i

):::) :

M

i

�M s:t: M

i

6= ;; [

i

M

i

=M; M

j

\M

k

= ; (j 6= k)g:

(10)

For example, if M is the set of the �rst m natural numbers

S

f1;2g

= f((12)); ((1)(2))g

S

f1;2;3;4g

= f((1234)); ((1)(2)(3)(4)); ((123)(4)); ((124)(3));

((134)(2); ((234)(1)); ((12)(34)); ((13)(24)); ((14)(23));

((12)(3)(4)); ((13)(2)(4)); ((14)(2)(3)); ((23)(1)(4)); ((24)(1)(3)); ((34)(1)(2))g:

Note that (up to redundant puntuation) S

M

is a subset of t

M

. In disussing general properties

of S

M

depending only on the order jM j = m we may write S

m

for S

M

.

In an element of S

M

we all the individual equivalened subsets of the set of objets `parts'.

Thus (M

1

) = (123) is a part of the partition ((123)(4)), and so on. Clearly the various partitions

have `shapes' like the m box Young diagrams, with the objets inserted into the shapes in all pos-

sible ways - ignoring order within a row, so the number of partitions of shape � = (�

p

1

1

; �

p

2

2

; �

p

3

3

; :::)

(with �

i

> �

i+1

;

P

i

p

i

�

i

= m) is

D

�

=

m!

Q

i

(((�

i

)!)

p

i

(p

i

)!)

:

The set S

M

is �nite for �nite m. Its order is the sum of Stirling numbers of the seond kind at

level m (see, for example, [13℄ and referenes therein). It is omputed in a more general ontext -

whih will be useful later on - in [3, 14℄ (also see setion 6.2.2). The �rst few values are:

m 1 2 3 4 5 6 7 8 9 10 11 12 13

jS

M

j 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437

We write i �

A

j in ase objets i; j are in the same partition in A 2 S

M

, so the relation �

A

is

transitive, reexive and symmetri.
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We will be mainly interested in the ase m = 2n. We will then write our 2n objets simply as

M = f1; 2; 3; :::; n; 1

0

; 2

0

; 3

0

; :::; n

0

g: (11)

Before we proeed it will be useful to have a little more tehnial hardware. For M a set as

in list 11 it will be onvenient to write M

0

for the set obtained by priming all the elements of M

(e.g. f1; 1

0

g

0

= f1

0

; 1

00

g). If A is a partition of M we then write A

0

for the orresponding partition

of M

0

.

De�nition 6 (Transitive ompletion of A 2 t

M

) Let

Q : t

M

! S

M

be de�ned by i �

Q(A)

j if there exists A

k

2 A suh that i; j 2 A

k

.

y

For example Q(ff1; 2gf2; 4gf3gf4; 5gg) = ((1245)(3)).

2.2 The Partition algebra P

n

(Q)

For M as in equation 11

De�nition 7 Let

f : S

M

� S

M

! ZZ

be suh that f((A;B)) is the number of parts of Q(A [ B

0

) 2 S

M[M

0

(note that jM [M

0

j = 3m)

ontaining exlusively elements with a single prime.

For example Q(((12)(1

0

)(2

0

)) [ ((11

0

)(2)(2

0

))

0

) = ((12)(1

0

1

00

)(2

0

)(2

00

)) so f((A;B)) = 1.

De�nition 8 Let

C : S

M

� S

M

! S

M

be suh that AB = C((A;B)) is obtained by deleting all single primed elements of Q(A [ B

0

)

(disarding the f((A;B)) empty brakets so produed), and replaing all double primed elements

with single primed ones.

y

Transitivity of � means that Q is suh that for A = (A

1

; A

2

; :::; A

j

; :::) 2 t

M

then Q(A) = ((M

1

); (M

2

); :::), say

(.f. equation 10), is suh that A

j

T

A

k

6= ; implies that there exists M

i

� A

j

S

A

k

; and for eah M

i

there exists

a list K = fk

1

; k

2

; :::g suh that M

i

=

S

j2K

A

j

and there is no partition of K into 2 non-empty parts K

1

;K

2

suh

that

 

[

j2K

1

A

j

!

\

 

[

l2K

2

A

l

!

= ;:

It is apposite to give a `olouring' interpretation of Q: Suppose we have any `olouring' of M

g : M !M

suh that for eah i all the elements of A

i

have the same olour, i.e. g(A

i

) has a single element. Then sine

a; b 2 A

i

now means a; b oloured the same, neessarily g(M

j

) has a single element for M

j

any part of Q(A). Now

suppose we hoose g so that g(M) has the maximum number of di�erent olours onsistent with the onstraint.

Then g(M

i

) = g(M

j

) implies i = j.
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De�nition 9 For Q an indeterminate and K the �eld of rational funtions of Q we de�ne a

produt [3, 14℄

P : S

M

� S

M

! KS

M

(12)

P : (A;B) 7! AB = Q

f((A;B))

C((A;B)):

An alternative form of this de�nition is given in a more general setting in setion 7.

For example,

((1234)(1

0

3

0

)(2

0

)(4

0

)(5)(5

0

)) ((11

0

2

0

)(233

0

)(44

0

)(5)(5

0

))

E

1

�!

((1234)(1

0

3

0

)(2

0

)(4

0

)(5)(5

0

) (1

0

1

00

2

00

)(2

0

3

0

3

00

)(4

0

4

00

)(5

0

)(5

00

))

Q

�! ((1234)(1

0

3

0

1

00

2

00

3

00

2

0

)(4

0

4

00

)(5)(5

0

)(5

00

))

! ((1234)(1

00

2

00

3

00

)(4

00

)(5)()(5

00

))! Q : ((1234)(1

0

2

0

3

0

)(4

0

)(5)(5

0

)):

The quikest way to see this is with the piture - �gure 1. There are some other pitorial

examples in setion 5.1.

Note that C = C((A;B)) is suh that

i �

C

j

0

iff 9 sequene k

1

; k

2

; :::; k

2l+1

2M s:t:

i �

A

k

0

1

and

k

2p�1

�

B

k

2p

k

0

2p

�

A

k

0

2p+1

for p = 1; 2; :::; l , and

k

2l+1

�

B

j

0

(a sequene of length 1, i.e. l = 0, is allowed); and

i �

C

j iff i �

A

j or 9 sequene k

1

; k

2

; :::; k

2l+1

2M s:t:

i �

A

k

0

1

and

k

2p�1

�

B

k

2p

k

0

2p

�

A

k

0

2p+1

for p = 1; 2; :::; l , and k

0

2l

�

A

j

and similarly

i

0

�

C

j

0

on interhanging A;B and primed and unprimed in the above `onneted path'.

Proposition 1 The produt P is assoiative.

Proof: Let us drop, for the moment, the expliit distintion between primed and unprimed elements

of M , but rather say that if an element a appears in both A and B in a produt AB then it is to

be understood primed in A. Then a �

A(BC)

b implies that there exists a sequene

i

1

; i

2

; :::; i

k

suh that

a �

A

i

1

i

1

�

B

i

2

i

2i

�

A or C

i

2i+1

i

2i+1

�

B

i

2i+2

i

2k+2

�

C

b

whih in turn implies a �

(AB)C

b, and vie versa. QED.

De�nition 10 (Partition algebra) Considering the vetor spae over K spanned by S

2n

, the

linear extension of the produt P gives us a �nite dimensional algebra over K whih we all the

partition algebra P

n

(Q).
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3 Relationship of P

n

(Q) to Full Temperley-Lieb Algebra

There are several realisations of the inlusion

P

n�1

(Q) � P

n

(Q):

De�nition 11 The natural inlusion S is de�ned by

0! P

n�1

S

! P

n

S : ((:::):::(::)) 7! ((:::):::(::)(nn

0

)): (13)

It is onvenient to introdue the following speial elements of the partition algebra:

1 = ((11

0

)(22

0

):::(nn

0

)) (14)

1

ij

= ((11

0

)(22

0

)::(ij

0

)::(ji

0

)::(nn

0

)) i; j = 1; 2; ::; n (15)

A

i:

=

1

p

Q

((11

0

)(22

0

):::(i)(i

0

):::(nn

0

)) (16)

A

ij

=

p

Q ((11

0

)(22

0

):::(iji

0

j

0

):::(nn

0

)): (17)

Proposition 2 These elements generate P

n

(Q).

Proof: (by indution on n) The proposition is true in ase n = 1. Let us assume true for n = k�1,

then show that all possible extensions of the partitions of 1; 2; :::; k � 1; 1

0

; 2

0

; :::(k � 1)

0

to inlude

k; k

0

an be built using these speial elements. Note that the set of speial elements for P

k�1

are

(formally) a subset of those for P

k

. For eah A 2 P

k�1

we then have S(A) 2 P

k

with the same

expression as a word in the speial elements, but given in full by ((:::):::(::)(kk

0

)) (.f. equation 13).

We will show that this subset of P

k

an be extended to the whole set by using the extra speial

elements.

There are various ases to onsider for the parts ontaining k; k

0

. In what follows we omit ases

obviously onsequent on symmetry grounds:

ase 1: parts of the form

(:::(::akk

0

)) = A

ak

(:::(::a)(kk

0

))

ase 2:

(:::(::ak)(::b

0

k

0

)) = A

ak

A

k:

(:::(::a)(::b

0

)(kk

0

))A

bk

ase 3:

(:::(::a

0

k)(::b

0

k

0

)) = (:::(::a

0

)(::b

0

)(kk

0

))A

ak

A

k:

A

bk

ase 4:

(:::(a

0

1

a

0

2

:::a

0

i

k)(b

1

b

2

:::b

j

k

0

)) = A

b

1

b

2

1

bk

(:::(a

0

2

a

0

3

:::a

0

i

)(b

2

b

3

:::b

j

)(a

0

1

b

1

)(kk

0

))A

a

1

a

2

:

QED.

It follows that 1; 1

ii+1

(i = 1; 2; :::; n� 1); A

1:

; A

12

generate P

n

(Q).
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De�nition 12 For A 2 P

n

let [A℄ denote the maximum number of distint parts ontaining both

primed and unprimed elements, over the S

m

basis elements with a non-zero oeÆient in A.

For example [1℄ = n, [A

i:

℄ = n� 1. Then

Corollary 2.1 For A;B 2 P

n

[AB℄ � min([A℄; [B℄):

Proof: It is suÆient to hek for the ases where B is one of the speial elements.

Proposition 3 There is a homomorphism from the Full Temperley-Lieb algebra to the partition

algebra given by

H : T

n

(Q)! P

n

(Q)

H : 1 7! 1

H : U

i:

7! A

i:

H : U

ij

7! A

ij

:

Proof: Without loss of generality we may onsider for example,

((11

0

)(22

0

)::(i)(i

0

)::(nn

0

)) ((11

0

)(22

0

)::(i)(i

0

)::(nn

0

)) =

((11

0

)(22

0

)::(i)()(i

0

)::(nn

0

)) = Q ((11

0

)(22

0

)::(i)(i

0

)::(nn

0

))

and

( ((11

0

)(22

0

)::(i)(i

0

)::(nn

0

)) ((11

0

)(22

0

)::(ii

0

jj

0

)::(nn

0

)) ) ((11

0

)(22

0

)::(i)(i

0

)::(nn

0

))

= ((11

0

)(22

0

)::(i)(i

0

jj

0

)::(nn

0

)) ((11

0

)(22

0

)::(i)(i

0

)::(nn

0

))

= ((11

0

)(22

0

)::(i)(i

0

)::(nn

0

)):

We leave it as an exerise to hek other relations (4) and (6).

Proposition 4 (see [3℄) The subalgebra of P

n

(Q) generated by

< 1; A

i:

(i = 1; 2; ::; n); A

ii+1

(i = 1; 2; ::; n� 1) >

is isomorphi to T

A

n

(Q).

De�nition 13 For given n we de�ne �

n

as the subalgebra of P

n

(Q) generated by

< 1; 1

ij

(i; j = 1; 2; :::; n) >

or, where appropriate, as the orresponding symmetri group.

9



4 General results for P

n

(Q)

4.1 Full embedding of P

n�1

in P

n

It is a useful feature of these algebras that we an largely determine the representation theory of

P

n

(Q) in terms of P

n�1

(Q) and the symmetri group (and hene indutively from the trivial ase

P

0

(Q) = CI). We will need the following simple but surprisingly powerful theorem:

Theorem 1 For eah n, Q 6= 0 and idempotent e = e

n

= A

n:

=

p

Q there is an isomorphism of

algebras

e

n

P

n

e

n

�

=

P

n�1

:

Proof:

Note that partitions in e

n

P

n

e

n

(ignoring fators of

p

Q for the moment) an be thought of as

partitions of P

n�1

extended by the presene of (n)(n

0

) as isolated parts. The map I from left to

right is to simply ignore these parts

I : ((:::):::(::)(n)(n

0

)) 7! ((:::):::(::)): (18)

This is manifestly an injetion. That it is a surjetion omes from onsidering the image of

e

n

P

n�1

e

n

, noting that e

n

and P

n�1

ommute. It also follows from this that the multipliation is

preserved.

Corollary 1.1 The ategory of left P

n�1

modules is fully embedded in the ategory of left P

n

modules. That is, there exist funtors

(P

n�1

�mod)

G

�! (P

n

�mod)

F

�! (P

n�1

�mod)

suh that FG is the identity map on (P

n�1

�mod).

Proof:

This is a standard result in ase theorem 1 holds [15, 16℄. There is then a standard funtor

F : (P

n

�mod)! (P

n�1

�mod) (19)

with objet map

F :M 7! e

n

M

and morphism map onstruted as follows. Suppose  is a morphism in (P

n

�mod):

 :M !  (M)

 : y 7!  (y);

then

F ( ) : e

n

y 7! e

n

 (y)

(the reader will readily on�rm that omposition of morphisms is preserved). Similarly we have

G : (P

n�1

�mod)! (P

n

�mod)

10



with set map

G : N 7! P

n

e

n




P

n�1

N

and morphism map

G(�) : xe

n


 z 7! xe

n


 �(z):

We leave it as an exerise to hek that FG ats as the identity funtor on the appropriate ategory.

For example, understanding by I(e

n

xe

n

) its image under the isomorphism in the full embedding

theorem

F (G(�)) : (e

n

xe

n

)
 z 7! (e

n

xe

n

)
 �(z)

�

=

�(I(e

n

xe

n

)z)

(we have used that � is a morphism of left P

n�1

modules). QED.

Similarly

GF (M) = P

n

e

n

M

and

G(F ( )) : xe

n




P

n�1

e

n

y 7! xe

n


 e

n

 (y)

�

=

 (xe

n

y):

These give us the range of GF , whih will tell us (in Proposition 6) whih piees of information

about the regular representation we are missing from P

n

in G(P

n�1

). These an then be added by

expliit omputation.

Some of the power of this result will be revealed when we apply it, in setion 6.2.2. It is also

useful in analysing the non-generi ases, whih we will disuss elsewhere [10℄.

Let us denote by F

n

(M) = e

n

M the objet map from the isomorphism of ategories in the

above orollary at level n (equation 19).

Proposition 5 Let f

n

be the objet map of ategories de�ned by restrition of left P

n

modules to

left P

n�1

modules through the inlusion S,

f

n

: (P

n

�mod)! (P

n�1

�mod)

f

n

:M 7!

P

n�1

#M:

Then the following diagram of objet maps of ategories ommutes:

(P

n

�mod)

F

n

�! (P

n�1

�mod)

f

n

# #

f

n�1

(P

n�1

�mod)

F

n�1

�! (P

n�2

�mod)

: (20)

Proof:

We must show that for eah left P

n

module M

P

n�2

#e

n

M

�

=

e

n�1

P

n�1

#M

that is

e

n

M

�

=

e

n�1

M

11



is an isomorphism of left P

n�2

modules. But this follows from the observation that the de�nitions

of P

n

and P

n�2

are both una�eted by the interhange of labels n and n� 1. QED.

The ommutative diagram 20 may be extended to a diagram of funtors.

Proposition 5 implies that, up to edge e�ets aused by the di�erene between P

n

and P

n

e

n

P

n

,

the Bratteli restrition diagram for the algebras P

n

(see setion 6.2.2 onwards) has the same

struture on eah level n. But then

Proposition 6 The following is a short exat sequene of algebras

0! P

n

eP

n

! P

n

! �

n

! 0:

Proof:

Clearly we have an injetion P

n

=P

n

e

n

P

n

! �

n

, the group algebra of the symmetri group on

n objets, sine in this quotient A

i:

= A

ij

= 0. That this is surjetive follows from the orollary

to proposition 2 sine P

n

e

n

P

n

is spanned by

fA : A 2 S

2n

; [A℄ < ng

QED.

Thus, at least for P

n

semi-simple, a knowledge of the struture of P

n�1

essentially determines

for us the struture of P

n

.

Corollary 6.1 In ase P

n

(Q) semi-simple the distint equivalene lasses of irreduible represen-

tations may be indexed by the list of all standard partitions of every integer from 0 (understood to

have one standard partition) to n.

Proof: In this ase the exat sequene splits [12℄ and P

n

thus has Cardf� : � ` ngmore irreduibles

than P

n�1

.

We will in fat show later that P

n

(Q) is semi-simple for Q indeterminate and for all Q 2 CI

exept for the roots of a �nite order polynomial in Q for any �nite n. We will also show that in

any ase the same lassi�ation is appropriate for any speialisation of Q 6= 0 (inluding non-semi

simple ases).

We will apply these results repeatedly from setion 6.2.2 onwards.

5 Diagram algebra for a graph G

Let us return to proposition 4. More generally we have

De�nition 14 For graph G the Diagram algebra D

G

(Q) is de�ned as the subalgebra of the partition

algebra generated by

< 1; A

i:

(i = 1; 2; ::; n); A

ij

(i; j 2 G) > :

Note that D

n

(Q) � P

n

(Q), as 1

ij

annot be built with these generators. However, under ertain

onditions it an be substituted, for example,

1

23

A

1:

= A

1:

A

12

A

2:

A

23

A

3:

A

13

A

1:

: (21)

12



In fat we are more interested here in D

n

(Q) than P

n

(Q) (ompare proposition 3 with equation 9),

but P

n

(Q) provides a more versatile general setting. We will see shortly that it is straightforward

to move from one to the other.

The relationship between the algebra types T; P and D is summarized by saying that the

diagram

0

#

T

H

1

�! D �! 0

H

& #

H

2

P

is ommutative and exat at D.

Proposition 7 The subalgebra D

n

(Q) � P

n

(Q) is invariant under onjugation by elements of the

group �

n

, i.e.

b

�1

D

n

(Q)b = D

n

(Q) 8b 2 �

n

:

Proof: W.l.o.g. onsider b

�1

Ab with A a word in D

n

(Q) and insert 1 = b

�1

b between eah letter

of A. This just takes eah letter to another letter. Spei�ally, if b is given as a permutation

b : f1; 2; :::; ng ! f1; 2; :::; ng

b : a 7! b(a)

then

b

�1

A

i:

b = A

b(i):

b

�1

A

ij

b = A

b(i)b(j)

(onsider equations 16 and 17).QED.

Corollary 7.1 Every word in P

n

(Q) an be written in the form AB where A 2 �

n

and B 2 D

n

(Q).

Clearly we have an inlusion struture

G � G

0

) D

G

(Q) � D

G

0

(Q)

as for the Full algebras.

It also follows that D

G

(Q), and indeed P

n

(Q), obeys a number of quotient relations in addition

to the Temperley-Lieb relations. For example, with W 2 D

G

(Q) there exists X(W ) a ertain

(known) salar funtion of Q (see [3℄) suh that

 

Y

i

A

i:

!

W

 

Y

i

A

i:

!

= X(W )

 

Y

i

A

i:

!

:

Spei�ally, if W 2 S

m

with b

W

parts

X(W ) = Q

b

W

:

This relation is suitable for at least part of the set appropriate for physial systems, as it orresponds

to the existene of disorder at very high temperatures (there is also a dual orresponding to order

at low temperatures). At the level of the dihromati polynomial it orresponds to isolating b

W

lusters (.f. [2℄, for example). Several analogous relations have also been found [3℄.
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5.1 Graphial realisation of D

G

(Q): Connetivities

Here the order of a graph G, written jGj, is the number of nodes.

De�nition 15 For a graph G let B

G

be the set of all (not neessarily proper) subgraphs of G of

the same order.

For example, representing graphs by inidene matries,

B

�

0 1

1 0

�

=

��

0 1

1 0

�

;

�

0 0

0 0

��

:

Note that elements of B

G

need not be onneted graphs [2℄.

De�nition 16 For T a natural number we write G�T for the graph G�A

T+1

, and write G�ZZ

for G� T in the limit of large T .

Consider the graph n� T (.f. �gure 2). Expliitly number the nodes of the lateral subgraph

n at `time' t = 0 (written (n; 0)) from 1; 2; :::; n and number the nodes of (n; T ) orrespondingly

from 1

0

; 2

0

; :::; n

0

. Then introdue the map

F

T

: B

n�T

! P

n

(Q)

F

T

: B

o

7! Q

b

B

where B 2 S

m

is suh that i �

B

j i� i; j (primed, unprimed or mixed) are onneted by a path

of bonds present in the subgraph B

o

, and b is the number of isolated onneted omponents in B

o

not onneted to any point in either of the layers t = 0 or t = T . Note that the de�nition of F

T

does not depend on T exept in the domain, so we an extend it to a map F on

S

T

B

n�T

. Then

we have a relation � on this new domain de�ned by (a; b) 2 � i� F(a) = F(b). For �nite n there

exists some �nite T beyond whih (rangeF

T

)\S

m

does not inrease.

The range of F

T

does not inlude the whole of S

m

however large we make T (see the remark

after de�nition 1). We an extend to the whole of S

m

by, for example, building our `onnetivities'

on n+ 1� ZZ (but only labelling the `�rst' n nodes, see �gure 3).

This ompliation is onneted to the nature of the lattie and the TM formalism, it will be

disussed further in [10℄. In general, di�erent hoies of G in B

G�ZZ

� B

n�ZZ

, realise di�erent sets

of onetivities, i.e. di�erent ranges for the restrited map F(B

G�ZZ

). This is, in fat, the essene

of the physially important problem of �nding irreduible representations of D

G

(Q) (see later, and

[10℄).

We may extend

S

T

B

n+1�T

=� or

S

T

B

n�T

=� to an algebra (over rational funtions in Q). We

de�ne a produt B

o

: C

o

= (BC)

o

by joining B

o

and C

o

, identifying the layer t = T in B

o

with

t = 0 in C

o

. It is a simple exerise to hek that the produt is also well de�ned in the quotient �,

whereupon the map F beomes an algebra homomorphism.

The expliit pitorial realization is partiularly neat (but suÆiently general for illustration) if

we distribute the nodes of n linearly, as in A

n

. Then for example with n = 12 the � lass of A

ii+1

has a simple representative with T = 0:

14
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Figure 2: Part of the graph

^

A

3

� ZZ = 3� ZZ.

t t

t

�

��

�

t t

t

�

��

�

t t

t

�

��

�

t t

t

�

��

�

�

�

�

�

2

3

1

2

0

3

0

1

0

Figure 3: Diagram for the onnetivity 1

12

U

3:

= ((12

0

)(21

0

)(3)(3

0

)) whih restrits to 1

12

for n = 2.
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A

i i+1

=

p

Q  s s s s s s s s s s s s

i

The � lass of A

i:

has T = 1 representative

p

Q A

i:

 s s s s s s s s s s s s

s s s s s s s s s s s s

i

The omposition rule is to identify the top row of dots in the seond diagram with the bottom

row in the �rst. Clusters then isolated from both top and bottom rows of the new diagram so

formed may be removed, ontributing a fator Q.

Finally, then, for example, the TL relation 5

A

i i+1

A

i:

A

i i+1

= A

i i+1

amounts to the statement that the subgraph

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

r r r r r r r r r r r r

i

has the same list of onnetions within and between the top and bottom layers as the � represen-

tative of A

i i+1

above.

Note that no omposition of diagrams inreases the number of distint onneted lusters

onneting between the top and bottom layers (.f. orollary 2.1). This means that the subset of

� osets with no onnetions top to bottom form a basis for a P

n

(Q) bimodule. Furthermore, the

subset with � p distint onnetions top to bottom also form a basis for a P

n

(Q) bimodule (for

p < n).

6 Struture and Representation Theory of P

n

(Q)

6.1 Filtration by ideals

The above piture is partiularly useful for envisaging and onstruting representations. The

number of distint onnetions running from t = 0 to t = T is evidently non-inreasing in any

omposition (it is a measure of the number of distint bits of information whih an be simultane-

ously propagated through the bond overing, whih annot exeed the number propagated aross

any �xed time slie). So for example, writing simply P

n

for P

n

(Q), and de�ning idempotents

I

k

=

Y

i>k

A

i:

p

Q

(Q 6= 0) then I

0

allows no onnetions from t = 0 to t = T , so P

n

I

0

P

n

is the invariant subspae of

P

n

where

6 9 A; i; j s:t: i �

A

j

0

:

We thus have
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Proposition 8 For Q 6= 0 the element I

0

is a primitive idempotent.

Reall that sine A� B a proper deomposition of P

n

I

0

implies I

0

A = I

0

B = 0 (a ontradition)

then

Corollary 8.1 The left ideal P

n

I

0

is indeomposable (and generially simple).

Note that dim(P

n

I

0

) = jS

n

j. Similarly

Proposition 9 The element I

1

is primitive in the quotient algebra P

n

=P

n

I

0

P

n

.

so again P

n

I

1

is indeomposable in this quotient.

Now I

2

is not primitive in P

n

=P

n

I

1

P

n

sine, for example

I

2

1

12

I

2

� 1

12

I

2

6/ I

2

:

On the other hand

(1+1

12

)

2

I

2

and

(1�1

12

)

2

I

2

are primitive idempotents.

Similarly I

3

is not primitive in P

n

=P

n

I

2

P

n

, but, for example

�

�

I

3

=

(1� 1

12

� 1

23

� 1

13

+ 1

12

1

23

+ 1

13

1

23

)

3!

I

3

and two further ombinations (with � = (2; 1) symmetries) are.

From the de�nition of I

i

we have P

n

I

i�1

P

n

� P

n

I

i

P

n

and a nest of short exat sequenes of

ideals, i = 1; 2; :::; n

0! P

n

I

i�1

P

n

! P

n

I

i

P

n

! P

n

I

i

P

n

=P

n

I

i�1

P

n

! 0

where �nally I

n

= 1.

De�nition 17 Let us de�ne the algebra P

n

[i℄ = P

n

I

i

P

n

=P

n

I

i�1

P

n

.

This is the algebra of elements with not more than i distint onnetions running, as it were, from

t = 0 to t = T , quotiented by the invariant subspae of all elements with stritly less than i distint

onnetions from 0 to T .

Proposition 10 In the quotient P

n

[i℄

I

i

�

n

I

i

= �

i

I

i

(we take �

0

= �

1

= 1).

Proof: Any element of �

n

not in the subgroup is killed by the quotient.

Reall that the CI struture of the permutation group is known [21℄. In partiular there are

standard onstrutions for primitive idempotents for eah � ` i. Then

Corollary 10.1 For � ` i and �

�

an appropriate primitive idempotent of �

i

, then I

i

�

�

is a

primitive idempotent (mod P

n

I

i�1

P

n

).
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Corollary 10.2 The lassi�ation sheme in orollary 6.1 extends to inlude all non-semi simple

P

n

(Q) exept P

n

(0).

Proof: By orollary (10.1) I

i

�

�

indues an indeomposable projetive module with a simple in-

variant subspae distint (beause of the P

n

[i℄ quotient) for eah �. QED.

Remark: The ase P

n

(0) is degenerate rather than exeptional in this respet, and an easily

be dealt with.

Proposition 11 Let � be any left �

i

module. Then we an write the left P

n

[i℄ module

P

n

(Q) (I

i

�) = D

n

(Q) (I

i

�)

Proof: By proposition 7

P

n

I

r

� = �

n

D

n

I

r

�:

For eah word BA(I

r

�) on the right there are three ases to onsider for eah letter in B, moving

from right to left. Firstly, the letter permutes nodes isolated (in the onnetivity sense) from � by

the word AI

r

: In this ase its e�et an be ignored, e.g.

1

12

A

1:

A

2:

= A

1:

A

2:

:

Seondly, the letter permutes nodes neither of whih is isolated by AI

r

: Again the e�et an be

ignored, as

1

12

I

r

� = I

r

1

12

� = I

r

�:

Thirdly, the letter permutes an isolated and a non-isolated node. In this ase there exists an

alternative formulation of the word where that letter is replaed by letters not in �

n

, for example

1

12

A

2:

A

3:

= A

1:

A

12

A

2:

A

3:

;

1

13

A

2:

A

3:

= A

2:

A

23

A

1:

A

12

A

2:

A

3:

(note that the alternative formulation is not usually unique). More generally, suppose that the

letter is 1

ij

with i isolated and j not, then as i is isolated we an always arrange it so that 1

ij

appears here in the ombination 1

ij

A

i:

. But

1

ij

A

i:

= A

j:

A

ij

A

i:

:

QED.

6.2 Expliit onstrution of irreduible representations:

Our proedure is to diset the regular representation of P

n

(Q) provided by S

m

, using I

i

�

�

from

orollary 10.1. That is, we form bases from S

m

I

i

�

�

. There are three stages:

1. The presene of I

i

says: disard all but partitions of the form (::::((i+1)

0

)((i+2)

0

):::(n

0

):::);

2. The quotient says: disard all but partitions in whih the remaining primed elements

(1

0

; 2

0

; :::; i

0

) eah appear in a distint part, and together with at least one unprimed element;
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3. The �

�

says: form eah basis state from a ertain linear ombination of elements of the

subset of the remaining partitions whih are related by simple permutation of the primed elements.

Eah suh subset ontains i! elements (all possible arrangements of the primed elements). In eah

suh subset, one we hoose an arrangement to all the identity permutation, then we have a basis

for the regular representation of �

i

. The ation of �

�

is to projet from this onto a basis for

the � irreduible representation (i.e. altogether dim(�

i

�

�

) linear ombinations will survive - an

invariant subspae of �

i

- from eah subset).

Let us �rst onsider the fully symmetrized ase for the left �

i

module in proposition 11, all it

�

s

, in eah setor i (i.e. �

s

= �

�

for � = (i) ` i so P�

s

= �

s

for all P 2 �

i

). Then we get a basis

for the left P

n

[i℄ module P

n

I

i

�

s

from a generalisation of the set S

m

as follows. List the elements

as partitions of 1; 2; :::; n, ignoring 1

0

; 2

0

; :::; n

0

exept in so far as to note whih parts originally

ontained primed elements (we may mark them with a prime outside the braket - (M

i

)

0

). Now

disard dupliate opies of partitions not distinguished by this property, and partitions in whih

other than i parts originally ontained primed elements. We all the resultant set S

n

(i) (see also

setion 7.1). For example,

S

2

(1) = f((12)

0

); ((1)

0

(2)); ((1)(2)

0

)g:

We do not need to keep trak of exatly whih unprimed nodes were onneted to whih primed

nodes here, sine the symmetriser makes all these permutations equivalent. In other words the set

S

n

(i) is the set of all possible ways of arranging the elements of S

n

(.f. S

m

= S

2n

) so that i parts

are distinguished from the rest. An element of S

n

with p � i parts produes p!=((p� i)!i!) elements

of the basis S

n

(i) (and produes none if p < i). Note that

n

X

i=0

jS

n

(i)j = 2

n

jS

n

j: (22)

The ation of the generators on suh a basis is just the usual produt from equation 12 pulled

through from the regular representation (remembering the P

n

[i℄ quotient, and that primed parts

beget primed parts [3℄ e.g.

p

QA

1:

((12)

0

) = ((1)(2)

0

)). We will prove irreduibility of these repre-

sentations in setion 6.2.2.

Moving to the ase where we take some other left �

i

module in proposition 11, then our S

n

(i)

basis must simply be (semi) diret produted with a basis for this new module (rule 3). Some

permuting ations will at on the primes and hene on the �

i

module rather than, or as well

as, the partitions. There is usually an ambiguity in the hoie of an identity permutation here,

orresponding to a basis hange in the eventual representation. We will resolve it, for the sake

of de�niteness, by labelling primes in a standard order (details of a standard order are given in

setion 7.1). If an ation hanges the order then this permutation ats on �. For example, for the

i = 2 antisymmetriser �

�

= �

(1

2

)

7! 1� �

12

(the permutation ation of �

12

is on the primes with

respet to the standard order, not on the elements of M) and S

2

(2) we have (single element) basis

S

2

(2)�

(1

2

)

= f(((11

0

)(22

0

))� ((12

0

)(21

0

)))g

so

1

12

(((11

0

)(22

0

)) � ((12

0

)(21

0

))) = �(((11

0

)(22

0

)) � ((12

0

)(21

0

)))

gives the representation R

(1

2

)

(1

12

) = �1.
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6.2.1 The ase n = 3

We an well illustrate all of the above points with an extended example. Let us onsider n = 3.

The available partition shapes � in S

6

are:

(6); (5; 1); (4; 2); (3

2

); (4; 1

2

); (3; 2; 1); (2

3

); (3; 1

3

); (2

2

; 1

2

); (2; 1

4

); (1

6

)

with orresponding multipliities D

�

:

1; 6; 15; 10; 15; 60; 15; 20; 45; 15; 1

giving total dimension jS

6

j = 203.

On the other hand the dimensions of the bases desribed above are

5; 10; 6 dim(�

2

); 1 dim(�

3

)

i.e., expliitly, the bases are

f((123) : ;); ((12)(3) : ;); ((13)(2) : ;); ((23)(1) : ;); ((1)(2)(3) : ;)g;

f(; : (123)); ((12) : (3)); ((3) : (12)); ((13) : (2)); ((2) : (13));

((23) : (1)); ((1) : (23)); ((1)(2) : (3)); ((1)(3) : (2)); ((2)(3) : (1))g;

f(; : (12)(3)); (; : (23)(1)); (; : (2)(13)); ((1) : (2)(3)); ((2) : (1)(3)); ((3) : (1)(2))g � �

�

f(; : (1)(2)(3))g � �

3

where all parts to the right of the olon are to be understood primed (.f. [3℄).

In full the S

3

(2)�

�

basis may be written

f(((121

0

)(32

0

))� ((122

0

)(31

0

))); (((232

0

)(11

0

))� ((231

0

)(12

0

)));

(((22

0

)(131

0

))� ((21

0

)(132

0

))); (((1)(21

0

)(32

0

))� ((1)(22

0

)(31

0

)));

(((2)(11

0

)(32

0

))� ((2)(12

0

)(31

0

))); (((3)(11

0

)(22

0

))� ((3)(12

0

)(21

0

))) g

so for example the representation of 1

12

is

R

(1

3

)

(1

12

) =

0

B

B

B

B

B

B

�

1 0 0 0 0 0

0 0 �1 0 0 0

0 �1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 �1

1

C

C

C

C

C

C

A

:

Finally, then, noting the multipliities of inequivalent generially irreduible representations at

level i we have

5

2

+ 10

2

+ 6

2

:(1 + 1) + 1

2

:(1 + 2

2

+ 1) = 203 (23)

whih oinides with the total dimesion, so we have, for example, the omplete set of inequivalent

irreduible representations for the semi-simple ases. Note that all the i = 3 representations

redue to (diret sums of) the same representation in D

n

(Q), beause none of the permutations

an atually be realized in this subalgebra.
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6.2.2 The `algebra' P

�

n

(Q)

Sine we know the struture of the symmetri group (algebra) �

i

(see, for example, [20, 21℄) it

behoves us to divide up our analysis by �rst onsidering the `ompletely �-symmetrised algebra',

P

�

n

(Q), whih we de�ne below (and in whih the symmetri group e�et is quotiented out). The

rest will then follow from hanging the left �

i

module in propostion 11.

De�nition 18 We de�ne an equivalene relation � on S

m

by A � B i� they are the same up to

a permutation of the onnetions made by the onnetivities from t = 0 (unprimed elements) to

t = T (primed).

That is to say, if A � B then the onnetions amongst unprimed nodes are the same, the onne-

tions amongst primed nodes are the same, the number of instanes of primed and unprimed nodes

in the same part are the same, and the subset of nodes in suh mixed parts is the same. So in ase

of two parts in a partition having both primed and unprimed nodes, the primed nodes in one an

be swapped for the primed nodes in the other without hanging the � equivalene lass. We will

give an alternative de�nition later.

We write P

�

n

= P

n

(Q)= � for the `quotient' obtained by the linear extension to P

n

(Q).

In this ase there is a Dira bra-ket notation for �-osets of S

m

. Every oset may be written

uniquely in the form ja >< bj where a; b 2 S

n

(i) for some i (onversely every suh pair de�nes a

unique oset). There is then an inner produt < bj > in eah P

n

[i℄= �, obtained from

ja >< bjj >< dj =< bj > ja >< dj: (24)

Note that the inner produt is symmetri. In the sense of equation 24 the set S

n

(i) forms a basis

for a representation of P

n

[i℄= �, and hene of P

n

(Q)= � and of P

n

(Q).

Proposition 12 The n + 1 representations of P

n

(Q)= � with bases S

n

(i) (i = 0; 1; 2; ::; n) and

anonial ation (up to the P

n

I

i�1

P

n

quotient) are eah irreduible, exept at the roots of a �nite

order polynomial in Q.

Outline proof: For all b 2 S

n

(i) the power of Q given by < bjb > is not exeeded by any < bj >;

and there exists at least one b suh that < bjb > is the unique maximum power of Q for any < bj >

(spei�ally any b of exatly n parts, for whih < bjb >= Q

n�i

). It follows that the determinant of

the Gram matrix [17, 18℄ is polynomial in Q with oeÆient of the leading power unity. Therefore

the inner produt is non-degenerate and the Gram matrix is simple in ase Q is an indeterminate.

Taken with the outer produt also impliit in equation 24 this ensures that the representation

with basis fja >: a 2 S

n

(i)g is surjetive, sine there exists another basis fj� >g (say) for whih

< �j� >= Æ

��

so that fj� >< �j : �; � 2 S

n

(i)g is a omplete set of elementary matries. QED.

Corollary 12.1 These representations are inequivalent.

We will abuse the symbol for the set S

n

(i) to denote also the left P

n

(Q) module it spans.

Corollary 12.2 Any representation of P

n

(Q) built from proposition 11 with � an irreduible �

i

module is irreduible for Q indeterminate.
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Corollary 12.3 P

n

(Q) is semi-simple for Q indeterminate and for all Q 2 CI exept for the roots

of a �nite order polynomial in Q for any �nite n.

Proof: We have at least two proofs! Firstly, by noting that eah of a omplete set of indeomposable

projetive modules is in fat simple (the above proposition taken with orollary 1.1). Seondly, by

ounting and ombinatoris: the irreduible representations aount for the full dimension of the

algebra. We will show this expliitly in the next setion. Thirdly, by another ounting argument -

see setion 5.

The Bratelli diagram for the restrition orresponding to P

�

n

(Q) � P

�

n�1

(Q) on these irreduible

representations is as follows, with top line n = 0, and leftmost olumn i = 0 (i.e. generated by

I

0

for eah n). We write only the dimension for eah module, thus starting with P

0

= CI , then

P

1

= CI 1�CI U

1:

, we have

1

" -

1 1

" -% "" -

2 3 1

" -% "" -%% """ -

5 10 6 1

" -% "" -%% """ -%%% """" -

15 37 31 10 1

" -% "" -%% """ -%%% """" -%%%% """"" -

52 151 160 75 15 1

" -% "" -%% """ -%%% """" -%%%% """"" -%%%%% """""" -

203 674 856 520 155 21 1

(25)

and so on. These restritions are fored by proposition 5 - .f. [3℄. To see this note that the

morphism of ategories in the orollary to theorem 1 takes a layer of the above diagram to the

layer below it (eah node is mapped vertially down, sine the idempotent e

n

uts at most one

onnetion, e.g. e

2

P

2

e

1

e

2

! P

1

e

1

and P

2

e

2


 P

1

e

1

! P

2

e

1

e

2

). The 1 at the right hand side

of the lower layer is missing in this map, of ourse, as this is the trivial representation of �

n

.

Consequently (i.e. as a knok on e�et from the previous layer) the restrition information for

the next two modules to the left - S

n

(n � 2) and S

n

(n � 1) - is inomplete. However, the only

possibility is for the restritions to inlude some opies of the trivial representation, and these may

be �lled in by dimension ounting (we know the dimensions of all S

n

(i), as we will see shortly) or

by noting that, with Id

k

the k � k identity matrix denoting multipliity k,

n�1

# S

n

(n� 1) = Id

n




trivial representation

z }| {

S

n�1

(n� 1) �S

n�1

(n� 2)
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(the multipliity n ours sine there are n�1 ways in whih the n

th

node an be in a primed part

in S

n

(n� 1), and one way in whih it an be in an unprimed part on its own) and

n�1

# S

n

(n� 2) =

(Id

n�1


 S

n�1

(n� 1))� (Id

n�1


 S

n�1

(n� 2))� S

n�1

(n� 3): (26)

For example, omitting node 3 in S

3

(2) we get

f((1)

0

(23)

0

); ((12)

0

(3)

0

); ((13)

0

(2)

0

); ((1)

0

(2)

0

(3)); ((1)

0

(2)(3)

0

); ((1)(2)

0

(3)

0

)g

! f((1)

0

(2)

0

); ((12)

0

); ((1)

0

(2)

0

); ((1)

0

(2)

0

); ((1)

0

(2)); ((1)(2)

0

)g = S

2

(1) + 3:S

2

(2):

Note again that in omitting the last node (n) in this mnemoni if we have a part of the form

(ij:::mn) (i.e. unprimed) then this maps to (ij:::m)

0

, sine the ation of generators here is as if the

part is onneted to something!

We may generate bases for the representations in a row of equation 25 from those in the preeed-

ing row in suh a way that the intertwiner between representations orresponding to equation 26 is

lower unitriangular (.f. [18, 19℄). The rules for using basis states from S

n�1

(i) to onstrut basis

states at level n are:

1.(down left, i.e. to i � 1) take a primed braket, put in element n and remove the prime

(generates i new states from eah state);

2.(down, i.e. to i) add (n) or insert n into any primed braket (i + 1 new states from eah

state);

3.(down right, i.e. to i+ 1) add (n)

0

.

It follows from our restrition rules that this onstrution preserves the restrition subbloks in

the order of equation (26), but with some additional entries below the blok diagonal. The �rst

few bases are then as below (we have indented olumns to indiate the separation into restrition

subbloks):

(;)

((1)) ((1)

0

)

((1)(2)) ((1)(2)

0

) ((1)

0

(2)

0

)

((12)) ((1)

0

(2))

((12)

0

)

((1)(2)(3)) ((1)(2)(3)

0

) ((1)(2)

0

(3)

0

) ((1)

0

(2)

0

(3)

0

)

((12)(3)) ((12)(3)

0

) ((1)

0

(2)(3)

0

)

((1)(23)) ((1)(2)

0

(3)) ((12)

0

(3)

0

)

((13)(3)) ((1)

0

(2)(3)) ((1)

0

(2)

0

(3))

((123)) ((12)

0

(3)) ((1)

0

(23)

0

)

((1)(23)

0

) ((13)

0

(2)

0

)

((13)

0

(2)

0

)

((123)

0

)

((1)

0

(23))

((13)(2)

0

)

:
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The usefulness of this onstrution lies in omputing determinants of Gram matries (and hene

ultimately the exeptional struture of P

n

(Q)). For example the representation

2

# S

3

(2) is given

by

U

1:

=

0

B

B

B

B

B

B

�

p

Q

0 0

1

p

Q

0 0

0 0 0 0

1

p

Q

0 0 0 0

0 0 0 0 0 0

1

C

C

C

C

C

C

A

;U

12

=

0

B

B

B

B

B

�

0 0

p

Q

0 0

p

Q

0 0

p

Q

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

1

C

C

C

C

C

A

;U

2:

=

0

B

B

B

B

B

B

�

0

0

p

Q

0

1

p

Q

0

0 0 0 0

0 0 0 0 0

0

1

p

Q

0 0 0 0

1

C

C

C

C

C

C

A

(all omitted entries zero) so the intertwiner takes the form

W =

0

B

B

B

B

B

B

�

1

0 1

0 0 1

0 0 0 1

X Y Z � 1

Y X Z �  1

1

C

C

C

C

C

C

A

where X =

Q�1

Q(Q�2)

, Y =

1

Q(Q�2)

, X + Y + Z = 0 and the other onstants will be determined

shortly. The Gram matrix � for the inner produt at n = 3, and the omposite matrix �

0

at n = 2

are

� =

0

B

B

B

B

B

B

�

Q 0 1 0 1 0

0 Q 1 0 0 1

1 1 1 0 0 0

0 0 0 Q 1 1

1 0 0 1 1 0

0 1 0 1 0 1

1

C

C

C

C

C

C

A

; �

0

=

0

B

B

B

B

B

B

�

Q 0 1 0 0 0

0 Q 1 0 0 0

1 1 1 0 0 0

0 0 0 A 0 0

0 0 0 0 B 0

0 0 0 0 0 C

1

C

C

C

C

C

C

A

:

The onstants A;B;C will be determined, they arise beause the irreduible inner produts on-

tained here (on the diagonal) are only unique up to a salar fator (a basis hange in general).

Now putting � = W�

0

W

T

we obtain � = � = 1=Q,  =

�1

Q�3

and A = Q, B =

(Q�1)(Q�3)

Q(Q�2)

,

C =

(Q�1)(Q�4)

Q(Q�3)

. Altogether det(�) =det(�

0

) = Q(Q � 2)ABC = (Q � 1)

2

(Q � 4). This deter-

minant tells us how the irreduible representation ollapses at speial values of Q (.f. [10, 18℄).

Even in this example it is notable that all polynomials fatorize over the integers.

6.3 General n (general symmetry)

For � ` i let us allow �

�

now to symbolize the whole simple �

i

module assoiated to the partition

� (.f. [18, 21, 22, 23℄, say). Then for P

n

(Q) the generi simple modules may be realised as

S

n

(i)


i

�

�

where the produt is as disussed in setions 6.2 and 6.2.1.

The restrition rule here is given by
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Proposition 13 For . meaning "one box added to" ([21℄) the restrition from P

n

to P

n�1

is

n�1

# (S

n

(i)
 �

�

) =

 

M

�

0

.�

(S

n�1

(i+ 1)
 �

�

0

)

!

�

 

M

�

0

/.�

(S

n�1

(i)
 �

�

0

)

!

�

M

�

0

/�

(S

n�1

(i� 1)
 �

�

0

) : (27)

For example, abbreviating modules on the right to their partitions and denoting multipliity 3 by

3:()

#

�

S

n

(3)
 �

(2;1)

�

�

=

(2; 1

2

)� (2

2

)� (3; 1)

M

(1

3

)� 3:(2; 1)� (3)

M

(1

2

)� (2):

Proof: The middle term in equation (27) is present beause there are i ways of having node n in a

primed part (so we an ignore it exept in as muh as it makes that part distinguishable) and one

way of having it in a part on its own - altogether equivalent to indution followed by restrition

on the �

�

fator.

The �rst sum is present beause if n is in an unprimed part then in the restrition this part

behaves as a new primed part. This is beause the part is still onneted to n, so isolating it (from

n) would hange the state, as it would if it were a primed part. The symmetri group fator thus

moves to �

i+1

, and the � module here is indued from �
2 in the usual way [21℄.

Finally, the last term omes from elements in whih n is in a primed part alone. Then disarding

it a�ets the � module just like ordinary one box restrition. QED.

Note that this is onsistent with the symmetrised quotient ase - assoiated to eah of the

entries in olumn i of the Bratelli diagram drawn there we have here a representation for eah

partition � of i, of dimension jS

n

(i)j:j�

�

j.

As noted in orollary 12.3, it follows from theorem 1 that fS

n

(i)


i

�

�

: i = 0; 1; :::; n;� ` ig

is a omplete list of generi irreduibles. We an hek this another way - sine it is not obvious

that the dimension ounting generalising equation 23 works here, but it does! Let us write d

n

(i)

for the dimension of the i

th

representation in row n (the i

th

olumn, ounting the left hand olumn

as olumn 0). Then the total dimension of P

n

(Q) is bounded below by

n

X

i=0

(i)!(d

n

(i))

2

= jS

m

(0)j

( m = 2n). The identity is readily proved - the number of ways of moving along arrows from S

2n

(0)

to S

n

(i) in the Bratelli diagram above is exatly i! times the number of ways of moving from position

S

n

(i) to S

0

(0), and the latter number is jS

n

(i)j = d

n

(i). On the other hand jS

m

j = jS

m

(0)j so the

bound is saturated. We thus have the omplete struture for all semi-simple ases.

Let us go into this in a little more detail. De�ne operators m

d

; h; h

y

on CI

1

by their ations on

the standard ordered basis fjii : i = 1; 2; 3; :::g

m

d

jii = ijii
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hjii = ji+ 1i

h

y

jii = ji� 1i (h

y

j1i = 0)

and de�ne M = m

d

+ h and M

0

= m

d

+ h +m

d

h

y

. For example, as an in�nite matrix we have

(with omitted entries zero)

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

�

1

1 2

1 3

1 4

1 5

1 6

1 7

::: :::

:::

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

Then with the usual hij = jii

y

(so hijji = Æ

ij

) we readily see that if

De�nition 19 S

m

[i℄ is the subset of S

m

of elements with i parts

(not the same as S

m

(i), whih is not a subset) then

jS

m

[i℄j = hijM

m�1

j1i

(Stirling numbers of the seond kind) so that altogether

jS

m

j =

X

i

hijM

m�1

j1i

(these work for any m, not just 2n). Note that as m grows

jS

m+1

j

jS

m

j

is bounded by the largest

eigenvalue of m

d

(i.e. it is unbounded!). Furthermore

d

m

(j) = jS

m

(j)j =

X

i

(i)!

(i� j)!j!

hijM

m�1

j1i

= hj + 1j(M

0

)

m�1

j1i (28)

(this last identity is not so obvious!). In any ase, puting j = 0 we get jS

m

j = jS

m

(0)j.

Note that for �xed j the ratio

d

m

(j)

d

m�1

(j)

is unbounded at large m (.f. the Potts model represen-

tation).

6.4 The struture of D

n

(Q)

In P

n

(Q) the i

th

entry in eah row of the Bratelli diagram 25 orresponds to many representations

(one for eah partition of i), The only di�erene for D

n

(Q) is that the rightmost (n

th

) entry

orresponds not to one representation for eah � ` i, but to a single one dimensional representation.

This arises from the impossibility of any transverse movement of n distint onneted lines on a

graph with only n nodes in eah lateral subgraph. All the permutation representations ollapse to

diret sums of a trivial representation of the identity.
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7 On generalisations of P

n

(Q)

We desribe here some of the basi building bloks of a ategorial version of P

n

(Q). This gen-

eralises the TM formalism to the general `surgery' of partition vetors [3℄ on lattiised manifolds,

whih will be developed further elsewhere. It is also useful here for a di�erent perspetive on

several earlier de�nitions.

De�nition 20 (`Internalisation') For N �M and K the �eld of rational funtions in Q de�ne

In

N

: S

M

! KS

N

(N �M)

by

In

N

: A 7! Q

f(A)

A

0

where A

0

is obtained by deleting all elements of M not in N from A, and f(A) is the number of

empty brakets this formally leaves (empty brakets are in pratie omitted from A

0

).

For example, with M = f1; 2g; N = f1g

((1)(2))! ((1)())! Q((1)):

Then with N � M [ P and Ag(A;B) = Q(A [ B) we have a omposition P

N

de�ned by

ommutativity of the following diagram:

S

M

� S

P

P

N

�! KS

N

Ag

& S

M[P

In

%

: (29)

The produt P of setion 2 is the speial ase jM j = 2n, jP j = 2n, jM \ P j = n, N =

M [ P �M \ P (jN j = 2n).

In general terms the physial interpretation of this omposition is as follows. The sets S

M

and

S

P

represent the boundary on�guration spae bases for two disjoint (Q-state Potts model-like)

statisitial mehanial systems with spins on their boundaries labelled by the objets of M and P

respetively. Aggregation identi�es part of one boundary (possibly empty, in general) with part

of the other, thus ombining the two systems. Internalisation then removes this part from the

boundary to the interior (in ase N =M \ P ) or, more generally, removes some other part to the

interior. This is the TM omposition generalised to the partition vetor [3℄ formalism.

The above onstrution is for the ase in whih eah boundary subgraph of the statistial

mehanial lattie is the omplete graph for the boundary nodes. The main physial interest

omes in restriting this, and also the interior of the lattie, to sparser (e.g. hyperubial) graphs

- .f. [10℄.

7.1 Outer and Inner produts on S

m

(i) and S

m

Reall that S

m

(i) is the set of possible ways of attahing a distinguishing mark to eah of any i of

the parts of eah element of S

m

. For example

S

3

(2) = f((12)

0

(3)

0

); ((13)

0

(2)

0

); ((1)

0

(23)

0

); ((1)

0

(2)

0

(3)); ((1)

0

(2)(3)

0

); ((1)(2)

0

(3)

0

)g:
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De�nition 21 For N �M de�ne a variation on internalisation

In

0

N

: S

M

!

[

i

S

n

(i)

where In

0

N

(A) is obtained by �rst (as a formal intermediate step) replaing every element in A

not in N by a dot, then disarding every part onsisting purely of dots, then priming eah part

ontaining at least one dot.

For example, with M = f1; 2; 3; 4g; N = f1; 2g

((13)(2)(4))! ((1:)(2)(:))! ((1)

0

(2)):

Let us de�ne a standard form for writing out a partition in S

m

or S

m

(i), i.e. a standard order

for the objets in a part and the parts in a partition. The �rst will be the usual natural order of

the natural numbers, the seond will be the order obtained by writing out the part ontaining 1

�rst, then the part ontaining the lowest number not ontained in the �rst part, and so on (e.g.

((123)(49)(578)(6))

is in standard form).

Let us de�ne a series of maps. Firstly

De�nition 22 (`Expansion') For P a permutation of f1; 2; :::; ig de�ne

Ex

P

: S

m

(i)! S

m+i

(30)

by

Ex

P

: a 7! A

where A is the partition obtained from a by inserting element m + P (k) into the k

th

primed part

(when written in the standard form).

For example, for the trivial permutation P = 1 we have

Ex

1

((123)

0

(4)(56)

0

)) = ((1237)(4)(568)):

Note that

In

0

M

(Ex

P

(a)) = a:

Now onsider S

I\J

where I \ J = ;, then eah A 2 S

I\J

indues a relation R(A) � I � J via

(a; b) 2 R(A) i� a �

A

b.

De�nition 23 (`Projetion') De�ne

Pr : S

I[J

! K�

i

by

A 7! Pr(A)

where Pr(A) = R(A) if R(A) is an isomorphism and Pr(A) = 0 otherwise.
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Note that in order to have a onrete realisation of R(A) 2 �

i

we need to adopt an isomorphism

to at as identity. In pratie there is usually a natural hoie (see later).

For example if I = f1; 2g; J = f1

0

; 2

0

g then the identity isomorphism might as well take i 7! i

0

so

Pr(((12

0

)(21

0

))) = (12); P r(((1)(1

0

)(22

0

))) = 0

where (12) means the permutation in yle notation (not an element of S

m

!).

We then de�ne an inner produt on S

m

(i)

S

m

(i)� S

m

(i)! K

(a; b) 7! hajbi (31)

by the omposite map

S

m

(i)� S

m

(i)

Ex

1

�Ex

1

�! S

M[I

� S

M[J

Ag

! S

M[I[J

In

! KS

I[J

1�Pr

�! K�

i

! K

where in the seond artesian produt we want to distinguish the sets I and J , both neessarily

of order i, suh that I \ J = ;, but not distinguish the �rst and seond ourene of the set M .

It is notationally onvenient to take J = I

0

(i.e. i

0

2 J i� i 2 I). The Pr map is present to take

aount of the irreduible representation �ltration quotient (see later).

For example

((12)(3)

0

)� ((1)

0

(23)) 7! ((12)(34))� ((14

0

)(23)) 7! ((12344

0

)) 7! ((44

0

)) 7! 1:1

(in the seond expression we have distinguished I and J by a prime on elements of J , as suggested

above) and

((1)(2)(3)

0

)� ((1)

0

(2)(3)) 7! ((1)(2)(34))� ((14

0

)(2)(3))

7! ((14

0

)(2)(34)) 7! ((4

0

)()(4)) = Q ((4

0

)(4)) 7! Q:0 = 0:

We de�ne an Outer produt for eah P 2 �

i

Out

P

: S

m

(i)� S

m

(i)! S

M[M

0

(a; b) 7! jai

P

hbj (32)

where M and M

0

are disjoint of order m, by the omposite map

S

m

(i)� S

m

(i)

Ex

1

�Ex

P

�! S

M[I

� S

M

0

[I

Ag

! S

M[M

0

[I

In

! S

M[M

0

:

Note that Out

P

is injetive. The ranges of Out

P

for eah P and i are manifestly disjoint. The

union over all these disjoint ranges is S

2m

. This is proved by the same ounting argument as for

the irreduible representations.
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There is a generalisation of the outer produt to S

m

(i)�S

n

(i) with m 6= n. This is more easily

onstruted in reverse, so....

Conversely, for any partition of set M into two disjoint subsets N;R (not neessarily of the

same order) there is a map from

S

M

!

[

i

[

P2�

i

S

n

(i)� S

r

(i)� P

given by

A 7! (In

0

N

(A); In

0

R

(A); P )

where P is the isomorphism from primed parts of In

0

N

(A) to primed parts of In

0

R

(A) realised by

A.

This is the inverse of the outer produt.

We note the apaity for a diadi form for the produt P

N

de�ned in the previous subsetion

(but with a �ltration quotient in operation)

jai

P

hbj:ji

P

0

hdj = hbji jai

PR(A)P

0

hdj

where R(A) is as in the de�nition of the inner produt.

Here are a ouple of all singing all daning examples:

A = ((12)(31

0

2

0

5

0

)(44

0

)(566

0

)(3

0

)) 7! j((12)(3)

0

(4)

0

(56)

0

)i

1

h((125)

0

(3)(4)

0

(6)

0

)j

B = ((1)(2)(341

0

)(54

0

6

0

)(62

0

3

0

5

0

)) 7! j((1)(2)(34)

0

(5)

0

(6)

0

)i

(23)

h((1)

0

(235)

0

(46)

0

)j

but

h((125)

0

(3)(4)

0

(6)

0

)jj((1)(2)(34)

0

(5)

0

(6)

0

)i 7! 1:(12)

so altogether we have (with permutation 1:(12):(23) = (132))

j((12)(3)

0

(4)

0

(56)

0

)i

(132)

h((1)

0

(235)

0

(46)

0

)j 7! ((12)(34

0

6

0

)(41

0

)(562

0

3

0

5

0

)) = AB

as required.

Finally let us give an alternative de�nition of the equivalene � on S

2m

. We have that A � B

i� there exist permutations P;Q and elements a; b 2 S

m

(i) for some i, suh that

B = Out

P

((a; b)) = jai

P

hbj A = Out

Q

((a; b)) = jai

Q

hbj:

For example

((1233

0

)(41

0

2

0

)(4

0

)) � ((1231

0

2

0

)(43

0

)(4

0

))

sine the former is Out

P

((((123)

0

(4)

0

); ((12)

0

(3)

0

(4)))) with P = (12) while the latter is

Out

1

((((123)

0

(4)

0

); ((12)

0

(3)

0

(4)))):
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8 Disussion

We have ompletely determined the generi struture of the algebra whih ontains the Potts

model and dihromati polynomial representations of the Temperley-Lieb algebra for statistial

mehanis in arbitrary dimensions. These results govern the subalgebras appropriate for models in

�xed dimensions. In subsequent work with H. Saleur [10℄ we examine these subalgebras in detail,

using the �ltering system established here.

We will determine the generi irreduible ontent of the Potts model representations. In par-

tiular, we will show that sine the irreduible representations onstruted here grow with n faster

than Q

n

for any Q (.f. equation (28)) then the existene of the Potts representations ensure that

at least some of the positive integer Q algebras are exeptional in any dimension. This means

that extra symmetry turns up to simplify the spetrum (i.e. the long distane properties) of these

models, as it does in two dimensions. In two dimensions this e�et is losely related to a `rational'

onformal symmetry of the ritial �eld theory limit [8℄. In other dimensions it requires further

investigation.

We will examine the non-generi representation theory of the partition algebra.

We will also use the sheme developed here as the basis for an analysis of the in�nite Full

Temperley-Lieb algebras, and to �nd out whih of the in�nity of irreduible representations are

relevant for physis, and why.

Note that the subset of S

M

ontaining partitions with only even numbers of elements in eah

part generates a subalgebra of P

n

(Q). The subset ontaining partitions with exatly two elements

in eah part generates the Brauer algebra (ompare �gure 1 with [11℄).
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