TEMPERLEY-LIEB ALGEBRAS FOR NON-PLANAR
STATISTICAL MECHANICS - THE PARTITION ALGEBRA CONSTRUCTION

Paul Martin *

Abstract We give the definition of the Partition Algebra P,(Q). This is a new generalisation
of the Temperley-Lieb algebra for ()-state n-site Potts models, underpinning their transfer matrix
formulation on arbitrary transverse lattices. In P,(Q) subalgebras appropriate for building the
transfer matrices for all transverse lattice shapes (e.g. cubic) occur. For @) € € the Partition
algebra manifests either a semi-simple generic structure or is one of a discrete set of exceptional
cases. We determine the @)-generic and J-independent structure and representation theory. In
all cases (except @ = 0) simple modules are indexed by the integers j < n and by the partitions
A F j. Physically they may be associated, at least for sufficiently small j, to 2j ‘spin’ correlation
functions.
We exhibit a subalgebra isomorphic to the Brauer algebra.

1 Introduction

In the ordinary transfer matrix approach to computation in classical statistical mechanics an
Euclidean space is resolved into one ‘time’ and (d—1) ‘space’ directions (the Minkowskian labels are
purely a notational convenience). The transfer matrix (TM) then describes the states of a complete
space-like layer evolving through a single, or at least minimal, time step [1]. For example, in one
common formulation the transfer matrix is a product of two types of single interaction matrices -
those incorporating interactions which occur within a single time layer, and those which connect
two adjacent time layers [2]. T It is often possible to resolve the single interaction transfer matrix
into a scalar function of the temperature parameter plus a constant matrix [3]. The algebra of
these matrices is the TM algebra.

In two dimensions the TM layer for the planar square lattice of width L sites may be thought
of as a chain of L sites (each supporting the projection of a time-like bond) and L — 1 space-like
bonds. The transfer matrix algebra is generated by a corresponding chain of 2L — 1 matrices.
A large class of statistical mechanical models inculding @-state Potts, 6-vertex, IRF models and
dichromatic polynomials is characterized by the fact that the interaction matrices for these models
provide a representation of the Temperley-Lieb algebra T>r,(Q) [4]. In general, for n a natural
number, and @ a complex number or indeterminate, T,,(Q) is a unital (associative) algebra over
C with generators < 1, U; (i =1,2,..,n — 1) > and relations:

U =QU; (1)
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TThen again in two dimensions the symmetry between the space and time projections facilitates a more sym-
metrical choice [4] - sometimes called left and right light cone interactions.




UiUit1U; = U; (2)
(Ui, U] =0 li —jl # 1. (3)

In this notation the odd numbered indices correspond to matrices building timelike (also called
longitudinal) bond Potts interactions, those even numbered give spacelike (transverse) bonds. The
rough parity between the two types is a special feature of two dimensions, so it will be convenient
to replace it in what follows with the equivalent but more versatile notation:

U1 =U;  i=1,2,.,L

Usi =Usipn  i=1,2,.,L—1.

If we number the nodes of our transfer matrix chain from 1,2, ..., L then we see that U;. is associated
to the i** node and Uj;;1 to the bond between nodes i and i + 1.

Consider now the complete unoriented graph of n nodes, here called n, and all those subgraphs
G C n obtained by removing bonds (edges) from the complete graph.

Definition 1 We define T¢(Q), the Full Temperley-Lieb algebra of the graph G [3], to be the
unital algebra over @ with generators

<1, U; (7, =1,2, ..,TL), Ui]' = Uji (edge (’L,]) € G) >

and relations:
U’ =/QU (4)

(any indices)

U, Ui;U;. = U;. (5)
U;jU;. Uiy = Uy, (6)
Ui, U] = [Usj, Un] = Ui, Urs) =0 i #k,j. (7)

For example, with G = A,,, the n node chain graph, we recover the original Temperley-Lieb algebra
It follows from the definition of the Potts model [2] and dichromatic polynomial [5] that the
relations of T (@) are an appropriate generalization (of the transfer matrix algebra relations for
the chain, T4, (Q)) for building a transfer matrix layer of shape G [3] - that is, for overall lattice
shape G x Z. 1
In other words, for those statistical mechanical models which have a suitable generalization
onto a lattice with spacelike layer G, such as the Potts model (defined by Hamiltonian

H= B Z 60; oj (8)

(ij)EGXZ

T This graph G corresponding to the shape of physical space is not to be confused with the configuration space
graphs of Pasquier and Saleur [6], which work only for the two dimensional case. For example, G a square lattice
here produces a cubic lattice statistical mechanical model.



where (8 is essentially an inverse temperature variable) the TM algebra provides a representation
(abstractly, a quotient) of this algebra. The transfer matrix itself is a representation of the element

n
Tw) =] (vl + \/éU) 1 (1 + LU) 9)
i=1 (ij)ea V@
where v = exp(8) — 1. The Potts representation is given explicitly in [3] By well known arguments
[1, 3, 7] the irreducible representations of Tz(Q) which compose this representation are efficient
blocks to use in computing the TM spectrum. The irreducible structure of Tz (@) is thus important
for extending computation in statistical mechanics to three and higher dimensions.

On the other hand, whilst the G = A, algebra is finite dimensional for finite n, and typi-
cally faithfully represented by the finite dimensional physical transfer matrices, we will show that
for general G the Full algebra is wusually infinite dimensional (we will also examine the special
conditions under which dim(T¢) is finite). Since the physical transfer matrices usually remain
finite dimensional in higher dimensions (for finite systems) one problem is to find explicitly the
finite dimensional quotients of the Full algebra appropriate for these physical systems. In two
dimensions the exceptional cases of (), where the G = A,, algebra is not faithfully represented in
physical transfer matrices, constitute perhaps the most interesting sector of all, corresponding to
models with unitary conformal field theory limits [8] (or, more simply, lots of extra symmetry in
the long distance properties). By establishing the physically appropriate generic algebra in other
dimensions we develop a procedure for investigating the analogous situation there.

In this paper we find the quotient algebra for several models. We introduce the Diagram algebra
of G, D&(Q), which is finite dimensional for any finite G. Each TM algebra is either a quotient
or the whole of D (Q). We examine the structure and representation theory of this algebra from
the point of view of someone wanting to optimise computation in statistical mechanics. This is
without regard to the possibility of a star-triangle like diagonalization manoeuvre (which is in any
case widely studied elsewhere [9], with great skill but somewhat limited success).

We begin (in section 2) by introducing a closely related algebra, the Partition algebra P, (Q),
which is not a quotient of T (@), but which also has subalgebras indexed by a graph. This provides
a key organisational link between the physical and abstract algebras we have described. We will
indulge in a very careful abstract formulation, anticipating the need for a possible generalisation to
encompass ‘Full Hecke algebras’. In section 3 we prove some technical results which are central to
the structure analysis of P,(Q), and hence T¢(Q). It will come as no surprise to physicists to learn
that the G = n or ‘mean field limit’ case is one of the easiest to analyse for any of these algebras.
We deal with this in full detail (in section 4), as it is a useful envelope guide for the more complex
subalgebra structures. These are addressed in [10]. In section 5 we generalise the construction from
the TM to the partition vector formalism [3], in the process providing alternative (and hopefully
illuminating) versions of some earlier definitions. We conclude with a discussion, pointing out an
inclusion of the Brauer algebra [11] and mentioning some outstanding problems.

2 Set theory preamble

The Partition algebra P,(@) is a finite dimensional algebra which includes a quotient of the Full
algebra, and which will play the crucial role in our analysis. This algebra can be introduced in
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Figure 1: Pictorial realisations of parts in a partition of {1,2,3,4,5,1',2',3',4',5'} as clusters (4
and B); and composition of partitions (AB) by juxtaposing clusters (c.f. page 868 of [11]).

a number of different ways, depending on the level of generality required (lattices can be ‘grown’
in more exotic ways than simple TM layering, and there exists a general algebraic framework to
reflect this). Here we will stick to the ordinary TM formalism. In section 7 we will give a more
general version.

The following ideas arose in considering the dichromatic polynomial formulation of the Potts
model - see [2, 3, 5] and references therein. The formalism we use is abstracted far from this
physical picture. It has the merit, however, of versatility, and of making proofs simple. Those
wishing extra intuitive support might study the above references.

In short the Partition algebra is summarized by the example in figure 1. We now elaborate on
this summary and introduce notation.

2.1 On Partitions of a set M

Recall

Definition 2 For a set M the power set Uy is the set of all subsets of M.
so the order of the set | Uy | = 2!™ [12]. Let us introduce

Definition 3 For k a natural number U, = U 1 where U, = M.
M



Definition 4 Let LI, be the subset of U3, such that A € L,, implies
U Az = M7
A;€EA

i.e. every element of M is an element of at least one element of A.

Definition 5 Define the set Sy of equivalence relations on, or partitions of, a set M of m dis-
tinguished objects

Sar = {(M1) (Ms)....(M;)...) -

For example, if M is the set of the first m natural numbers
Sprey = {((12)), ((1)(2)}

Sp2say = {((1234)), (1)(2)(3)(4)), (123)(4)), ((124)(3)),
((134)(2), ((234)(1)), (12)(34)), ((13)(24)), ((14)(23)),
((12)(3)(4)), ((13)(2)(4)), ((14)(2)(3)), ((23) (1) (4)), ((24)(1)(3)), ((34)(1)(2)) }-

Note that (up to redundant punctuation) Sy, is a subset of LI,,. In discussing general properties
of Sy depending only on the order |M| = m we may write S,, for Sy;.

In an element of Sy, we call the individual equivalenced subsets of the set of objects ‘parts’.
Thus (M;) = (123) is a part of the partition ((123)(4)), and so on. Clearly the various partitions
have ‘shapes’ like the m box Young diagrams, with the objects inserted into the shapes in all pos-
sible ways - ignoring order within a row, so the number of partitions of shape A = (A", \5?, A2, .))
(With A > /\i+1; Zz piXi = m) is

m!

[T ((A)H™ (i)

The set Sy is finite for finite m. Its order is the sum of Stirling numbers of the second kind at
level m (see, for example, [13] and references therein). It is computed in a more general context -
which will be useful later on - in [3, 14] (also see section 6.2.2). The first few values are:

Dy =

m |1 23 4 5 6 7 8 9 10 11 12 13

[Spm| |1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437

We write i ~4 j in case objects i, are in the same partition in A € Sy, so the relation ~4 is

transitive, reflexive and symmetric.



We will be mainly interested in the case m = 2n. We will then write our 2n objects simply as
M={1,2,3,...,n,1,2" 3" .. ,n'}. (11)

Before we proceed it will be useful to have a little more technical hardware. For M a set as
in list 11 it will be convenient to write M’ for the set obtained by priming all the elements of M
(e.g. {1,1'} = {1',1"}). If A is a partition of M we then write A’ for the corresponding partition
of M’

Definition 6 (Transitive completion of A € Li,,) Let
Q:Uy = Su
be defined by i ~2A) j if there exists Ay € A such thati,j € Ay.

For example Q({{1,2}{2,4}{3}{4,5}}) = ((1245)(3)).

2.2 The Partition algebra P,(Q)

For M as in equation 11

Definition 7 Let

f : SM X SM — Z
be such that f((A, B)) is the number of parts of Q(AU B') € Syrume (note that |M U M'| = 3m)
containing exclusively elements with a single prime.
For example  Q(((12)(1')(2')) U ((11")(2)(2))") = ((12)(1'1")(2')(2")) so f((4,B)) = 1.
Definition 8 Let

C: SM X SM — SM

be such that AB = C((A, B)) is obtained by deleting all single primed elements of Q(A U B')
(discarding the f((A, B)) empty brackets so produced), and replacing all double primed elements
with single primed ones.

TTransitivity of ~ means that Q is such that for A = (A1, As, ..., Aj,...) € U,, then Q(A) = ((My), (M>), ...), say
(c.f. equation 10), is such that A; ﬂ Ay, # 0 implies that there exists M; D Aj (] Ax; and for each M; there exists
alist K = {k1, k2, ...} such that M; = U].GK Aj and there is no partition of K into 2 non-empty parts Ky, K2 such

(Ye)n(ye)-

It is apposite to give a ‘colouring’ interpretation of Q: Suppose we have any ‘colouring’ of M
g: M —-M

such that for each i all the elements of A; have the same colour, i.e. g¢(A;) has a single element. Then since
a,b € A; now means a, b coloured the same, necessarily g(M;) has a single element for M; any part of Q(A). Now
suppose we choose g so that g(M) has the maximum number of different colours consistent with the constraint.
Then g(M;) = g(Mj) implies i = j.



Definition 9 For @@ an indeterminate and K the field of rational functions of Q@ we define a
product [3, 14]
P Sy xSy — KSy (12)

P:(4,B) = AB = QT((AP)C((A, B)).

An alternative form of this definition is given in a more general setting in section 7.
For example,

((1234)(1'3")(2')(4")(5)
((1234)(1'

(112')(233') (44') (3)(5)) 2

) (
(2)(4")(5)(5") (1'172")(2'3'3")(4'4")(5')(5"))
((1234)(1'3'1""2"3"2")(4'4")(5)(5") (5"))

— ((1234)(1"2"3")(4")(5)()(5")) = Q. ((1234)(1"2'3")(4)(5)(5")).
The quickest way to see this is with the picture - figure 1. There are some other pictorial

examples in section 5.1.
Note that C' = C((A, B)) is such that

i~ iff 3 sequence ki, ks,...,koy1 € M st
i~k and

kop—1 ~P kap Kby, ~* Kb, forp=1,2,..,1, and

5/
)

[SUR

L e

karpr ~P 5!
(a sequence of length 1, i.e. I =0, is allowed); and
i~ iff i~ or 3 sequence ki, ko,...,ko11 € M st
i~k and

kop—1 ~P kap kb, ~* Kb, forp=1,2,..,1, and ki ~"j
and similarly
i O §
on interchanging A, B and primed and unprimed in the above ‘connected path’.
Proposition 1 The product P is associative.

Proof: Let us drop, for the moment, the explicit distinction between primed and unprimed elements
of M, but rather say that if an element a appears in both A and B in a product AB then it is to

be understood primed in A. Then a ~*(FY) b implies that there exists a sequence
11,02, -ny U
such that
A - . B - . _AorC . B - . C
a~"iy Gy ~Tdy dgy ~T 7" Ty dnipn ~T d2ipn Gagge ~ b

which in turn implies a ~A48)C b, and vice versa. QED.

Definition 10 (Partition algebra) Considering the vector space over K spanned by Sa,, the
linear extension of the product P gives us a finite dimensional algebra over K which we call the
partition algebra Pp(Q).



3 Relationship of P,(Q) to Full Temperley-Lieb Algebra

There are several realisations of the inclusion
Pnr1(Q) C Pa(Q).
Definition 11 The natural inclusion S is defined by
0= P, 3P,

S () = (()en() (). (13)

It is convenient to introduce the following special elements of the partition algebra:

1= ((11)(22)...(nn")) (14)

L;; = ((11")(22")..3i5")..(ji")..(nn")) i,j=1,2,.,n (15)
]' ! ! . -/ !

A; = 75 ((11')(22)...(0)(@")...(nn")) (16)

A =/Q ((11')(22)...(i4i"§")...(nn")). (17)

Proposition 2 These elements generate P, (Q).

Proof: (by induction on n) The proposition is true in case n = 1. Let us assume true for n = k—1,
then show that all possible extensions of the partitions of 1,2,....k —1,1',2' ...(k — 1)’ to include
k,k' can be built using these special elements. Note that the set of special elements for P, 1 are
(formally) a subset of those for P;. For each A € Py_1 we then have S(A) € P, with the same
expression as a word in the special elements, but given in full by ((...)...(..)(kk")) (c.f. equation 13).
We will show that this subset of P, can be extended to the whole set by using the extra special
elements.

There are various cases to consider for the parts containing &, k'. In what follows we omit cases
obviously consequent on symmetry grounds:
case 1: parts of the form

(...(..akk")) = Aar(.-.(.a) (k"))

case 2:
(...(.ak)(.B'E)) = Aur Ag (.. (c.a) (.B") (KE")) Apy,
case 3:
(... k)(VED) = (.(.a) (V) (RE)) Aok Ak, Avk
case 4:
(-..(aiah...ajk)(biba...bjk")) = Ap o Lok (..(ahas...a}) (babs...bj) (a1 by) (kk')) Aoy as -
QED.

It follows that 1, 141 (i =1,2,....,n — 1), Ay, A12 generate Pp(Q).



Definition 12 For A € P, let [A] denote the mazimum number of distinct parts containing both
primed and unprimed elements, over the S,, basis elements with a non-zero coefficient in A.

For example [1] = n, [A;] =n — 1. Then

Corollary 2.1 For A,B € P,
[AB] < min([A], [B]).

Proof: Tt is sufficient to check for the cases where B is one of the special elements.

Proposition 3 There is a homomorphism from the Full Temperley-Lieb algebra to the partition
algebra given by
H:Th(Q) = Pa(Q)

H:1—1
H:U; — A
H:Uj; — Ay
Proof: Without loss of generality we may consider for example,
(1) (22)..() ) (nn')) (11)(22)..(3)(i").(nm")) =
((11)(22)..()()(i")--(nn")) = @ ((11)(22")..(6)(i")..(nn"))

and
(((11)(22).(0) @) (o)) (11)(22))..(id'35")-(mm')) ) ((11')(22)..D)(0")..(nn"))

= ((11)(22)..(0)(¢"55")--(nn")) ((11')(22")..(3)(i")..(nn"))
= ((11')(22)..(3) (@")..(nn")).

We leave it as an exercise to check other relations (4) and (6).

Proposition 4 (see [3]) The subalgebra of P,(Q) generated by
<1, 4 (i=1,2,.,n), Ajpq (i=1,2.,n—1)>
is isomorphic to T4, (Q).
Definition 13 For given n we define ¥,, as the subalgebra of P,(Q) generated by
<1,1; (,j=1,2,...,n) >

or, where appropriate, as the corresponding symmetric group.



4 General results for P,(Q)
4.1 Full embedding of P,,_; in P,

It is a useful feature of these algebras that we can largely determine the representation theory of
P,(Q) in terms of P,_1(Q) and the symmetric group (and hence inductively from the trivial case
Py(Q) = €). We will need the following simple but surprisingly powerful theorem:

Theorem 1 For each n, Q # 0 and idempotent e = e, = A, /\/Q there is an isomorphism of
algebras
enPrnen = P_1.

Proof:

Note that partitions in e, P,e, (ignoring factors of /@ for the moment) can be thought of as
partitions of P,_; extended by the presence of (n)(n') as isolated parts. The map Z from left to
right is to simply ignore these parts

T (e ()@)(0)) = () () (18)

This is manifestly an injection. That it is a surjection comes from considering the image of
enPp—_1€n, noting that e, and P,_; commute. It also follows from this that the multiplication is
preserved.

Corollary 1.1 The category of left P,—1 modules is fully embedded in the category of left P,
modules. That is, there exist functors

(Pp—1 — mod) <N (P, — mod) N (Pp—1 — mod)

such that FG is the identity map on (P,—1 — mod).

Proof:
This is a standard result in case theorem 1 holds [15, 16]. There is then a standard functor
F : (P, —mod) — (Ph—1 — mod) (19)
with object map
F:Mw—e,M

and morphism map constructed as follows. Suppose 1 is a morphism in (P, — mod):
Yy e Py);

then
F(y) : eny = enth(y)

(the reader will readily confirm that composition of morphisms is preserved). Similarly we have

G : (Pp—1 — mod) = (P, — mod)

10



with set map
G:Nw— Prep,®p,_, N

and morphism map
G(P) : xep, ® z > ze, @ P(2).

We leave it as an exercise to check that F'G acts as the identity functor on the appropriate category.
For example, understanding by Z(e,ze,) its image under the isomorphism in the full embedding
theorem

F(G(9)) : (enzen) ® 2 — (enwen) @ ¢(2) =2 d(I(enzen)z)

(we have used that ¢ is a morphism of left P,_; modules). QED.
Similarly
GF(M) = Ppe,M

and
G(F(¢)) 1 men @, eny = zen ® enth(y) = Y(zeny).

These give us the range of GF, which will tell us (in Proposition 6) which pieces of information
about the regular representation we are missing from P,, in G(P,,_;). These can then be added by
explicit computation.

Some of the power of this result will be revealed when we apply it, in section 6.2.2. It is also
useful in analysing the non-generic cases, which we will discuss elsewhere [10].

Let us denote by F,,(M) = e, M the object map from the isomorphism of categories in the
above corollary at level n (equation 19).

Proposition 5 Let f, be the object map of categories defined by restriction of left P, modules to
left P,_1 modules through the inclusion S,

fn: (Py—mod) = (Py—1 — mod)

M-,

n—1

M.

Then the following diagram of object maps of categories commutes:
(P, — mod) ELN (Pp—1 — mod)
£t - : (20)

(Pn—1 — mod) pl (Pr—2 — mod)

Proof:
We must show that for each left P, module M

P, _o ~L€nM = €n—1p, _, ~LM
that is
€nM = €n_1M

11



is an isomorphism of left P,_» modules. But this follows from the observation that the definitions
of P, and P,_, are both unaffected by the interchange of labels n and n — 1. QED.

The commutative diagram 20 may be extended to a diagram of functors.

Proposition 5 implies that, up to edge effects caused by the difference between P,, and P, e, P,,
the Bratteli restriction diagram for the algebras P, (see section 6.2.2 onwards) has the same
structure on each level n. But then

Proposition 6 The following is a short exact sequence of algebras
0— P,eP, -+ P, %, = 0.

Proof:

Clearly we have an injection P, /P,e,P, — X,, the group algebra of the symmetric group on
n objects, since in this quotient A; = A;; = 0. That this is surjective follows from the corollary
to proposition 2 since P,e, P, is spanned by

{A : A€ Sy, [A] <n}

QED.
Thus, at least for P, semi-simple, a knowledge of the structure of P, _; essentially determines
for us the structure of P,.

Corollary 6.1 In case P,(Q) semi-simple the distinct equivalence classes of irreducible represen-
tations may be indexed by the list of all standard partitions of every integer from 0 (understood to
have one standard partition) to n.

Proof: In this case the exact sequence splits [12] and P, thus has Card{X : A F n} more irreducibles
than P,_;.

We will in fact show later that P,(Q) is semi-simple for () indeterminate and for all Q € €
except for the roots of a finite order polynomial in @ for any finite n. We will also show that in
any case the same classification is appropriate for any specialisation of ) # 0 (including non-semi
simple cases).

We will apply these results repeatedly from section 6.2.2 onwards.

5 Diagram algebra for a graph G

Let us return to proposition 4. More generally we have

Definition 14 For graph G the Diagram algebra D(Q) is defined as the subalgebra of the partition
algebra generated by
<1, 4; (i=1,2,.,n), Aij (i, €G) >.

Note that D,(Q) C P,.(Q), as 1;; cannot be built with these generators. However, under certain
conditions it can be substituted, for example,

lag Ay = Ay A1p Ay AszAs Az Ay . (21)

12



In fact we are more interested here in D, (Q) than P, (Q) (compare proposition 3 with equation 9),
but P,(Q) provides a more versatile general setting. We will see shortly that it is straightforward
to move from one to the other.

The relationship between the algebra types T, P and D is summarized by saying that the
diagram

0
!

T I p & o
H\(wLHz
P

is commutative and exact at D.

Proposition 7 The subalgebra D,(Q) C P,(Q) is invariant under conjugation by elements of the
group X, i.e.
bID,(Q)b= Dy(Q) Vhe .

Proof: W.Lo.g. consider b=' Ab with 4 a word in D,(Q) and insert 1 = b~'b between each letter
of A. This just takes each letter to another letter. Specifically, if b is given as a permutation

b:{1,2,..,n} = {1,2,...,n}
b:awr bla)

then
b A b = Ay, b~  Ayib = Apiiyn()

(consider equations 16 and 17).QED.
Corollary 7.1 Every word in P,,(Q) can be written in the form AB where A € ¥, and B € D,(Q).
Clearly we have an inclusion structure
G5G = Du(Q) 2 De(Q)

as for the Full algebras.

It also follows that D (Q), and indeed P, (@), obeys a number of quotient relations in addition
to the Temperley-Lieb relations. For example, with W € D¢g(Q) there exists X (W) a certain
(known) scalar function of @ (see [3]) such that

() o (1) =2 (11)

Specifically, if W € S,,, with by parts
X(W) = Q.

This relation is suitable for at least part of the set appropriate for physical systems, as it corresponds
to the existence of disorder at very high temperatures (there is also a dual corresponding to order
at low temperatures). At the level of the dichromatic polynomial it corresponds to isolating by
clusters (c.f. [2], for example). Several analogous relations have also been found [3].

13



5.1 Graphical realisation of D;(@Q): Connectivities
Here the order of a graph G, written |G|, is the number of nodes.

Definition 15 For a graph G let B be the set of all (not necessarily proper) subgraphs of G of
the same order.

For example, representing graphs by incidence matrices,

"oyt ) (o)

1 0
Note that elements of B need not be connected graphs [2].

Definition 16 For T a natural number we write G X T for the graph G x Ary1, and write G X Z
for G x T in the limit of large T'.

Consider the graph n x T (c.f. figure 2). Explicitly number the nodes of the lateral subgraph
n at ‘time’ t = 0 (written (n,0)) from 1,2, ...,n and number the nodes of (n,T) correspondingly
from 1',2',...,n'. Then introduce the map

Fr : Baxt = Pa(Q)

Fr:B,—» Q"B

where B € S,, is such that i ~P j iff 4,j (primed, unprimed or mixed) are connected by a path
of bonds present in the subgraph B,, and b is the number of isolated connected components in B,
not connected to any point in either of the layers t = 0 or ¢ = T'. Note that the definition of Fp
does not depend on T' except in the domain, so we can extend it to a map F on |Jp Bpxr. Then
we have a relation p on this new domain defined by (a,b) € p iff F(a) = F(b). For finite n there
exists some finite T beyond which (rangeFr)NS,, does not increase.

The range of Fr does not include the whole of S, however large we make T (see the remark
after definition 1). We can extend to the whole of S,, by, for example, building our ‘connectivities’
on n+ 1 x Z (but only labelling the ‘first’ n nodes, see figure 3).

This complication is connected to the nature of the lattice and the TM formalism, it will be
discussed further in [10]. In general, different choices of G in Bgxz C Buxz, realise different sets
of conectivities, i.e. different ranges for the restricted map F(Bgxz). This is, in fact, the essence
of the physically important problem of finding irreducible representations of D (Q) (see later, and
[10).

We may extend g Bnyix7/p or Uy Buxr/p to an algebra (over rational functions in Q). We
define a product B, . C, = (BC), by joining B, and C,, identifying the layer t = T in B, with
t =01in C,. It is a simple exercise to check that the product is also well defined in the quotient p,
whereupon the map F becomes an algebra homomorphism.

The explicit pictorial realization is particularly neat (but sufficiently general for illustration) if
we distribute the nodes of n linearly, as in A,,. Then for example with n = 12 the p class of A;;11
has a simple representative with 7" = 0:

14



P v

Figure 2: Part of the graph A x Z =3%x Z.

v

3[

1 2!

Figure 3: Diagram for the connectivity 115Us. = ((12')(21")(3)(3')) which restricts to 152 for n = 2.
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Aii+1/\/g 4—00000002—0000

The p class of A; has T' = 1 representative

VaAC prert1ritlng

The composition rule is to identify the top row of dots in the second diagram with the bottom
row in the first. Clusters then isolated from both top and bottom rows of the new diagram so
formed may be removed, contributing a factor Q.

Finally, then, for example, the TL relation 5

Aiiv1 A Aiiv1 = Asipa

amounts to the statement that the subgraph

CILIT11ST10]

has the same list of connections within and between the top and bottom layers as the p represen-
tative of A; ;41 above.

Note that no composition of diagrams increases the number of distinct connected clusters
connecting between the top and bottom layers (c.f. corollary 2.1). This means that the subset of
p cosets with no connections top to bottom form a basis for a P,(Q) bimodule. Furthermore, the
subset with < p distinct connections top to bottom also form a basis for a P,(Q) bimodule (for
p < n).

6 Structure and Representation Theory of P,(Q)

6.1 Filtration by ideals

The above picture is particularly useful for envisaging and constructing representations. The
number of distinct connections running from ¢ = 0 to t = T is evidently non-increasing in any
composition (it is a measure of the number of distinct bits of information which can be simultane-
ously propagated through the bond covering, which cannot exceed the number propagated across
any fixed time slice). So for example, writing simply P, for P,(Q), and defining idempotents

A,
I. = .

(Q # 0) then Iy allows no connections from ¢t = 0 to t =T, so P, Iy P, is the invariant subspace of
P,, where
4 Ayi,j sitoi~Ag

We thus have

16



Proposition 8 For Q # 0 the element Iy is a primitive idempotent.

Recall that since A @ B a proper decomposition of P, Iy implies IpA = IoB = 0 (a contradiction)
then

Corollary 8.1 The left ideal P,Iy is indecomposable (and generically simple).
Note that dim(P,Iy) = |Sy|. Similarly
Proposition 9 The element Iy is primitive in the quotient algebra P, /P, Iy P,

so again P,I; is indecomposable in this quotient.
Now I, is not primitive in P, /P,I; P, since, for example

D1ioly ~ 1205 ¢ Is.

On the other hand (1'%2&[2 and (1_2&12 are primitive idempotents.
Similarly I5 is not primitive in P, /P, > P,, but, for example

(1£ 140 £ 13+ 113 4+ 1121a3 + 1131a3)
3!

Yil3 = I3

and two further combinations (with A = (2,1) symmetries) are.
From the definition of I; we have P,I;_1P, C P,I;P, and a nest of short exact sequences of
ideals, i =1,2,....n

where finally I, = 1.
Definition 17 Let us define the algebra P,[i] = P,I; P,/ P,I;_1P,.

This is the algebra of elements with not more than 4 distinct connections running, as it were, from
t = 0tot =T, quotiented by the invariant subspace of all elements with strictly less than ¢ distinct
connections from 0 to T.

Proposition 10 In the quotient P,][i]
LS.0 =% i
(we take Xg =1 =1).

Proof: Any element of ¥, not in the subgroup is killed by the quotient.
Recall that the € structure of the permutation group is known [21]. In particular there are
standard constructions for primitive idempotents for each A - i. Then

Corollary 10.1 For X\ F i and X\ an appropriate primitive idempotent of %;, then I;Xy is a
primitive idempotent (mod Pn,I; 1 P,).

17



Corollary 10.2 The classification scheme in corollary 6.1 extends to include all non-semi simple
P,(Q) except P,(0).

Proof: By corollary (10.1) ;¥ induces an indecomposable projective module with a simple in-
variant subspace distinct (because of the P,[i] quotient) for each A\. QED.

Remark: The case P,(0) is degenerate rather than exceptional in this respect, and can easily
be dealt with.

Proposition 11 Let ¥ be any left ¥; module. Then we can write the left P,[i] module

Po(Q) (Ii%) = Dn(Q) (LX)

Proof: By proposition 7
P,I,Y =%,D,I,.X.

For each word BA(I,X) on the right there are three cases to consider for each letter in B, moving
from right to left. Firstly, the letter permutes nodes isolated (in the connectivity sense) from ¥ by
the word AI,.: In this case its effect can be ignored, e.g.

11241 Ay = A1 As.

Secondly, the letter permutes nodes neither of which is isolated by AI.: Again the effect can be
ignored, as
112X = I, 1% = I X,

Thirdly, the letter permutes an isolated and a non-isolated node. In this case there exists an
alternative formulation of the word where that letter is replaced by letters not in ¥,,, for example

112As Az = A1 A2 As Az,

li3As Ag. = Ay Aoz A1 A1 A As.

(note that the alternative formulation is not usually unique). More generally, suppose that the
letter is 1;; with ¢ isolated and j not, then as i is isolated we can always arrange it so that 1;;
appears here in the combination 1;;4;. But

QED.

6.2 Explicit construction of irreducible representations:

Our procedure is to disect the regular representation of P,(Q) provided by S,,, using I;X) from
corollary 10.1. That is, we form bases from S,, ;3. There are three stages:
1. The presence of I; says: discard all but partitions of the form (....(( +1)")(( +2)")...(n")...);
2. The quotient says: discard all but partitions in which the remaining primed elements
(1,2',...,1") each appear in a distinct part, and together with at least one unprimed element;
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3. The X, says: form each basis state from a certain linear combination of elements of the
subset of the remaining partitions which are related by simple permutation of the primed elements.
Each such subset contains i! elements (all possible arrangements of the primed elements). In each
such subset, once we choose an arrangement to call the identity permutation, then we have a basis
for the regular representation of ¥;. The action of ¥y is to project from this onto a basis for
the X irreducible representation (i.e. altogether dim(X;X,) linear combinations will survive - an
invariant subspace of ¥; - from each subset).

Let us first consider the fully symmetrized case for the left 3; module in proposition 11, call it
Y%, in each sector i (i.e. £¥* =X for A = (i) F i so PX® = ¥? for all P € ¥;). Then we get a basis
for the left P,[i] module P,I;¥* from a generalisation of the set Sy, as follows. List the elements
as partitions of 1,2,...,n, ignoring 1’,2',...,n' except in so far as to note which parts originally
contained primed elements (we may mark them with a prime outside the bracket - (M;)"). Now
discard duplicate copies of partitions not distinguished by this property, and partitions in which
other than 4 parts originally contained primed elements. We call the resultant set S, (i) (see also

section 7.1). For example,
S2(1) = {((12)"), (1)'(2)), (D(2))}-

We do not need to keep track of exactly which unprimed nodes were connected to which primed
nodes here, since the symmetriser makes all these permutations equivalent. In other words the set
Sn (%) is the set of all possible ways of arranging the elements of S,, (c.f. S,, = S2,) so that i parts
are distinguished from the rest. An element of S,, with p > i parts produces p!/((p—1i)!i!) elements
of the basis S, (¢) (and produces none if p < 7). Note that

n

> 18n (i) = 2"|Sl- (22)

=0

The action of the generators on such a basis is just the usual product from equation 12 pulled
through from the regular representation (remembering the P, [i] quotient, and that primed parts
beget primed parts [3] e.g. QA1 ((12)") = ((1)(2)")). We will prove irreducibility of these repre-
sentations in section 6.2.2.

Moving to the case where we take some other left 3; module in proposition 11, then our S,, ()
basis must simply be (semi) direct producted with a basis for this new module (rule 3). Some
permuting actions will act on the primes and hence on the ¥; module rather than, or as well
as, the partitions. There is usually an ambiguity in the choice of an identity permutation here,
corresponding to a basis change in the eventual representation. We will resolve it, for the sake
of definiteness, by labelling primes in a standard order (details of a standard order are given in
section 7.1). If an action changes the order then this permutation acts on ¥. For example, for the
1 = 2 antisymmetriser ¥ = E(lz) — 1 — 012 (the permutation action of o;2 is on the primes with
respect to the standard order, not on the elements of M) and S>(2) we have (single element) basis

$2(2)T2) = {(((11)(22') — ((12)(21))}

SO
112(((119)(22)) — ((12)(21")) = =(((11)(22)) — ((12')(21)))

gives the representation Rj2)(112) = —1.
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6.2.1 The casen =3

We can well illustrate all of the above points with an extended example. Let us consider n = 3.
The available partition shapes A in Sg are:

(6),(5,1),(4,2),(3%),(4,1%),(3,2,1),(2%),(3,1%), (2%, 1%),(2,1%), (1%
with corresponding multiplicities Dj:
1,6,15,10, 15,60, 15,20,45,15,1

giving total dimension |Sg| = 203.
On the other hand the dimensions of the bases described above are

5,10,6 dim(X5), 1 dim(X3)
i.e., explicitly, the bases are
{((123) : 0), (12)(3) : 9), ((13)(2) : 1), ((23)(1) = ), (1)(2)(3) : D)},
{(0:(123)), ((12) : (3)),((3) = (12)), ((13) = (2)), ((2) : (
((23) : (1)), ((1) : (23)), (1)(2) = (3)), (1)(B) :
{(0:(12)(3)), (0 : (23)(1)), (D : (2)(13)), (1) = (2)(3)), ((2) : (
{(0: (M)(2)B3))} x =5

where all parts to the right of the colon are to be understood primed (c.f. [3]).
In full the S3(2)X_ basis may be written

{(((121)(32) — ((122')(31"))), (((232')(11)) — ((231)(12))),

(((227)(1317)) — ((21")(132))), (((1)(21")(32")) — ((1)(22')(31"))),
((2)(11)(32) = (2(129(31))),  ((3)(11')(22) — ((3)(12)(21))) }

so for example the representation of 115 is

1 0 0 00 O
0 0 -1 00 0
0 -1 0 00 0
Rany(2)=1 g ¢ o ¢ 1 o
0 0 0 10 0
0 0 0 00 —1

Finally, then, noting the multiplicities of inequivalent generically irreducible representations at
level ¢ we have

524+ 10% +6°.(1+1) + 1°.(1 + 2> + 1) = 203 (23)
which coincides with the total dimesion, so we have, for example, the complete set of inequivalent
irreducible representations for the semi-simple cases. Note that all the i = 3 representations

reduce to (direct sums of) the same representation in D,,(Q), because none of the permutations
can actually be realized in this subalgebra.
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6.2.2 The ‘algebra’ P;’(Q)

Since we know the structure of the symmetric group (algebra) ¥; (see, for example, [20, 21]) it
behoves us to divide up our analysis by first considering the ‘completely Y-symmetrised algebra’,
P> (@), which we define below (and in which the symmetric group effect is quotiented out). The
rest will then follow from changing the left ¥; module in propostion 11.

Definition 18 We define an equivalence relation ~ on Sy, by A ~ B iff they are the same up to
a permutation of the connections made by the connectivities from t = 0 (unprimed elements) to
t=T (primed).

That is to say, if A ~ B then the connections amongst unprimed nodes are the same, the connec-
tions amongst primed nodes are the same, the number of instances of primed and unprimed nodes
in the same part are the same, and the subset of nodes in such mixed parts is the same. So in case
of two parts in a partition having both primed and unprimed nodes, the primed nodes in one can
be swapped for the primed nodes in the other without changing the ~ equivalence class. We will
give an alternative definition later.

We write P = P,(Q)/ ~ for the ‘quotient’ obtained by the linear extension to P,(Q).

In this case there is a Dirac bra-ket notation for ~-cosets of S,,,. Every coset may be written
uniquely in the form |a >< b| where a,b € S, (i) for some i (conversely every such pair defines a
unique coset). There is then an inner product < bjc > in each P,[i]/ ~, obtained from

la >< blle >< d| =< ble > |a ><d|. (24)

Note that the inner product is symmetric. In the sense of equation 24 the set S, (i) forms a basis
for a representation of P,[i]/ ~, and hence of P,(Q)/ ~ and of P,(Q).

Proposition 12 The n + 1 representations of P,(Q)/ ~ with bases S,(i) (i = 0,1,2,..,n) and
canonical action (up to the P,I;_1 P, quotient) are each irreducible, except at the roots of a finite
order polynomial in Q.

Outline proof: For all b € S, (i) the power of @) given by < b|b > is not exceeded by any < b|ec >;
and there exists at least one b such that < b|b > is the unique maximum power of @ for any < b|c >
(specifically any b of exactly n parts, for which < b|b >= Q"~%). It follows that the determinant of
the Gram matrix [17, 18] is polynomial in @ with coefficient of the leading power unity. Therefore
the inner product is non-degenerate and the Gram matrix is simple in case @) is an indeterminate.
Taken with the outer product also implicit in equation 24 this ensures that the representation
with basis {|a >: a € S, ()} is surjective, since there exists another basis {|a >} (say) for which
< alf >=dqp so that {|a >< f|: a, B € Sp(7)} is a complete set of elementary matrices. QED.

Corollary 12.1 These representations are inequivalent.
We will abuse the symbol for the set S, (i) to denote also the left P,(Q) module it spans.

Corollary 12.2 Any representation of P,(Q) built from proposition 11 with ¥ an irreducible ¥;
module is irreducible for Q) indeterminate.
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Corollary 12.3 P,(Q) is semi-simple for Q indeterminate and for all Q € € except for the roots
of a finite order polynomial in Q for any finite n.

Proof: We have at least two proofs! Firstly, by noting that each of a complete set of indecomposable
projective modules is in fact simple (the above proposition taken with corollary 1.1). Secondly, by
counting and combinatorics: the irreducible representations account for the full dimension of the
algebra. We will show this explicitly in the next section. Thirdly, by another counting argument -
see section 5.

The Bratelli diagram for the restriction corresponding to P, (Q) D P, ;(Q) on these irreducible
representations is as follows, with top line n = 0, and leftmost column ¢ = 0 (i.e. generated by
I for each n). We write only the dimension for each module, thus starting with Py = €, then
P =C1& CU,_, we have

XX X/

1
T

1 1

T "™ N

2 3 1

T oM N

5 10 6 1 (25)
T oM X2 MM N

15 37 31 10 1

T XM oMt DMt X Mt N

52 151 160 75 15 1

T XM Mt DMt X Mt X Mt N

203 674 856 520 155 21 1

and so on. These restrictions are forced by proposition 5 - c.f. [3]. To see this note that the
morphism of categories in the corollary to theorem 1 takes a layer of the above diagram to the
layer below it (each node is mapped vertically down, since the idempotent e, cuts at most one
connection, e.g. exPsejes — Pie; and Pres ® Piey — Paejez). The 1 at the right hand side
of the lower layer is missing in this map, of course, as this is the trivial representation of ¥,,.
Consequently (i.e. as a knock on effect from the previous layer) the restriction information for
the next two modules to the left - S,(n — 2) and S, (n — 1) - is incomplete. However, the only
possibility is for the restrictions to include some copies of the trivial representation, and these may
be filled in by dimension counting (we know the dimensions of all S, (i), as we will see shortly) or
by noting that, with Idy the k x k identity matrix denoting multiplicity k,

trivial representation

——~
n—1 J, Sn(n - ].) = Idn ® Sn,l(n - ].) @Sn,l(n - 2)
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(the multiplicity n occurs since there are n — 1 ways in which the n** node can be in a primed part
in S, (n — 1), and one way in which it can be in an unprimed part on its own) and

n—-t1 4 Sn(n - 2) =
(Idp—1 ® Sp—1(n — 1)) ® (Idp—1 ® Sp—1(n —2)) & Sp—1(n — 3). (26)

For example, omitting node 3 in S3(2) we get
{((1)"(23)"), ((12)(3)"), ((13)"(2)"), ((1)"(2)(3)), (1)"(2)(3)"), ((1)(2)'(3)")}
= {((1)"(2)"), ((12)), ((1)"(2)"), ((1)"(2)"), ((1)'(2)), (1)(2)")} = Sa2(1) + 3.5(2).

Note again that in omitting the last node (n) in this mnemonic if we have a part of the form
(ij...mn) (i.e. unprimed) then this maps to (¢j...m)’, since the action of generators here is as if the
part is connected to something!

We may generate bases for the representations in a row of equation 25 from those in the preceed-
ing row in such a way that the intertwiner between representations corresponding to equation 26 is
lower unitriangular (c.f. [18, 19]). The rules for using basis states from S,_1 (i) to construct basis
states at level n are:

1.(down left, i.e. to i — 1) take a primed bracket, put in element n and remove the prime
(generates i new states from each state);

2.(down, i.e. to i) add (n) or insert n into any primed bracket (i + 1 new states from each
state);

3.(down right, i.e. to i+ 1) add (n)".

It follows from our restriction rules that this construction preserves the restriction subblocks in
the order of equation (26), but with some additional entries below the block diagonal. The first
few bases are then as below (we have indented columns to indicate the separation into restriction
subblocks):

(0)
(1)) (1))
(M) (D)) (D'(2))
((12)) ((1)'(2))
((12)")
(DER)B) (HER)E))  (HE)'B))  (1)'(2)(3))
((12)(3))  ((12)3))  (1)'(2)B3))
(D(23))  (H(2)'(3) ((12)'(3)")
((13)3))  ()'(2)3))  (1)'(2)'3))
((123)) ((12)'3))  ((1)"(23)")
((1)(23)") ((13)"(2)")
((13)'(2)")
((123))
((1)'(23))
((13)(2))
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The usefulness of this construction lies in computing determinants of Gram matrices (and hence
ultimately the exceptional structure of P,(Q)). For example the representation » | S3(2) is given
by

0 0 0 VQ
L 0 0 00 ﬁ 0 L o
_ | Ve . _| 0 0 V@ o NG)
U = 0 0 0 0 V=149 9 o =10 % 0 o
ﬁ 00 0 0 00 0 0 0 0 0 0 0 O
1
0 000 0 0 00 0 0 0 O 0 75 0 0 0
(all omitted entries zero) so the intertwiner takes the form
1
0 1
0 0 1
W= 0O 0 0 1
XY Z a1
Y X Z B v 1

where X = %, Y = m, X +Y + Z = 0 and the other constants will be determined
shortly. The Gram matrix T" for the inner product at n = 3, and the composite matrix T at n = 2

are

Q 01 0 10 Q 01 0 0 0
0 Q1 001 0 Q1 0 0 0
|t rooo0 | L_| 11100 0
000 @ 1 1]|° 0 00 A 0 0
1 00 1 10 0 000 B 0
0 1 0 1 01 0000 0 C

The constants A, B, C will be determined, they arise because the irreducible inner products con-
tained here (on the diagonal) are only unique up to a scalar factor (a basis change in general).

Now putting I' = WI'W" we obtain @ = § = 1/Q, v = 575 and A = Q, B = %’
C = 7@&122(?3;4). Altogether det(I') =det(I") = Q(Q — 2)ABC = (Q — 1)*(Q — 4). This deter-

minant tells us how the irreducible representation collapses at special values of @ (c.f. [10, 18]).
Even in this example it is notable that all polynomials factorize over the integers.

6.3 General n (general symmetry)

For A\ |- ¢ let us allow ¥ now to symbolize the whole simple ¥; module associated to the partition
A (cf. [18, 21, 22, 23], say). Then for P,(Q) the generic simple modules may be realised as
Sn(i) ®; ¥ where the product is as discussed in sections 6.2 and 6.2.1.

The restriction rule here is given by
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Proposition 13 For > meaning “one box added to” ([21]) the restriction from P, to P,_1 is

n-1 4 (Sn(i) ® Ey) = (EB (Sno1(i+1)® Ex))

A D>A

» (69 (Snos(i) @ z»))

PR

&P (Snai—-1) @ Zy). (27)

A

For example, abbreviating modules on the right to their partitions and denoting multiplicity 3 by

3.0
H(SaB) @ Zen) = 2,1)a2)e @)% e3.2,1)e @) ) e (2).

Proof: The middle term in equation (27) is present because there are ¢ ways of having node n in a
primed part (so we can ignore it except in as much as it makes that part distinguishable) and one
way of having it in a part on its own - altogether equivalent to induction followed by restriction
on the ¥, factor.

The first sum is present because if n is in an unprimed part then in the restriction this part
behaves as a new primed part. This is because the part is still connected to n, so isolating it (from
n) would change the state, as it would if it were a primed part. The symmetric group factor thus
moves to ¥;11, and the ¥ module here is induced from A ® O in the usual way [21].

Finally, the last term comes from elements in which n is in a primed part alone. Then discarding
it affects the ¥ module just like ordinary one box restriction. QED.

Note that this is consistent with the symmetrised quotient case - associated to each of the
entries in column ¢ of the Bratelli diagram drawn there we have here a representation for each
partition A of i, of dimension |Sy, (¢)]-|Xx]-

As noted in corollary 12.3, it follows from theorem 1 that {S,(i) ®; Xy : i =0,1,...,n; A\ F i}
is a complete list of generic irreducibles. We can check this another way - since it is not obvious
that the dimension counting generalising equation 23 works here, but it does! Let us write d,,(7)
for the dimension of the it representation in row n (the it” column, counting the left hand column
as column 0). Then the total dimension of P,(Q) is bounded below by

( m = 2n). The identity is readily proved - the number of ways of moving along arrows from Sz, (0)
to Sy (i) in the Bratelli diagram above is exactly ¢! times the number of ways of moving from position
Sn(i) to Sp(0), and the latter number is |Sy, ()| = d, (7). On the other hand |S,,| = |S»(0)] so the
bound is saturated. We thus have the complete structure for all semi-simple cases.

Let us go into this in a little more detail. Define operators mg, h, h' on @ by their actions on
the standard ordered basis {|i) : i =1,2,3,...}

mali) = ili)
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hli) =i + 1)
hifiy =i = 1) (r'|1) = 0)
and define M = mg+ h and M' = mg + h + mght. For example, as an infinite matrix we have
(with omitted entries zero)

—
— N
— W
—
— Ot
— o

Then with the usual (i| = |i)! (so (i|j) = 0;;) we readily see that if
Definition 19 S,,[i] is the subset of Sy, of elements with i parts
(not the same as Sy, (7), which is not a subset) then

|Simi]] = (il M™ 1)
(Stirling numbers of the second kind) so that altogether

|Sml =D _GiIM™ 1)

(these work for any m, not just 2n). Note that as m grows ‘Slg“rll‘ is bounded by the largest

eigenvalue of my (i.e. it is unbounded!). Furthermore

dni) = 1Sm(@)| = 3 %uwmlm

= (j + 1{(M)™ 1) (28)
(this last identity is not so obvious!). In any case, puting j = 0 we get | S| = |Sm (0)].

Note that for fixed j the ratio di":(lj()j) is unbounded at large m (c.f. the Potts model represen-

tation).

6.4 The structure of D,(Q)

In P,(Q) the it" entry in each row of the Bratelli diagram 25 corresponds to many representations
(one for each partition of i), The only difference for D, (Q) is that the rightmost (n'*) entry
corresponds not to one representation for each A F i, but to a single one dimensional representation.
This arises from the impossibility of any transverse movement of n distinct connected lines on a
graph with only n nodes in each lateral subgraph. All the permutation representations collapse to
direct sums of a trivial representation of the identity.

26



7 On generalisations of P,(Q)

We describe here some of the basic building blocks of a categorical version of P,(Q). This gen-
eralises the TM formalism to the general ‘surgery’ of partition vectors [3] on latticised manifolds,
which will be developed further elsewhere. It is also useful here for a different perspective on
several earlier definitions.

Definition 20 (‘Internalisation’) For N C M and K the field of rational functions in Q define
Iny : Sy — KSn (NCM)

by

Iny: A QI A
where A’ is obtained by deleting all elements of M not in N from A, and f(A) is the number of
empty brackets this formally leaves (empty brackets are in practice omitted from A').

For example, with M = {1,2}, N = {1}

(D(2) = (VO) = Q1))

Then with N € M U P and Ag(A,B) = Q(A U B) we have a composition Py defined by
commutativity of the following diagram:

SuxSp % KSy
Ag In . (29)
N Smup

The product P of section 2 is the special case |M| = 2n, |P| = 2n, [IM NP| = n, N =
MUP—-MNP (|N|=2n).

In general terms the physical interpretation of this composition is as follows. The sets Sy and
Sp represent the boundary configuration space bases for two disjoint (Q-state Potts model-like)
statisitical mechanical systems with spins on their boundaries labelled by the objects of M and P
respectively. Aggregation identifies part of one boundary (possibly empty, in general) with part
of the other, thus combining the two systems. Internalisation then removes this part from the
boundary to the interior (in case N = M N P) or, more generally, removes some other part to the
interior. This is the TM composition generalised to the partition vector [3] formalism.

The above construction is for the case in which each boundary subgraph of the statistical
mechanical lattice is the complete graph for the boundary nodes. The main physical interest
comes in restricting this, and also the interior of the lattice, to sparser (e.g. hypercubical) graphs
- c.f. [10].

7.1 Outer and Inner products on S,,(i) and S,,

Recall that S,,(7) is the set of possible ways of attaching a distinguishing mark to each of any i of
the parts of each element of S,,. For example

S3(2) = {((12)'(3)), ((13)"(2)"), (1) (23)"), (1) (2)'(3)), (1" (2)(3)"), (1)(2)'(3)")}-
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Definition 21 For N C M define a variation on internalisation
Inly : Sar = | Sn(i)
i

where In'y(A) is obtained by first (as a formal intermediate step) replacing every element in A
not in N by a dot, then discarding every part consisting purely of dots, then priming each part
containing at least one dot.

For example, with M = {1,2,3,4}, N = {1,2}

((13)(2)(4)) = ((1)(2)() = ((1)'(2))-

Let us define a standard form for writing out a partition in S,, or Sy, (i), i.e. a standard order
for the objects in a part and the parts in a partition. The first will be the usual natural order of
the natural numbers, the second will be the order obtained by writing out the part containing 1
first, then the part containing the lowest number not contained in the first part, and so on (e.g.

((123)(49)(578)(6))

is in standard form).
Let us define a series of maps. Firstly

Definition 22 (‘Expansion’) For P a permutation of {1,2,...,i} define
Exp : Sm(l) - Sm+i (30)

by
Ezxp:a— A

where A is the partition obtained from a by inserting element m + P(k) into the k" primed part
(when written in the standard form,).

For example, for the trivial permutation P = 1 we have
Ex,((123)'(4)(56)")) = ((1237)(4)(568)).

Note that
In'y(Exp(a)) = a.

Now consider Syny where I N J = ), then each A € Sins induces a relation R(A) C I x J via
(a,b) € R(A) iff a ~4 b.

Definition 23 (‘Projection’) Define
Pr: S]UJ — KEZ»

by
A~ Pr(A)

where Pr(A) = R(A) if R(A) is an isomorphism and Pr(A) = 0 otherwise.
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Note that in order to have a concrete realisation of R(A) € X; we need to adopt an isomorphism
to act as identity. In practice there is usually a natural choice (see later).

For example if T = {1,2},J = {1',2'} then the identity isomorphism might as well take i — 4’
SO

Pr(((12')(21))) =(12),  Pr(((1)(1)(22)) =0

where (12) means the permutation in cycle notation (not an element of Sp,!).
We then define an inner product on S, (i)

Sm (i) X Sp(i) = K
(a,b) — (alb) (31)
by the composite map

Sm(Z) X Sm(l) Emﬁml SMUI X SMUJ jig SMUIUJ I_)n KSIUJ 1><—P)T KE, - K

where in the second cartesian product we want to distinguish the sets I and .J, both necessarily
of order i, such that I N J = ), but not distinguish the first and second occurence of the set M.
It is notationally convenient to take J = I' (i.e. i’ € J iff i € I). The Pr map is present to take
account of the irreducible representation filtration quotient (see later).

For example

((12)(3)") x ((1)'(23)) = ((12)(34)) x ((14')(23)) = ((12344))) > ((44)) = 1.1

(in the second expression we have distinguished I and .J by a prime on elements of .J, as suggested
above) and

(M@)A)) x (1)(2)(3)) = ((1)(2)(34)) x ((14)(2)(3))

= ((14)(2)(34)) = (4)0(4) = Q (4)(4) = Q.0 =0.
We define an Outer product for each P € ¥;

Outp : Sp(i) X S (i) = Syume
(a,b) = |a)p(b] (32)
where M and M' are disjoint of order m, by the composite map
S (i) X S (8) P B Susir ¢ Sarror 2 Saronror 3 Saron

Note that Outp is injective. The ranges of Outp for each P and ¢ are manifestly disjoint. The
union over all these disjoint ranges is Sa,,. This is proved by the same counting argument as for
the irreducible representations.
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There is a generalisation of the outer product to Sy, (i) x S, (i) with m # n. This is more easily
constructed in reverse, So....

Conversely, for any partition of set M into two disjoint subsets N, R (not necessarily of the
same order) there is a map from

S — UPUE Sn(i) X Sp(i) x P
T €2

given by
A (Iniy(A),Inr(A), P)

where P is the isomorphism from primed parts of In/y(A) to primed parts of In’,(A) realised by
A.

This is the inverse of the outer product.

We note the capacity for a diadic form for the product Py defined in the previous subsection
(but with a filtration quotient in operation)

|a)p(bl-lc) P {d] = (ble) |a} pr(a)p (d]

where R(A) is as in the definition of the inner product.
Here are a couple of all singing all dancing examples:

A = ((12)(31'2'5")(44')(566) (3")) = [((12)(3)"(4)"(56)"))1 (((125)'(3)(4)' (6)")]

B = ((1)(2)(341")(54'6") (62'3'5")) — [((1)(2)(34)(5)(6)")) (23 (((1)"(235)"(46)")|
but
(((125)(3)(4)"(6))I((1)(2)(34)(5)"(6)")) = 1.(12)
so altogether we have (with permutation 1.(12).(23) = (132))
|((12)(3)"(4)"(56)")) (132, (((1)"(235)'(46)")] = ((12)(34'6")(41")(562'3'5')) = AB

as required.
Finally let us give an alternative definition of the equivalence ~ on Ss,,,. We have that A ~ B
iff there exist permutations P, @ and elements a,b € S, (i) for some i, such that

B = Outp((a,b)) = |a)p(b| A = Outg((a,b)) = |a)q(bl.

For example
((1233)(41'2') () ~ ((1231'2')(43')(4"))

since the former is Outp((((123)'(4)"), ((12)'(3)'(4)))) with P = (12) while the latter is

Out1 ((((123)"(4)"), ((12)'(3)"(4))))-
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8 Discussion

We have completely determined the generic structure of the algebra which contains the Potts
model and dichromatic polynomial representations of the Temperley-Lieb algebra for statistical
mechanics in arbitrary dimensions. These results govern the subalgebras appropriate for models in
fixed dimensions. In subsequent work with H. Saleur [10] we examine these subalgebras in detail,
using the filtering system established here.

We will determine the generic irreducible content of the Potts model representations. In par-
ticular, we will show that since the irreducible representations constructed here grow with n faster
than Q™ for any @ (c.f. equation (28)) then the existence of the Potts representations ensure that
at least some of the positive integer ) algebras are exceptional in any dimension. This means
that extra symmetry turns up to simplify the spectrum (i.e. the long distance properties) of these
models, as it does in two dimensions. In two dimensions this effect is closely related to a ‘rational’
conformal symmetry of the critical field theory limit [8]. In other dimensions it requires further
investigation.

We will examine the non-generic representation theory of the partition algebra.

We will also use the scheme developed here as the basis for an analysis of the infinite Full
Temperley-Lieb algebras, and to find out which of the infinity of irreducible representations are
relevant for physics, and why.

Note that the subset of Sy containing partitions with only even numbers of elements in each
part generates a subalgebra of P, (Q). The subset containing partitions with exactly two elements
in each part generates the Brauer algebra (compare figure 1 with [11]).
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